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Abstract

Background: Corynebacterium resistens was initially recovered from human infections and recognized as a new
coryneform species that is highly resistant to antimicrobial agents. Bacteremia associated with this organism in
immunocompromised patients was rapidly fatal as standard minocycline therapies failed. C. resistens DSM 45100
was isolated from a blood culture of samples taken from a patient with acute myelocytic leukemia. The complete
genome sequence of C. resistens DSM 45100 was determined by pyrosequencing to identify genes contributing to
multi-drug resistance, virulence, and the lipophilic lifestyle of this newly described human pathogen.

Results: The genome of C. resistens DSM 45100 consists of a circular chromosome of 2,601,311 bp in size and the
28,312-bp plasmid pJA144188. Metabolic analysis showed that the genome of C. resistens DSM 45100 lacks genes
for typical sugar uptake systems, anaplerotic functions, and a fatty acid synthase, explaining the strict lipophilic
lifestyle of this species. The genome encodes a broad spectrum of enzymes ensuring the availability of exogenous
fatty acids for growth, including predicted virulence factors that probably contribute to fatty acid metabolism by
damaging host tissue. C. resistens DSM 45100 is able to use external L-histidine as a combined carbon and nitrogen
source, presumably as a result of adaptation to the hitherto unknown habitat on the human skin. Plasmid
pJA144188 harbors several genes contributing to antibiotic resistance of C. resistens DSM 45100, including a
tetracycline resistance region of the Tet W type known from Lactobacillus reuteri and Streptococcus suis. The tet(W)
gene of pJA144188 was cloned in Corynebacterium glutamicum and was shown to confer high levels of resistance
to tetracycline, doxycycline, and minocycline in vitro.

Conclusions: The detected gene repertoire of C. resistens DSM 45100 provides insights into the lipophilic lifestyle
and virulence functions of this newly recognized pathogen. Plasmid pJA144188 revealed a modular architecture of
gene regions that contribute to the multi-drug resistance of C. resistens DSM 45100. The tet(W) gene encoding a
ribosomal protection protein is reported here for the first time in corynebacteria. Cloning of the tet(W) gene
mediated resistance to second generation tetracyclines in C. glutamicum, indicating that it might be responsible for
the failure of minocycline therapies in patients with C. resistens bacteremia.

* Correspondence: tauch@cebitec.uni-bielefeld.de

'Institut fiir Genomforschung und Systembiologie, Centrum fiir
Biotechnologie, Universitat Bielefeld, Universitdtsstrale 27, D-33615 Bielefeld,
Germany

Full list of author information is available at the end of the article

- © 2012 Schroder et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
( B.oMed Central Commons Attribution License (http/creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.


mailto:tauch@cebitec.uni-bielefeld.de
http://creativecommons.org/licenses/by/2.0

Schréder et al. BMC Genomics 2012, 13:141
http://www.biomedcentral.com/1471-2164/13/141

Background

The genus Corynebacterium belongs to the taxonomic
class Actinobacteria and represents a diverse group of
Gram-positive bacteria with a DNA of high G + C con-
tent, whose members were recognized in a large variety
of habitats [1]. The most prominent species of the
genus Corynebacterium is the human pathogen Coryne-
bacterium diphtheriae, which is the etiological agent of
the acute, communicable disease diphtheria [2]. With
the exception of C. diphtheriae, the pathogenicity of
other corynebacterial species from clinical sources has
been underestimated for a long time, as they were often
regarded as skin contaminants in human infections [3].
The improved taxonomic recognition of corynebacteria
in clinical specimens and the increasing number of case
reports associating non-diphtherial species with infec-
tions in humans and also in animals has changed this
view during the last decade [4,5]. In particular, the com-
mon skin colonizers Corynebacterium urealyticum and
Corynebacterium jeikeium, which both belong to a sepa-
rate branch in the phylogenetic tree of the genus Cory-
nebacterium [6], were frequently associated with
infections in immunocompromised patients. C. urealyti-
cum is primarily recovered from hospitalized elderly
individuals and can cause urinary tract infections [7],
whereas C. jeikeium is associated with a variety of noso-
comial infections, for instance with endocarditis after
cardiac surgery and with bacteremia in hematological
patients [8,9]. The majority of clinical isolates assigned
to these species displayed a remarkable multi-drug resis-
tance in such a way that only glycopeptide antibiotics
remain universally active against these pathogens
[10,11]. The development of multi-drug resistance in
corynebacteria is probably enhanced by the selective
pressure occurring in the hospital setting and has tre-
mendous consequences for the successful treatment of
human infections, especially in elderly individuals and in
immunocompromised patients [12,13].

In 2005, a new multi-drug resistant corynebacterium
was isolated from human infections in Japan and named
Corynebacterium resistens [14]. Five strains of this bacter-
ium were recovered from blood samples, bronchial aspi-
rates, and abscess specimens and characterized by
measuring their susceptibilities to antimicrobial agents.
Four strains were obtained from inpatients and revealed
high levels of resistance to macrolides, aminoglycosides,
tetracyclines, quinolones, and f3-lactams, whereas the fifth
isolate was recovered from an outpatient and shown to be
susceptible to imipenem and minocycline. The glycopep-
tides vancomycin and teicoplanin remained universally
active against the five isolates. Although the administration
of vancomycin is generally regarded as the first choice to
eradicate multi-drug resistant corynebacteria, the use of
this glycopeptide antibiotic is restricted to methicillin-
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resistant Staphylococcus aureus (MRSA) in Japan. Minocy-
cline, a second generation tetracycline [15], was adminis-
tered instead, but this antimicrobial therapy failed and
probably contributed to the subsequent death of a patient
from sepsis [14].

Experimental data from a polyphasic taxonomic
approach revealed that the five clinical isolates were
genetically identical and repesent a new subline within
the genus Corynebacterium, with the multi-drug resistant
species C. urealyticum and C. jeikeium as phylogenetic
neighbors [14]. The type strain of this new corynebacter-
ial species is C. resistens DSM 45100 (originally referred
to as SICGH 158) that was isolated from a positive blood
culture of samples taken from a patient with acute mye-
locytic leukemia [14]. In this study, we present the com-
plete genome sequence and bioinformatic analysis of
C. resistens DSM 45100 providing detailed insights into
the lipophilic lifestyle and the virulence factors of this
strain. During the sequencing project we recognized that
C. resistens DSM 45100 harbors a plasmid that we named
pJA144188. The DNA sequences of the chromosome and
pJA144188 revealed the molecular mechanisms leading
to the extensive antibiotic resistance of C. resistens DSM
45100. We detected the tet(W) gene to cause resistance
to minocycline and verified its functioning in corynebac-
teria by expressing the resistance determinant in the sus-
ceptible host strain Corynebacterium glutamicum ATCC
13032.

Results and discussion

Pyrosequencing and annotation of the C. resistens DSM
45100 genome

The genomic sequence of C. resistens DSM 45100 was
determined by a whole-genome shotgun approach with
pyrosequencing technology. A quarter of a single run with
the Genome Sequencer FLX System and Titanium chem-
istry yielded 273,646 reads with a total number of
112,335,846 bases that were assembled into 73 large (>
500 bases) contigs and 19 small contigs. Bioinformatic
analysis of the sequence assembly indicated that 14 contigs
belong to a plasmid that was named pJA144188. The
remaining gaps in the chromosome and in plasmid
pJA144188 were closed by PCR strategies that were sup-
ported by the Consed program [16]. The final assemblies
of the DNA sequences yielded a circular chromosome
with a size of 2,601,311 bp (Figure 1A) and the 28,312-bp
sequence of plasmid pJA144188 (Figure 2). Gene finding
and annotation of the C. resistens DSM 45100 genome
were performed with the GenDB software system [17] and
resulted in the detection and characterization of 2,171 pro-
tein-coding regions on the chromosome. Furthermore,
three rrn operons were detected with the RNAmmer tool
[18], and 50 tRNA genes were predicted by the tRNAscan-
SE program [19]. Relevant features deduced from the
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Figure 1 Features of the C. resistens DSM 45100 chromosome. (A), Circular representation of the annotated chromosome of C. resistens DSM

protein-coding regions transcribed anticlockwise; circle 4, G + C content plotted using a 10-kb window; circle 5, G/C skew plotted using a 10-kb
window. The plot was generated with the web version of the DNAPIotter tool. (B), Distribution of architecture imparting sequences in the C.
resistens DSM 45100 chromosome. The distribution of the octamers G(A/T/C)GGGGGA and (T/C)GGGGGAG on the leading and lagging strands of
the chromosome is shown. The origin of chromosomal replication (oriC) is marked. The deduced dif locus is located at around 1.23 Mbp of the
chromosomal map. The sequence of the 28-bp dif site is shown. (C), Synteny plot between the chromosomes of C. resistens DSM 45100 and C.
Jeikeium K411, The X-Y plot shows dots forming syntenic regions between the two chromosomes. Each dot represents a C. resistens protein
having an ortholog in the C. jeikeium genome, with co-ordinates corresponding to the position of the respective coding region in each genome.
The orthologs were identified by reciprocal best BLASTP matches using the predicted amino acid sequences of C. resistens proteins. The
detected genomic rearrangements are labeled; the positions of the prophages ®CRES | and ®CRES Il in the chromosome of C. resistens DSM
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genome sequence of C. resistens DSM 45100 are summar-
ized in Table 1. Plasmid pJA144188 consists of 31 protein-
coding regions, of which nine were classified as pseudo-
genes. All pseudogenes of pJA144188 are remnants of pro-
tein-coding regions truncated by the transpositional
integration of insertion sequences.

General architecture of the C. resistens DSM 45100
chromosome

The chromosome of C. resistens DSM 45100 revealed the
typical features of a corynebacterial genome sequence. A
plot of the calculated G/C skew [(G - C)/(G + C)] indi-
cated a bi-directional replication mechanism of the
C. resistens chromosome (Figure 1A). According to the
presence and distribution of conserved DnaA boxes,
the origin of replication (oriC) is located downstream of
the dnaA coding region [20]. The biased distribution of
architecture imparting sequences (AIMS) on the leading
and lagging strands of the chromosome indicated the pre-
sence of a dif region involved in replication termination
[21] at 1,233 kb on the chromosomal map, dividing the
chromosome of C. resistens DSM 45100 into two repli-
chores of nearly similar sizes (Figure 1B). A comparative
analysis by reciprocal best matches with BLASTP [22]
revealed a highly conserved order of orthologous genes
between the chromosomes of C. resistens DSM 45100 and
C. jeikeium K411 (Figure 1C). Since corynebacteria lack

the recBCD recombination pathway [1,23], genetic rear-
rangements are generally rare in the respective genomes,
although a moderate reorganization of the chromosomal
architecture has been detected in species of the cluster 3
subline of the genus Corynebacterium [24-26]. The chro-
mosomal synteny between C. resistens DSM 45100 and
C. jeikeium K411 is interrupted due to a translocation of a
154-kb DNA region and the inversion of two distinct
genomic segments in C. resistens (Figure 1C). As these
inversions are part of the right replichore and as intra-
replichore inversions are relatively rare [27], we assume
that the current chromosomal architecture of C. resistens
DSM 45100 resulted from a flip-flop of two consecutive
inversions. Flip-flop means in this genomic context that
the 125-kb central region of an initially inverted 270-kb
DNA segment was probably inverted again to maintain
the architectural bias in this part of the C. resistens chro-
mosome (Figure 1B).

We therefore examined the gene-strand bias in the
chromosome of C. resistens DSM 45100, taking into
account that gene essentiality is a proposed driving force
for the genetic organization in bacterial genomes [28]. In
total, 58.7% of the protein-coding regions of C. resistens
DSM 45100 are located on the leading strands of the
chromosome, revealing a moderate gene-strand bias in
this species. A comparative content analysis of predicted
protein-coding regions from C. resistens DSM 45100
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with candidate essential genes detected in the genome of
C. glutamicum R by high-density transposon mutagenesis
[29] revealed 365 candidate essential genes from C. gluta-
micum R having orthologs in the chromosome of C. resis-
tens. The majority of these genes (75.1%) are located on
the leading strands of the C. resistens chromosome, with
68.8% of all candidate essential genes being located on
the left replichore, clearly indicating the prominent role
of gene essentiality in bacterial gene-strand bias [28]. In

Table 1 Data deduced from the complete genome
sequence of C. resistens DSM 45100

Feature Chromosome Plasmid pJA144188
Total size (bp) 2,601,311 28,312

G+C content (%) 57.1 553

No. of protein-coding sequences 2,171 31

Coding density (%) 87.9 874

Average gene length (bp) 1,053 798

No. of rRNAs 3 % 165-235-55 0

No. of tRNAs 50 0

No. of CRISPRs® 73 0

@ Abbreviation: Clustered Regularly Interspaced Short Palindromic Repeats

the inverted genomic segment of the C. resistens chromo-
some, 46 candidate essential genes are located on the
leading strand, whereas 43 candidate essential genes were
detected on the lagging strand. This equal distribution of
candidate essential genes on the leading and lagging
strands might explain why an intra-replichore inversion
has been established in the chromosome of C. resistens
DSM 45100. It suggests furthermore that the orientation
of the respective genes has no remarkable impact on the
fitness of C. resistens DSM 45100.

Additional breakpoints of synteny between the chro-
mosomes of C. resistens DSM 45100 and C. jeikeium
K411 are caused by the presence of genes related to two
prophages, named @CRES I and ¢CRES II (Figure 1C).
The genomic segment of C. resistens DSM 45100
assigned to @CRES I has a size of about 58.7 kb and com-
prises 51 genes, whereas the @CRES II region has a size
of about 40.2 kb and comprises 44 genes, including a
transposase gene of an integrated insertion sequence
(Figure 3). Both putative prophage genomes share not
only a very similar set of protein-coding regions, but also
a highly similar order of these genes, suggesting that the
respective phages are genetically related (Figure 3).
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Moreover, a DNA region with 73 clustered regularly
interspaced short palindromic repeats (CRISPRs) was
detected in the chromosome of C. resistens DSM 45100
with the CRISPRFinder tool [30]. The CRISPR locus
comprises DNA repeats with a length of 28 bp, which are
separated by variable 33-bp spacer sequences. The adja-
cent genomic region in the chromosome of C. resistens
DSM 45100 comprises seven CRISPR-associated genes,
named casA-casG. The combination of highly similar
CRISPRs and associated cas genes was detected pre-
viously in C. jeikeium K411 [25], C. urealyticurn DSM
7109 [24], and Nocardia farcinica IFM 10152 [31] and
can probably provide acquired resistance to bacterio-
phages [32].

A comparative content analysis of the predicted pro-
teome of C. resistens DSM 45100 with the complete set of
proteins encoded in the genomes of C. jeikeium K411 [25],
C. urealyticum DSM 7109 [24], and Corynebacterium
kroppenstedtii DSM 44385 [26] revealed that the four spe-
cies belonging to the corynebacterial cluster 3 share 894
orthologous proteins, representing 41.2% of the predicted
proteins from C. resistens DSM 45100 (data not shown).
According to this comparative data, C. resistens DSM
45100 contains 563 species-specific genes that probably
contribute to the characteristic phenotypic features of this
bacterium. In the following sections, we analyze the gene
repertoire of C. resistens DSM 45100 in more detail and
deduce relevant features regarding the lipophilic lifestyle
and the functions involved in virulence and multi-drug
resistance of this new human pathogen.

General metabolic features and lipophilic lifestyle of

C. resistens DSM 45100

A bioinformatic reconstruction of the central carbon
metabolism of C. resistens DSM 45100 revealed the
absence of genes coding for the components of phosphoe-
nolpyruvate:carbohydrate phosphotransferase systems

(PTSs) (Additional file 1). The absence of the respective
genes in C. resistens DSM 45100 was supported by
TBLASTN searches with reference proteins from other
corynebacteria or actinobacteria. PTSs play a major role in
uptake and phosphorylation of numerous carbohydrates,
as well as in monitoring the bacterial environment to
choose alternative carbon sources for growth [33]. Only
the sugABCD gene cluster encoding a putative sugar trans-
port system of the ABC superfamily was detected in the
genome of C. resistens DSM 45100 (Additional file 1).
Moreover, the glk gene encoding glucokinase (EC 2.7.1.2.)
and the rbsK gene coding for ribokinase (EC 2.7.1.15) are
present in C. resistens DSM 45100, allowing the conver-
sion of “free” sugars into phosphorylated central pathway
intermediates. In accordance with this data, the taxonomic
description of C. resistens indicated that glucose and ribose
are catabolized by this species [14]. The rbsK gene is also
part of a utilization pathway for the nucleoside uridine
[34] that is imported into C. resistens by the major facilita-
tor superfamily transporter UriT and converted to ribose
and uracil by an inosine-uridine preferring nucleoside
hydrolase (EC 3.2.2.1) encoded by the uriH gene (Addi-
tional file 1). Further metabolic analysis of the genome
sequence revealed the presence of a complete set of genes
involved in glycolysis, gluconeogenesis, and the pentose
phosphate pathway. Likewise, the tricarboxylic acid cycle
of C. resistens DSM 45100 and the glyoxylate bypass, com-
prising the genes aceA and aceB, are complete (Additional
file 1). This is remarkable as the sucCD genes encoding
subunits of succinyl-CoA synthetase (EC 6.2.1.5) are lack-
ing in other sequenced genomes of cluster 3 corynebac-
teria [24-26]. On the other hand, enzymes catalyzing
typical anaplerotic reactions in corynebacterial metabolism
are not encoded in C. resistens DSM 45100, including
phosphoenolpyruvate carboxylase (EC 4.1.1.31) and pyru-
vate carboxylase (EC 6.4.1.1). This observation suggests
that C. resistens DSM 45100 is dependent on substrates
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for growth that are associated with the complete gluco-
neogenesis pathway.

The most likely substrates for growth of C. resistens are
external fatty acids. C. resistens is often assigned to the
group of “lipophilic” corynebacteria, whose growth is
markedly enhanced by the addition of lipids to the cul-
ture medium [3]. This characteristic phenotype per se is a
fatty acid auxotrophy that obviously originates from the
lack of a fatty acid synthase gene (fas), which is generally
responsible for the biosynthesis of fatty acids [35]. To
satisfy the essential nutritional requirement for fatty
acids as carbon and energy sources, a complete 3-oxida-
tion pathway is encoded in the genome of C. resistens
DSM 45100 (Additional file 1). Ten fadD genes encoding
acyl-CoA synthetases were identified in the genome of
C. resistens DSM 45100, including the fadD1I gene that is
involved in mycolic acid biosynthesis [36]. The fadD10
coding region represents a pseudogene as it is disrupted
by an insertion sequence. Fatty acyl-CoA synthetases are
generally involved in activating free fatty acids to form
acyl-CoA of various chain lengths concomitant with the
transport into the bacterial cell [37] and are also required
for the utilization of endogeneous fatty acids released
from membrane lipids [38]. The presence of a large num-
ber of orthologs and the amino acid sequence diversity of
the fatty acyl-CoA synthetases of C. resistens DSM 45100
might indicate different substrate specificities of these
enzymes. Other enzymes involved in the B-oxidation
pathway of C. resistens DSM 45100 are encoded by seven
paralogs of fadE (encoding acyl-CoA dehydrogenase), the
bifunctional fadB1 gene (enoyl-CoA hydratase/hydroxya-
cyl-CoA dehydrogenase), the monofunctional fadB2 gene
(hydroxyacyl-CoA dehydrogenase), five paralogs of echA
(enoyl-CoA hydratase), and three paralogs of fadA
(ketoacyl-CoA thiolase). The predicted amino acid
sequences of the paralogous proteins vary substantially in
C. resistens DSM 45100, again suggesting diverse sub-
strate specificities of the respective enzymes. Moreover,
the acx gene of C. resistens DSM 45100 encodes acyl-
CoA oxidase (EC 1.3.3.6), which catalyzes the desatura-
tion of fatty acyl-CoA thioesters and donates electrons
directly to molecular oxygen, thereby producing H,O,
[39]. The subsequent detoxification of the resulting H,O,
is catalyzed by catalase (EC 1.11.1.6) encoded by the katA
gene of C. resistens DSM 45100.

The degradation of modified fatty acyl-CoA esters
requires the recruitment of auxiliary enzymes to link their
utilization to the main B-oxidation pathway [39]. The
fadH gene for instance encodes 2,4-dienoyl-CoA reductase
(EC 1.3.1.34), which is required for the degradation of
unsaturated fatty acids, whose double bond extends from
an even-numbered carbon atom. Moreover, the genes
prpC and prpD are involved in the metabolism of propio-
nyl-CoA via the 2-methylcitrate cycle [40]. Propionyl-CoA
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can result from B-oxidation of odd-chain fatty acids and is
converted to 2-methylisocitrate by the consecutive reac-
tions of 2-methylcitrate synthase (EC 2.3.3.5) encoded by
the prpC gene, and 2-methylcitrate dehydratase (EC
4.2.1.79) encoced by prpD. The last step of this cycle, the
cleavage of 2-methylisocitrate to succinate and pyruvate, is
catalyzed by 2-methylisocitrate lyase (EC 4.1.3.30) that is
not encoded in the genome of C. resistens DSM 45100.
Despite the lack of a corresponding prpB gene to complete
the 2-methylcitrate cycle, the oxidation of odd-chain fatty
acids by C. resistens DSM 45100 seems possible when con-
sidering that isocitrate lyase (AceA) might also function as
2-methylisocitrate lyase, as it was demonstrated in Myco-
bacterium tuberculosis [40]. C. resistens DSM 45100 can
also channel propionate into the tricarboxylic acid cycle
via the enzymatic reactions encoded by the methylcitrate
cycle genes (Additional file 1). Propionate is imported into
C. resistens DSM 45100 by a monocarboxylic acid trans-
porter encoded by the mctC gene [41].

The activation of fatty acids to acyl-CoA thioesters is not
only the initial step of the B-oxidation pathway, but also
for the biosynthesis of corynomycolic acids [42]. Mycolic
acids are major constituents of the corynebacterial cell
envelope and synthesized by the polyketide synthase
Pks13 [42] and the reductase CmrA [43]. The pksi13 cod-
ing region of C. resistens DSM 45100 is located in a con-
served gene cluster [44], including genes coding for an
acyl-CoA carboxylase (accD3), an acyl-CoA synthetase/
acyl-AMP ligase (fadD1I), the envelope lipids regulation
factor EIrF (elrF), and two trehalose corynomycol trans-
ferases (cmtB and cmtC). A third gene coding for a cory-
nomycolyl transferase (cmtA) is located elsewhere in the
chromosome of C. resistens DSM 45100. Trehalose cory-
nomycol transferases catalyze the transfer of mycolic acids
from trehalose monocorynomycolate on the cell wall
arabinogalactan and on another trehalose monocorynomy-
colate to yield trehalose dicorynomycolate [45].

Another gene cluster involved in fatty acid metabolism
of C. resistens DSM 45100 includes genes coding for o
and B subunits of acyl-CoA carboxylase (accD1 and
accBCI), an acyl-CoA dehydrogenase (fadE8), a putative
enoyl-CoA hydratase domain-containing protein (echC),
a citrate lyase B-subunit (citE), an acyl-CoA synthetase
(fadDS5), and a ketoacyl-CoA thiolase (fadA3). The regu-
latory gene tetR encoding a regulator of the TetR pro-
tein family is located in front of the accDI gene and
might be involved in the transcriptional control of the
complete gene cluster. A similar arrangement of genes
is present only in the genomes of the lipophilic species
C. jeikeium K411 and Corynebacterium amycolatum
SK46, whereas a subset of genes (including a regulatory
tetR gene) was found also in the genome of M. tubercu-
losis H37Rv [46]. As most of the proteins encoded in
these conserved gene clusters are linked to fatty acid
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catabolism, they might be involved in the activation and
subsequent degradation of a hitherto unknown fatty
acid substrate.

Amino acid metabolism and utilization of histidine by

C. resistens DSM 45100

According to the genome annotation, all currently known
pathways for the biosynthesis of standard proteinogenic
amino acids are present in C. resistens DSM 45100 (Addi-
tional file 2). The genome sequence of C. resistens DSM
45100 contains moreover the agxT gene encoding serine-
glyoxylate aminotransferase (EC 2.6.1.45) that catalyzes
the conversion of L-serine and glyoxylate to 3-hydroxypyr-
uvate and glycine, the sdaA gene encoding L-serine dehy-
dratase (EC 4.3.1.17) involved in the conversion of
L-serine to pyruvate and NHj3, and the arcB gene encoding
ornithine cyclodeaminase (EC 4.3.1.12) that converts L-
ornithine to L-proline and NH; (Additional file 2).
Another enzymatic reaction that generates NHj is carried
out by histidine ammonia-lyase (HutH; EC 4.3.1.3). This
enzyme catalyzes the first step in the degradation of L-his-
tidine and the product, urocanate, is further metabolized
to glutamate and formamid [47]. A complete histidine uti-
lization (hut) pathway was identified in C. resistens DSM
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45100 and is represented by the hut gene cluster (Figure
4A). The products of this gene cluster catalyze the four-
step conversion of L-histidine to L-glutamate (Figure 4B).
The first enzymatic reaction of this pathway is catalyzed
by HutH, followed by the conversion of the resulting uro-
canate to 4-imidazolone propanoate by urocanate hydra-
tase (HutU; EC 4.2.1.49). Formiminoglutamate is
generated in the third step by imidazolonepropionase
(Hutl; EC 3.5.2.7) and is finally hydrolyzed into L-gluta-
mate and formamide by formimidoylglutamase (HutG; EC
3.5.3.8).

A comparative analysis of hut gene regions detected in the
genus Corynebacterium revealed different genetic organi-
zations of the respective clusters in ten corynebacterial
species, with C. resistens DSM 45100 representing a new
order of hut genes (Figure 4C). All hut gene clusters con-
tain the hutR gene, which encodes a transcription regula-
tor of the IcIR protein family that is probably involved in
the transcriptional control of histidine utilization in cory-
nebacteria. It is remarkable that the majority of corynebac-
terial species harboring a /ut gene cluster are in some way
associated with the urogenital tract. Corynebacterium glu-
curonolyticum, Corynebacterium tuberculostearicum, and
Corynebacterium pseudogenitalium were isolated from the
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urogenital tract of males and females [48-50], whereas
Corynebacterium lipophiloflavum was isolated from
bacterial vaginosis [51]. Black-pigmented Corynebacterium
aurimucosum isolates derive from vaginal swabs and prob-
ably cause spontaneous abortion [52]. Indeed, variable
amounts of L-histidine are present in the human vaginal
fluid [53] and might be used by these bacteria as a com-
bined nitrogen and carbon source for growth. C. resistens
DSM 45100 might also use L-histidine as a carbon and/or
nitrogen source, thus compensating for the restricted
availability of carbohydrates due to the strict lipophilic life-
style. The natural habitat of C. resistens is currently
unknown, although the utilization of L-histidine by the
enzymatic machinery of the /ut pathway points to a colo-
nization of the human inguinal or perineal regions,
thereby living in close proximity to the human genital
tract. This hypothesis is consistent with previous micro-
biological studies that recovered lipophilic corynebacteria
predominantly from the axillary, inguinal, and perineal
areas of the human body [54]. These sites of the human
body are characterized by an elevated moisture of the skin
in conjunction with a substantial formation of hydrolipid
films, which are composed of triacylglycerides, free fatty
acids, ceramides, cholesterol, and cholesterol esters. These
compounds are appropriate carbohydrate substrates for
the growth of lipophilic corynebacteria. Additional experi-
mental evidence to support the hypothesis that C. resistens
is a colonizer of the inguinal and/or perineal areas of the
human body is currently lacking, as no 16S rDNA
sequences of C. resistens were detected in the course of
the human microbiome project already covering several
body sites, including the human urogenital tract [55].

Detection of candidate virulence factors in the genome of
C. resistens DSM 45100

To better understand the pathogenic potential of C.
resistens DSM 45100, the genome sequence was further-
more screened for genes encoding candidate virulence
factors, which in principle should be part of the exopro-
teome of this species. To estimate the number of
secreted proteins encoded by C. resistens DSM 45100,
the first 70 amino acid residues of each predicted pro-
tein were used to search for amino-terminal signal pep-
tides with SignalP 4.0 [56]. In this way, a total number
of 254 proteins were identified to be potentially secreted
by C. resistens DSM 45100. However, it has to be con-
sidered that proteins with signal peptides might be des-
tined for the integration into the cytoplasmic membrane
and therefore contain membrane-spanning domains
[57]. A total number of 258 predicted proteins with
membrane-spanning domains were detected by the
TMHMM tool [58], and the combined feature of signal
peptides and membrane-spanning domains was found in
a subset of 78 proteins of C. resistens DSM 45100. The
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remaining proteins were screened for predicted func-
tions probably related to the virulence of C. resistens
DSM 45100 (Table 2).

C. resistens DSM 45100 encodes two cell surface protein
precursors, named SurA and SurB, which contain carboxy-
terminal sorting (LPxTQ) signals recognized by sortase
transpeptidase. The housekeeping sortase of C. resistens
DSM 45100 (SrtC) is most likely responsible for anchoring
these LPxTG-containing proteins to the corynebacterial
cell wall [59]. The carboxyterminal part of the SurB pro-
tein contains a remarkable tandem repeat region with the
consensus sequence PGTTTPGTTA that is present 13
times with only moderate variations in the amino acid
sequence. Additional repeat regions with the consensus
sequences WATVNPDGS or VVVTYPDGS are present in
the central region of the cell surface protein. The SurB
protein of C. resistens DSM 45100 is thus structurally
similar to the alpha C protein-antigen of group B strepto-
cocci containing large tandem repeating units [60]. Varia-
tions of the number of tandem repeat regions of the alpha
C protein affected the pathogenicity of group B strepto-
cocci [61], and the structural variations of the bacterial cell
surface conferred protective immunity against the host
defense [62].

Another structural component of the cell surface of
C. resistens DSM 45100 is an adhesive pilus of the SpaABC
type (Table 2). Cell-surface pili are important virulence
factors that enable pathogens to adhere to specific host tis-
sues and to modulate host immune response [63]. The
SpaABC pilus of C. resistens DSM 45100 is covalently
anchored to the corynebacterial cell wall by the pilin-spe-
cific sortases SrtA and SrtB via a transpeptidylation
mechanism [59]. The adhesive pilus of C. resistens DSM
45100 consists of three pilin subunits encoded by the

Table 2 Candidate virulence factors detected in the
chromosome of C. resistens DSM 45100

Identifier Gene Predicted protein function (and putative role in

virulence)

CRES_2101  surA
CRES_0606 surB
CRES_0405 spaA
CRES_0407 spaB
CRES_0408 spaC
CRES_1049 rpfl

surface protein (cell surface variation)

surface protein (cell surface variation)

major pilin subunit of the SpaABC pilus (adhesion)
minor pilin subunit of the SpaABC pilus (adhesion)
tip protein of the SpaABC pilus (adhesion)

resuscitation-promoting factor-interacting protein
(adhesion)

CRES_0767 cwiH
CRES_0700 choD
CRES_1191 asa
CRES_0207 lipS1
CRES_1004 lipS2
CRES_2090 ipS3
CRES_0539 sgnH

cell wall-associated hydrolase (adhesion)

cholesterol oxidase (oxidation of cholesterol)
alkaline ceramidase (hydrolysis of ceramides)
lipase of the LIP superfamily (lipolytic activity)
lipase of the LIP superfamily (lipolytic activity)
lipase of the LIP superfamily (lipolytic activity)

esterase of the SGNH-hydrolase superfamily
(lipolytic activity)
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spaABC genes. The spaA gene encodes the major pilin of
the pilus shaft, whereas the spaB and spaC genes code for
minor pilins located at the base and at the tip of the pilus,
respectively. The homologous pilus structure of C.
diphtheriae NCTC 13129 can mediate the adhesion of the
pathogen to human pharyngeal epithelial cells, which is a
crucial step during infection [64].

Further candidate virulence factors that may support the
adhesion of C. resistens DSM 45100 to host cells are
encoded by the rpfl and cwlH genes (Table 2). The
deduced proteins revealed amino acid sequence homology
to DIP1281 and DIP1621 from C. diphtheriae NCTC
13129, respectively. The rpfl gene encodes a resuscitation-
promoting factor-interacting protein that forms complexes
with lytic transglycosylases (resuscitation-promoting fac-
tors) at the septum of dividing bacteria [65]. C. resistens
DSM 45100 encodes two resuscitation-promoting factors,
named RpfA and RpfB, which may interact with the RpfI
protein. The homologous gene product DIP1281 was
shown to be crucial for adhesion and colonization of host
epithelial cells [66]. Defined DIP1281 mutant cells of C.
diphtheriae completely lacked the ability to adhere to host
cells and to invade these [66]. Due to the interaction of
RpfI with resuscitation-promoting factors, it is probably
involved in the organization of the outer surface layer of
the pathogen and might thereby impair the efficiency of
adhesion. The ¢wlH gene of C. resistens DSM 45100
encodes a cell wall-associated hydrolase with a carboxy-
terminal domain similar to proteins belonging to the
NIpC/P60 family [67]. The targeted disruption of the
homologous DIP1621 gene in C. diphtheriae led to
decreased adherence to epithelial cells; but the exact func-
tion of this protein remains unknown so far [68].

Among the candidate virulence factors detected in
C. resistens DSM 45100 is also a secreted cholesterol oxi-
dase encoded by the choD gene (Table 2). The deduced
ChoD protein is a putative membrane-damaging toxin,
probably causing the enzymatic oxidation of macrophage
membrane cholesterol [69]. Cholesterol oxidase is an
important cytolytic factor for Rhodococcus equi as its pre-
sence was accompanied by intracellular survival of this
pathogen, whereas a non-virulent strain lacking this
enzyme was largely eliminated from the macrophages [69].
Likewise, a choD mutant of M. tuberculosis was attenuated
in peritoneal macrophages, whereas no attenuation
was observed when the same strain was complemented
with an intact choD gene [70]. The oxidation of membrane
cholesterol might lead to total disorganization of the
eukaryotic cell membrane [71], supporting the release of
substrates for other enzymes involved in fatty acid meta-
bolism of a pathogen. Another enzyme representig a can-
didate virulence factor of C. resistens DSM 45100 is the
secreted alkaline ceramidase encoded by the asa gene
(Table 2). Ceramidases hydrolyze the amide bond in
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ceramides, which results in the release of free fatty acids
and sphingosine [72]. Sphingolipids are components of
eukaryotic cell membranes, and hence they are putative
targets for acquiring fatty acids by means of eukaryotic
membrane damage. Moreover, the release of sphingosine
by alkaline ceramidases is known for instance to attenuate
the activity of macrophages [73].

C. resistens DSM 45100 can also generate free fatty
acids from the host tissue by secreting lipolytic enzymes
(Table 2). Three secreted lipases of the LIP superfamily
containing enzymes with broad lipolytic activities are
encoded in the genome of C. resistens DSM 45100 by
lipS1, lipS2, and lipS3. These enzymes may thus contri-
bute to the generation of free fatty acids from precursor
molecules such as triacylglycerol. The prototype enzymes
of the LIP superfamily were studied in Candida albicans,
where these lipases are expressed and secreted during the
infection cycle of this pathogen and may contribute to
the persistence and virulence of C. albicans in human tis-
sue [74]. The sgnH gene of C. resistens DSM 45100 was
also classified as a candidate virulence factor (Table 2). It
encodes a secreted hydrolase of the SGNH superfamily,
which is a group of enzymes that hydrolyze ester bonds
in lipids [75]. SGNH enzymes have little sequence
homology to other lipases and are characterized by the
four invariant catalytic residues serine, glycine, aspara-
gine, and histidine. Due to a flexible active site that
appears to change conformation with the presence of dif-
ferent substrates, SGNH esterases and lipases are hydro-
lytic enzymes with multifunctional properties, such as
broad substrate specificities [75]. In summary, numerous
candidate virulence factors of C. resistens DSM 45100 are
obviously linked to the strict lipophilic lifestyle of this
species by providing essential nutrients for bacterial
growth.

The penicillin-binding proteins and the quinolone-
resistance-determining region of C. resistens DSM 45100
In addition to lipophilism and virulence, multi-drug resis-
tance is another prominent feature of the hitherto detected
clinical isolates of C. resistens [14]. The relevance of chro-
mosomal genes for the multi-drug resistance profile of
C. resistens DSM 45100 is apparent when considering the
results of the initial antimicrobial susceptibility assays with
several B-lactams, the most broadly used class of antimi-
crobials, and the fluoroquinolone antibiotic ciprofloxacin.
All C. resistens isolates were characterized by high mini-
mum inhibitory concentrations (MICs) of the selected
antibiotics [14]. The resistance of C. resistens DSM 45100
to B-lactams might be associated with the presence of
antibiotic-insensitive types of penicillin-binding proteins
[76]. The chromosome of C. resistens DSM 45100 encodes
six penicillin-binding proteins (PBPs) belonging to three
protein families. PBP1A and PBP1B are bifunctional
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transglycosylases/transpeptidases of the high-molecular
weight PBP 1A family, whereas the proteins PBP2A,
PBP2B, and PBP2C act as transpeptidases and are mem-
bers of the high-molecular weight PBP 2 family [67]. The
Dac protein of C. resistens DSM 45100 represents a D-ala-
nyl-D-alanine carboxypeptidase of the low-molecular
weight PBP 4 family [67]. Moreover, C. resistens DSM
45100 contains two genes, /dt1 (CRES_0602) and [dt2
(CRES_0140), encoding putative L,D-transpeptidases.
These enzymes can act in an alternative pathway for pepti-
doglycan cross-linking and can thus contribute to the
resistance to B-lactam antibiotics that inhibit the penicil-
lin-binding proteins, which usually catalyze the cross-link-
ing reaction [67]. In C. jeikeium K411, the high-molecular
weight penicillin-binding protein PBP2C and the L,D-
transpeptidase Ldtl were shown to be two ampicillin-
insensitive cross-linking enzymes involved in peptidogly-
can biosynthesis [77].

Resistance to fluoroquinolones is often caused by
mutations in the so-called quinolone-resistance-deter-
mining region (QRDR) of the gyrase gene gyrA [78]. The
minimum inhibitory concentrations of fluoroquinolones
determined in this study revealed high-level resistances
of C. resistens DSM 45100 to danofloxacin (32 pg ml™?),
ciprofloxacin, levofloxacin, sparfloxacin (64 pug ml'l), and
norfloxacin (128 pg ml™). Single amino acid substitutions
in position 90 of the GyrA protein (C. resistens number-
ing) are generally sufficient to generate fluoroquinolone
resistance in corynebacteria, but double mutations in the
gyrA gene leading to changes in positions 90 and 94 of
the gene product are necessary for high-level resistances
[79]. The GyrA protein of C. resistens DSM 45100 con-
tains typical amino acid residues in the deduced QRDR
that are related to high-level fluoroquinolone resistance.
In particluar, the amino acid sequence motif LAIYG is
characterized by the Leu-90 and Gly-94 residues, which
were already associated with high-level resistances to
ciprofloxacin, levofloxacin, and norfloxacin in clinical iso-
lates of Corynebacterium macginleyi [79,80]. Likewise,
specific double mutations in the QRDR of the gyrA genes
from Corynebacterium striatum and Corynebacterium
amycolatum resulted in amino acid changes in positions
90 and 94 of the GyrA proteins (C. resistens numbering)
and in high levels of fluoroquinolone resistance [79,80].
Moreover, single mutations in the gyrA gene of Escheri-
chia coli leading to changes of the deduced QRDR
sequence SAVYD to either LAVYD or SAVYG were
associated with resistances to ciprofloxacin and ofloxacin
[81]. It is thus very likely that specific mutations in the
QRDR of the gyrA gene of C. resistens DSM 45100 are
responsible for high-level resistances to fluoroquinolones.
Other antibiotic resistance phenotypes of C. resistens
DSM 45100 are apparently associated with the presence
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of plasmid pJA144188 that is analyzed in more detail in
the following section.

The modular architecture of the multi-drug resistance
plasmid pJA144188
The annotation of the complete nucleotide sequence of
plasmid pJA144188 from C. resistens DSM 45100 revealed
a modular genetic structure of this replicon (Figure 2).
The backbone of the plasmid is apparently loaded with
several mobile genetic elements and antibiotic resistance
genes, including a new class 1 integron. The insertion
sequences and transposons of pJA144188 form the bound-
aries of five distinct DNA segments, each most probably
acquired by horizontal gene transfer (Figure 2). The DNA
segments of pJA144188 were assigned as follows: (module
I) replication region and plasmid backbone with similarity
to the multi-drug resistance plasmid pTP10 from the
opportunistic human pathogen C. striatum M82B; (mod-
ule II) macrolide-lincosamide-streptogramin (MLS) resis-
tance region with similarity to pNG2 from the human
pathogen C. diphtheriae S601; (module III) tetracycline
resistance region with similarity to pLR581 from Lactoba-
cillus reuteri ATCC 55730, which encodes the ribosomal
protection protein Tet(W) and is reported here for the
first time to occur in corynebacteria; (module IV) chlor-
amphenicol and aminoglycoside resistance region with
similarity to the Tn45 family transposon Tn5717a from
the human pathogen C. urealyticurn DSM 7109; (module
V) class 1 integron that is specified by the presence of the
rare aacAl:gcuG gene pair and the aadAla gene cassette.
The small plasmid backbone of pJA144188 (module I) is
characterized by the presence of the repW gene encoding
the replication initiator protein RepW, whose amino acid
sequence contains the characteristic signature motif
GVPYGKYPR of IncW plasmids [82] and is almost identi-
cal to the RepA protein of pTP10 from C. striatum M82B
[83]. Plasmid pJA144188 is thus a new member of the
small IncW family of corynebacterial plasmids that prob-
ably uses the theta-type mechanism for replication [82].
The IncW family of corynebacterial plasmids includes
moreover the bacteriocin-producing plasmid pKW4 from
C. jeikeium K411 [25], the cryptic plasmid pCRY4 from
C. glutamicum LP-6 obtained from a pig-manure deodor-
izing plant [84] and the low-copy-number plasmid
pLEW279b from Corynebacterium sp. L2-79-05 isolated
from poultry litter [85]. Characteristic 22-bp iterons, pre-
viously detected also on plasmid pTP10 [83], are present
downstream of the repW coding region on pJA144188,
occurring seven times. Such multiple sites of directly
repeated sequences were identified in the origin regions of
several plasmids. They are essential DNA-binding sites of
the plasmid-specific replication initiator protein and have
additional replication and copy number control properties
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[86]. As the remaining genes of pJA144188 are not related
to typical plasmid replication and maintenance functions,
it is most likely that the repW gene region and the replica-
tion initiator protein RepW are solely responsible for the
stable inheritance of pJA144188 in C. resistens DSM
45100.

DNA modules of plasmid pJA144188 containing antibiotic
resistance regions

Module II of plasmid pJA144188 includes the erm(X) gene
encoding a 23S rRNA adenine N-6-methyltransferase [87].
The erm(X) gene is preceded by IS3504 and a short leader
peptide gene that might be involved in posttranscriptional
regulation of erm(X) expression by erythromycin-inducible
translational attenuation [88]. An almost identical DNA
region is present on plasmid pNG2 from the erythromy-
cin-resistant human pathogen C. diphtheriae S601 [89]
that was isolated during an outbreak of diphtheria in Seat-
tle [90]. Previous antimicrobial susceptibility assays
demonstrated that the erm(X) gene provides high resis-
tance levels to clinically relevant macrolides and lincosa-
mides, such as erythromycin, azithromycin, josamycin,
midecamycin, roxithromycin, spiramycin, tylosin, clinda-
mycin, and lincomycin, and to the streptogramin B anti-
biotics quinupristin and pristinamycin I, [83,91,92]. This
tremendous cross-resistance profile of Erm(X) can be
understood when considering the common binding site of
MLS antibiotics in the bacterial ribosome that is deter-
mined by the A2058 residue (E. coli numbering) in the
large ribosomal subunit RNA [93].

Module IV of plasmid pJA144188 comprises the com-
plex structure of transposon Tn5717c that is highly similar
to transposon Tn5717a from the chromosome of C. urea-
lyticum DSM 7109 (Figure 2). Tn5717c is thus an interla-
cing of the chlorampenicol resistance transposon Tn45,
the streptomycin resistance transposon Tn5393, and the
aminoglycoside resistance transposon Tn5715, and seems
to have its seed in Tn45 detected on pXZ10145 from
C. glutamicum 1014 [94] and in the chromosome of
C. urealyticumm DSM 7109 [24]. Transposon Tn45 is an
unusual mobile genetic element in corynebacteria that
consists of a transposase gene and the cmx gene coding
for a chlorampenicol efflux protein of the major facilitator
superfamily [83]. Transposon Tn5393 is, on the other
hand, a typical mobile genetic element of the Tn3 family
and contains the strA-strB tandem pair of antibiotic resis-
tance genes. The former gene encodes the aminoglycoside
3"-phosphotransferase APH(3”)-Ib and the latter gene the
aminoglycoside 6-phosphotransferase APH(6)-1d, both
specifically conferring streptomycin resistance [95]. The
association of the strA-strB genes with variants of transpo-
son Tn5393 is also found in Gram-negative phytopatho-
genic bacteria, such as Erwinia amylovora, Pseudomonas
syringae, and Xanthomonas campestris, where the Tn5393
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elements occur on large conjugative plasmids [96]. The
composite transposon Tn5715 harbors the aminoglycoside
resistance gene aphA1-IAB encoding a member of the
aminoglycoside 3’-phosphotransferase protein family, APH
(3))-Ic [97]. The expression of the aphA1-IAB gene from
the R-plasmid pTP10 in the susceptible host C. glutami-
cum ATCC 13032 revealed high-level resistances to kana-
mycin, neomycin, lividomycin, paromomycin, and
ribostamycin [83] and thus the characteristic substrate
profile of an APH(3')-I enzyme [98]. The aphA1-IAB gene
present on pJA144188 may therefore confer resistance to a
selected set of aminoglycoside antibiotics in C. resistens
DSM 45100. However, a mininum inhibitory concentra-
tion of 16 pg ml™" was detected for the aminoglycoside
amikacin in the initial taxonomic description of C. resis-
tens DSM 45100 [14]. This observation indicates that addi-
tional resistance determinants are present in C. resistens
DSM 45100 and confer a broader spectrum of aminogly-
coside resistances.

The class 1 integron of plasmid pJA144188 and its gene
cassettes encoding aminoglycoside resistance proteins
Module V of plasmid pJA144188 comprises typical genes
of class 1 integrons that constitute genetic systems for
gene capture and gene expression and are composed of
conserved 5 and 3’ segments [99,100]. The 5" conserved
segment contains an integrase gene int/1, followed by the
recombination site attl1, where gene cassettes are inte-
grated by site-specific recombination after the integrase
has recognized their 59-bp element. The 3’ conserved seg-
ment of class 1 integrons is often specified by the presence
of the gqacEAI sull, and orf5 genes [99,100]. The sull
gene encodes dihydropteroate synthase that can confer
resistance to a broad spectrum of sulfonamides. The class
1 integron of pJA144188 is characterized by small dele-
tions in the 5" and 3’ conserved segments and by a gene
cassette array that comprises three coding regions: the
rare aacAl:gcuG tandem gene cassette and the aadAla
gene cassette (Figure 5A). The aminoglycoside resistance
gene aadAla encodes the aminoglycoside 3"-adenyltrans-
ferase ANT(3”)-Ia with a specific substrate profile com-
prising only streptomycin and spectinomycin [98]. The
aacAl gene encodes the aminoglycoside 6-acetyltransfer-
ase AAC(6')-1a that can confer resistance to kanamycin,
amikacin, dibekacin, netilmicin, sisomicin, and tobramycin
[98]. It is thus likely that the aacAl gene of pJA144188
mediates the observed resistance of C. resistens DSM
45100 to amikacin [14].

It is remarkable that the aacAI resistance gene and the
geuG gene of unknown function represent a gene pair that
is present in a single gene cassette and thus not separated
by a 59-bp element [100]. The fused aacAI:gcuG gene cas-
sette is rare in class 1 integrons and it has been observed
in corynebacteria for the first time in the present study.
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Figure 5 Prominent genetic features of plasmid pJA144188 from C. resistens DSM 45100 (A), Genetic structure of corynebacterial class 1
integrons. A comparison of the class 1 integron from pJA144188 with those present on plasmids pTET3 and pCG4 from C. glutamicum strains is
shown. The filled circles indicate the position of 59-bp elements downstream of gene cassettes. The aacAT and gcuG genes represent a gene pair that
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The tet(W) gene region is presented including the predicted leader peptide gene tetlP. The truncated insertion sequences ISCx1 and 1526 flanking the
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present in Streptococcus suis, Arcanobacterium pyogenes, and Lactobacillus reuteri, with the exception of three terminal nucleotides at the 5" end.

Other class 1 integrons containing the aacAl:gcuG gene
pair were detected, for instance, on plasmid pKGB525
from Klebsiella pneumoniae [101], on pCMXR1 from E.
coli HKYM68 [102], and on the R factor NR79 from E.
coli W677 [103]. Commonly, integrons are features of
Gram-negative bacteria and only few integrons have been
reported from Gram-positive bacteria, including two class
1 integrons from corynebacteria (Figure 5A). The first cor-
ynebacterial integron was detected on plasmid pCG4 from
C. glutamicum ATCC 31830 [104] and the second ele-
ment on plasmid pTET3 from C. glutamicum LP-6 [105].
The integron of pCG4 contains the aadA2 gene cassette,

whereas the aadA9 gene cassette was detected on pTET3.
Both genes confer streptomycin-spectinomycin resistance
and encode aminoglycoside 3"-adenyltransferases of the
ANT(3”)-1 protein family [98]. Accordingly, plasmid
pJA144188 carries a new class 1 integron with two gene
cassettes probably contributing to the extended spectrum
of aminoglycoside resistances in C. resistens DSM 45100.

The tetracycline-minocycline resistance region of plasmid
pJA144188

Module IIT of plasmid pJA144188 contains the tet(W)
gene, which is preceded by the putative leader peptide
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gene tetLP (Figure 2). The deduced Tet(W) protein
revealed 99% identity, with only three substitutions in
the amino acid sequence, to Tet(W) encoded on plas-
mid pLR581 from Lactobacillus reuteri ATCC 55730, a
commercially available probiotic strain [106]. Tet(W)
represents a ribosomal protection protein (RPP) that
can promote high-level resistance to tetracyclines in
Gram-positive and Gram-negative bacteria [107]. RPPs
are supposed to originate from bacterial elongation fac-
tors and mediate tetracycline resistance by a complex
molecular mechanism: They dislodge tetracycline from
the ribosome, which is occupied by the antibiotic, such
that an aminoacyl-tRNA can bind to the A site of the
ribosome and protein biosynthesis can continue. RPPs
can thus overcome the antimicrobial effect of typical tet-
racyclines, which bind to the ribosome and inhibit the
elongation phase of protein biosynthesis [107]. The tetra-
cycline resistance region of pJA144188 covers a 2,323-bp
DNA sequence that is almost identical to tet(W) gene
regions in Streptococcus suis GZ1 [108], Arcanobacterium
pyogenes BBR1 [109], and to tet(W) on plasmid pLR581
from L. reuteri ATCC 55730 [106] (Figure 5B). This
DNA segment obviously represents a conserved tet(W)
core region in these Gram-positive species, whereas the
flanking sequences of tez(W) genes are highly diverse in
these species and in other bacteria [110]. The boundaries
of the tetracycline resistance region on pJA144188 are
clearly defined by the presence of two remnants of inser-
tion sequences (Figure 5B). The truncated ISCx! element
is known from the C. diphtheriae S601 plasmid pNG2
and located downstream of the tet(W) gene, whereas a
47-bp stretch of DNA with identity to the 5 end of IS26
is present upstream of the tetLP gene.

To elucidate the capability of the tez(W) gene product to
mediate resistance to tetracyclines, including minocycline,
the tet(W) gene region was amplified by PCR and the
resulting DNA fragment was cloned in E. coli DH50MCR
into the shuttle vector pEC-K18mo0b2. The recombinant
plasmid, designated pKM22, was subsequently transferred
into the antibiotic-susceptible host strain C. glutamicum
ATCC 13032, resulting in C. glutamicum KM22. The role
of the cloned tet(W) gene in tetracycline resistance was
examined in C. glutamicum KM22 by measuring the
MICs of tetracycline and oxytetracycline (first generation
tetracyclines), doxycycline and minocycline (second gen-
eration tetracyclines), and the atypical tetracycline analog
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anhydrotetracycline. Additional antimicrobial susceptibil-
ity assays served as controls and were performed with
C. resistens DSM 45100 and C. glutamicum ATCC 13032
carrying the empty cloning vector pEC-K18mo0b2. These
assays revealed that C. glutamicum KM22 gained a
remarkable resistance to first and second generation tetra-
cyclines in comparison with the control strain C. glutami-
cum ATCC 13032, displaying MICs from 8 pg ml™ to 32
ug ml™ (Table 3). Slightly higher MICs were measured in
C. resistens DSM 45100 (Table 3). On the other hand, the
tested corynebacterial strains revealed the same MIC in
the assay with anhydrotetracycline, indicating that the
ribosomal protection protein Tet(W) may not confer resis-
tance to this atypical tetracycline analog. This result of the
antimicrobial susceptibility assay is obvious as the primary
target of anhydrotetracycline is not the bacterial ribosome
and the process of translation. The antimicrobial activity
of anhydrotetracycline is exerted instead by disrupting
bacterial membranes [111,112]. In conclusion, the zet(W)
gene of pJA144188 is a very likely candidate to confer
minocycline resistance in C. resistens DSM 45100 and
might be responsible for the failure of minocycline therapy
in patients with C. resistens bacteremia.

To assess the effect of a subinhibitory concentration of
tetracycline (2 pg ml™) on the transcription of tet(W) in
C. resistens DSM 45100, the transcript levels of the tet(W)
mRNA were determined in induced and non-induced cul-
tures by real-time reverse transcription (RT)-PCR. For this
purpose, total RNA samples were purified from C. resis-
tens DSM 45100 cultures exposed to 2 pg ml™ tetracycline
for 24 h (induced condition) and control cultures grown
in the absence of tetracycline (non-induced condition).
Indeed, the transcript level of tet(W) was 52-fold higher in
the C. resistens DSM 45100 culture that has been exposed
to tetracycline for 24 h, when compared to the control cul-
ture. This data indicated that the expression of the tet(W)
gene on pJA144188 is regulated at the level of transcrip-
tion and inducible by tetracycline in C. resistens DSM
45100. The respective molecular mechanism is currently
unknown, and the role of the putative leader peptide gene
in this process, if any, remains to be elucidated. The ribo-
somal protection gene tet(M) from Staphylococcus aureus
MRSA101 is also inducible by tetracycline at the level of
transcription [113]. Expression studies revealed a greatly
increased amount of tet(M)-specific mRNA when the
S. aureus cells were first treated with a subinhibitory

Table 3 Minimum inhibitory concentrations [ug ml '] of tetracyclines against C.resistens and C. glutamicum

Strain Tetracycline Oxytetracycline Doxycycline Minocycline Anhydrotetracycline
CRES DSM 45100 64 32 16 16 8
CGLU ATCC 13032° 0.5 1 1 0.5 8
CGLU KM22 32 32 8 16 8

@ C. glutamicum ATCC 13032 carrying the empty cloning vector pEC-K18mob2
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amount of tetracycline. The tet(M) gene was previously
also observed by Southern techniques in C. striatum
strains from clinical specimens [114].

Conclusions

In this study, we describe the complete genome sequence
and annotation of the multi-drug resistant clinical isolate
C. resistens DSM 45100. The sequence analysis revealed
comprehensive insights into the metabolic features, viru-
lence functions, and mechanisms for antibiotic resistance
of this human pathogen. The integration of these data pro-
vides for the first time a detailed view on the deduced life-
style of C. resistens (Figure 6). The strict lipophilic lifestyle
of this species is obviously caused by the absence of genes
for fatty acid synthesis, sugar uptake, and anaplerotic func-
tions. Therefore, gene loss is the dominant evolutionary
mechanism in shaping the metabolic features of C. resis-
tens, which are most probably related to the natural habi-
tat. C. resistens might colonize of the inguinal or perineal
regions of the human body, as these sites of the skin pro-
vide elevated amounts of fatty acid substrates for growth
by natural secretions that contribute to the formation of
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hydrolipid films. Moreover, the utilization of L-histidine as
a nitrogen or carbon source by enzymes encoded by the
hut genes suggests that C. resistens lives in close proximity
to the human genital tract, since the presence of the hut
pathway is predominantly associated with corynebacteria
causing urogenital tract infections. The strict lipophilic
lifestyle of C. resistens is also linked with enzymatic func-
tions of several predicted virulence factors, which probably
ensure the availability of external fatty acids for growth by
causing damage to membranes of host cells. Accordingly,
the predicted repertoire of candidate virulence factors
might explain the low pathogenic potential of C. resistens.
The extensive multi-drug resistance of C. resistens DSM
45100 is apparently caused by distinct features of chromo-
somal genes and the presence of plasmid pJA144188. The
sequence annotation of pJA144188 provided detailed
insights into the gene composition and the modular
genetic organization of this plasmid, thereby revealing that
horizontal gene transfer represents a key factor in the
development of multi-drug resistance in C. resistens. A
similar set of antibiotic resistance genes is present in other
multi-drug resistant corynebacteria, such as C. striatum,
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Figure 6 Overview of prominent metabolic and medically relevant features of C. resistens DSM 45100 deduced from the complete
genome sequence. Metabolic features associated with carbohydrate metabolism, histidine utilization, sulfate reduction, fatty acid metabolism,
mycolic acid biosynthesis, and pilus formation are shown. Relevant proteins assigned to these processes are labeled by yellow boxes; relevant
transport systems are shown as blue circles. The predicted virulence factors are probably secreted by the machinery of the general secretory
pathway (Sec system). The role of the predicted virulence factors in ensuring the availability of exogenous fatty acids for growth of C. resistens is
remarkable. The presence of pJA144188 in C. resistens DSM 45100 is indicated and the encoded antibiotic resistance proteins are listed. The role
of the Tet(W) protein in ribosomal protection of C. resistens DSM 45100 is highlighted, as it is most likely responsible for the clinically relevant
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C. urealyticum, and C. jeikeium. This collection includes
the erm(X) and cmx genes, as well as aphA1-IAB and the
strA-strB tandem gene pair [24,25,115]. The tet(W) gene
of pJA144188 encodes a ribosomal protection protein that
confers resistance to first and second generation tetracy-
clines, including the clinically relevant tetracycline deriva-
tive minocycline. The presence of the tet(W) gene on
pJA144188 has tremendous impact on the treatment of
human infections associated with C. resistens, as the cross-
resistance profile of the Tet(W) protein can contribute to
the failure of minocycline therapies in (immunocompro-
mised) patients.

Methods

Bacterial strains and growth conditions

C. resistens DSM 45100 (GTC 2026, CCUG 50093) was
obtained as a lyophilized culture from DSMZ (Braunsch-
weig, Germany) and routinely grown on solid BYT med-
ium at 37°C [116]. This clinical isolate was originally
recovered from a positive blood culture taken from a
patient with acute myelocytic leukemia and initially
named SICGH 158 [14]. E. coli DH5a.MCR was used for
standard cloning procedures and cultured on Luria-Ber-
tani medium at 37°C [117]. The wild-type strain C. gluta-
micum ATCC 13032 (American Type Culture Collection,
Manassas, VA) was routinely grown at 30°C in CGXII
minimal medium containing 30 ug 1" protocatechuic acid
and 420 pg 1" thiamine [118]. Kanamycin was used for the
selection of plasmids in E. coli (50 ug ml™) and C. gluta-
micum (25 pg ml™). The growth of shake-flask cultures
was monitored by measuring the optical density at
600 nm with an Eppendorf BioPhotometer.

Genome sequencing of C. resistens DSM 45100
Genomic DNA of C. resistens DSM 45100 was purified by
an alkaline lysis procedure [119] from 20-ml aliquots of
an overnight culture grown in liquid BYT medium sup-
plemented with 1.25% (w/v) glycine. The original lysis
protocol was modified as follows: (i) The C. resistens cells
were incubated in a 30 mg ml™* lysozyme solution at 37°C
for 1 h. (ii) The harvested cells were lysed in 0.7 ml 10%
(w/v) SDS solution at 37°C for 15 min. A total of 5 pg of
purified genomic DNA from C. resistens DSM 45100 was
used for constructing a single-stranded template DNA
library. The preparation and sequencing of the DNA
library were performed according to standard protocols
from Roche Applied Science. The Genome Sequencer
FLX System and Titanium chemistry (Roche Applied
Science) were applied for sequencing of the genomic
DNA. The sequence reads were assembled with the GS
Assembler Software (version 2.3).

The remaining gaps in the genome sequence of
C. resistens DSM 45100 were closed by PCR with Phu-
sion hot start high-fidelity DNA polymerase
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(Finnzymes) and genomic template DNA. All primers
used in this study were synthesized by Metabion. The
PCR assays were carried out with a TProfessional PCR
thermocylcer (Biometra) according to standard proto-
cols (Finnzymes). The amplified DNA fragments link-
ing the individual contigs were sequenced by IIT
Biotech. Chromosomal DNA sequences and plasmid
sequences were uploaded separately into the Consed
program [16] to generate the complete genome
sequence of C. resistens DSM 45100.

Annotation and bioinformatic analysis of the genome
sequence

The assembled sequences of C. resistens DSM 45100 were
uploaded into the bacterial genome annotation system
GenDB [17]. The automatic annotation of the complete
genome sequence was performed as described previously
[25], followed by manual curation of the data. The genome
plot of C. resistens DSM 45100 was generated with the web
tool DNAPIotter [120]. The origin of chromosomal replica-
tion of C. resistens was predicted with the web version of
the Ori-Finder tool [20]. Clustered regularly interspaced
short palindromic repeats (CRISPRs) were detected with
the CRISPRFinder tool [30]. Analyses of the predicted gene
content and the metabolic properties of C. resistens were
accomplished by the software tools EDGAR [22] and CAR-
MEN [121], using their default parameters. The synteny
between the chromosome of C. resistens DSM 45100 and
that of C. jeikeium K411 was calculated by the EDGAR
software [22].

The annotated sequence of the C. resistens DSM 45100
chromosome has been deposited in the GenBank database
with accession number CP002857 and is available from
the RefSeq database with accession number NC_015673.
The sequence of plasmid pJA144188 is available from
GenBank with accession number FN825254 and from
RefSeq with accession number NC_014167.

Antimicrobial susceptibility assays with tetracyclines and
fluoroquinolones

The antimicrobial susceptibilities of C. resistens DSM
45100, C. glutamicum ATCC 13032 and C. glutamicum
KM22 were determined in vitro by a macrobroth dilution
method according to the guidelines of the Clinical and
Laboratory Standards Institute [122]. The antibiotics tet-
racycline, oxytetracycline, doxycycline, minocycline, and
anhydrotetracycline as well as the fluoroquinolones
ciprofloxacin, danofloxacin, levofloxacin, norfloxacin, and
sparfloxacin were purchased from Sigma-Aldrich. All
antibiotics were tested in vitro in the range of 0.1 to
256 pg ml™. The corynebacterial cells were grown in
Mueller-Hinton broth (Merck) supplemented with 1%
(v/v) Tween 80. The minimum inhibitory concentration
(MIC) was taken as the lowest concentration of the
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antibiotic to completely inhibit the visible growth of the
bacteria after incubation for 24 h at 37°C [122].

Cloning of the tet(W) gene from C. resistens DSM 45100
The preparation of plasmid DNA from E. coli DHaMCR
cells was performed by an alkaline lysis technique using
the QIAprep Spin Miniprep Kit (Qiagen). The protocol
was modified for C. glutamicum cells by using 20 mg ml™
lysozyme in resuspension buffer P1 and by incubating the
assay at 37°C for 3 h. DNA restriction, DNA analysis by
agarose gel electrophoresis, and DNA ligation were per-
formed according to standard procedures [117]. The
transformation of plasmid DNA was carried out by elec-
troporation using electrocompetent E. coli and C. glutami-
cum cells [123,124]. The tet(W) gene was amplified by
PCR with the primer pair tet(W)fwd (GATCTAG-GA
TCCGTGCGGGGAAGAAAAAT) and tet(W)rev (GATC-
TATCTAGACGCAATAGCCAG-CAATGA). The ampli-
fied tet(W) gene was cloned in E. coli DHaMCR into the
shuttle vector pEC-K18mob2 [124], resulting in plasmid
pKM22. DNA of pKM22 was isolated from E. coli and
subsequently transferred into C. glutamicum ATCC
13032, leading to strain C. glutamicum KM22.

RNA techniques and measurement of tet(W) transcript
levels

The isolation and purification of total RNA from C. resis-
tens DSM 45100 cultures was carried out as described pre-
viously [125]. The strain was grown in BYT medium
without tetracycline (non-induced) and in BYT medium
supplemented with 2 ug ml™ tetracycline (induced). The
transcript levels of the tet(W) gene were measured by real-
time reverse transcriptase PCR (RT-PCR) with the Light-
Cycler instrument (Roche Applied Science), using the
SensiMix One-Step Kit (Quantace) and the primer pair tet
(W)LC1 (TTCGATGGTGGCACAGTA) and tet(W)LC2
(TTGTTCGGCTGGAACGTA). The differences in tet(W)
transcript levels between induced and non-induced cul-
tures of C. resistens DSM 45100 were determined by com-
paring the crossing points of two biological samples, each
measured with two technical replicates. Crossing points
were calculated by the LightCycler software (Roche
Applied Science). The measured crossing point (CP) is the
cycle at which PCR amplification begins its exponential
phase and is considered the point that is most reliably pro-
portional to the initial RNA concentration. The relative
change in tet(W) transcript levels was determined as 2ACr
with ACP being equal to the difference of the measured
crossing points for the test (induced) and the control (non-
induced) condition. The quality of the measurements was
ensured by melting curve analysis with the LightCycler
software (Roche Applied Science).
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Additional material

Additional file 1: Annotation of pathways involved in central
carbohydrate metabolism of C. resistens DSM 45100. The PDF
contains a metabolic reconstruction based on manually curated pathway
maps related to the central carbohydrate metabolism.

Additional file 2: Annotation of pathways involved in amino acid
metabolism of C. resistens DSM 45100. The PDF contains a metabolic
reconstruction based on manually curated pathway maps related to the
uptake and metabolism of amino acids.
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