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Abstract

Background: Buckwheat, consisting of two cultivated species Fagopyrum tataricum and F. esculentum, is the richest
source of flavonoid rutin. Vegetative tissues of both the Fagopyrum species contain almost similar amount of rutin;
however, rutin content in seed of F. tataricum are ~50 folds of that in seed of F. esculentum. In order to understand
the molecular basis of high rutin content in F. tataricum, differential transcript profiling through cDNA-AFLP has
been utilized to decipher what genetic factors in addition to flavonoid structural genes contribute to high rutin
content of F. tataricum compared to F. esculentum.

Results: Differential transcript profiling through cDNA-AFLP in seed maturing stages (inflorescence to seed
maturation) with 32 primer combinations generated total of 509 transcript fragments (TDFs). 167 TDFs were then
eluted, cloned and sequenced from F. tataricum and F. esculentum. Categorization of TDFs on the basis of their
presence/absence (qualitative variation) or differences in the amount of expression (quantitative variation) between
both the Fagopyrum species showed that majority of variants are quantitative (64%). The TDFs represented genes
controlling different biological processes such as basic and secondary metabolism (33%), regulation (18%), signal
transduction (14%), transportation (13%), cellular organization (10%), and photosynthesis & energy (4%). Most of the
TDFs except belonging to cellular metabolism showed relatively higher transcript abundance in F. tataricum over F.
esculentum. Quantitative RT-PCR analysis of nine TDFs representing genes involved in regulation, metabolism, signaling
and transport of secondary metabolites showed that all the tested nine TDFs (Ubiquitin protein ligase, ABC transporter,
sugar transporter) except MYB 118 showed significantly higher expression in early seed formation stage (S7) of F.
tataricum compared to F. esculentum. gRT-PCR results were found to be consistent with the cDNA-AFLP results.

Conclusions: The present study concludes that in addition to structural genes, other classes of genes such as
regulators, modifiers and transporters are also important in biosynthesis and accumulation of flavonoid content in
plants. cDNA-AFLP technology was successfully utilized to capture genes that are contributing to differences in rutin
content in seed maturing stages of Fagopyrum species. Increased transcript abundance of TDFs during transition from
flowers to seed maturation suggests their involvement not only in the higher rutin content of . tataricum over F.
esculentum but also in nutritional superiority of the former.
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Background

Buckwheat; Fagopyrum spp. is a pseudo-cereal multipur-
pose food crop used for both grains and greens with sev-
eral medicinal and nutritional properties [1-3]. Genus
Fagopyrum belongs to Polygonaceae and has 20 known
species which mainly occur in the highlands of Euro-Asia
[4-6]. Out of these, two cultivated species, Fagopyrum
esculentum (common buckwheat) and F. tataricum (tar-
tary buckwheat) are of high economic importance due to
multiple uses such as a substitute for cereals in human
consumption, as a vegetable crop, honey crop, and of
ethno-botanical importance [7]. Significantly higher con-
tents of flavonoids such as rutin and other polyphenols
also add significance to the dietary value of buckwheat [8].

In tartary buckwheat, fagopyritols; mono-, di- and
trigalactosyl derivatives of D-chiro-inositol account for
40% of total soluble carbohydrates compared to 21%
in common buckwheat thus, helps in the treatment of
diabetes [9]. Total flavonoids are relatively higher in
tartary buckwheat (40 mg/g) compared to common
buckwheat (10 mg/g) of which rutin is the major com-
ponent [7]. Rutin a major flavonoid of medicinal value
is found in higher quantities in buckwheat thus, con-
sidered as a major dietary source of rutin [1,2,8]. Tar-
tary buckwheat seeds contain more rutin (about 0.8 to
1.7% DW) compared to common buckwheat seeds
(0.01% DW) [8]. Due to the presence of proteins with
high biological value (90%) and flavonoids with higher con-
centration in tartary buckwheat compared to common
buckwheat, the former is considered an excellent food ma-
terial with a potential for preventive nutrition [10]. But tar-
tary buckwheat has a tightly adhering hull that makes it
difficult to dehull and contains a bitter component that
affects its palatability [1]. However, Rice-tartary is a type
of tartary buckwheat (F. tataricum) with a non-adhering
hull property, and can be a potential nutraceutical food
source [11].

Molecular basis of nutritional superiority, particularly
higher rutin content in F. tataricum compared to F.
esculentum, is not fully understood. De-novo sequen-
cing was used to understand molecular basis of mor-
phological variations in the flowers of Fagopyrum
species [12]. In addition, it has been observed that the
flavonoid biosynthesis genes in F. esculentum were
highly expressed in lower parts of plants than upper
parts suggesting that flavonoids may be transported
within a plant [13]. Anthocyanin content of F. tatari-
cum has been correlated with the differential expres-
sion of flavonoid biosynthesis genes [14]. Comparative
analysis of rutin content in different seed maturation
stages of rice-tartary and tartary buckwheat compared
to common buckwheat showed that all the post-
flowering stages, S6, S7, S8 and S9 of rice-tartary con-
tained 1.5, 31, 8, and 43x higher rutin content
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compared to common buckwheat, respectively [15].
Stages S6, S7, and S8 of rice-tartary contained higher
rutin content even compared to tartary buckwheat;
Figures 1 & 2. Relatively higher expression of flavonoid
pathway genes, phenylalanine ammonia lyase; PAL 4.3.1.24,
chalcone synthase; CHS 2.3.1.74, chalcone isomerase; CHI
5.5.1.6 and flavonol synthase; FLS 1.14.11.23 were suggested
to be responsible for higher rutin content in rice-tartary
compared to common buckwheat [15]. However, increase
in the expression of PAL, CHS, CHI and FLS genes did not
occur concomitant to an increase in rutin content. There-
fore, identification of additional genes, if any, was carried
out to investigate molecular basis of high rutin content in
flowering and post-flowering stages of F. tataricum com-
pared to F. esculentum.

Flavonoid content in a particular tissue and develop-
mental stage is largely influenced by different classes of
regulatory genes, transporters, modifiers efc. in addition
to structural genes of the flavonoid biosynthetic pathway
[16-18]. Lack of whole genome sequence and non-
availability of ESTs from developing seeds of Fagopyrum
spp. prompted us to utilize cDNA-AFLP to decipher what
genetic factors contribute to nutritional superiority of
rice-tartary buckwheat compared to common buckwheat.
Present study reports several differentially expressed tran-
script fragments representing genes involved in basic and
secondary metabolism, transcription factors, transporters,
etc., which were validated through qRT-PCR to associate
their contribution in nutritional superiority of rice-tartary
over common buckwheat.

Results

Identification and analysis of differentially expressed
transcripts (TDFs)

c¢DNA-AFLP analysis on RNA samples from flower to
mature seed stages of rice-tartary and common buck-
wheat with 32 primer pair combinations resulted in the
identification of 42 clear and unambiguous fragments
(TDFs). The TDFs ranged in sizes from 150-750 bp
representing a total of 2,584 TDFs.

A total of 167 differential TDFs based on presence/
absence or differences in intensity were eluted from
the gels, re-amplified and sequenced; Figure 3. DNA
sequence of each TDF was assigned a putative bio-
logical function by checking against the Gene Bank
database (BLASTN/BLASTX) as well as the TAIR
database; Figure 4. TDFs represented genes control-
ling different biological processes such as general and
secondary metabolism (33%), regulation (18%), signal
transduction (14%), transportation (13%), cellular
organization (10%), transposable elements (7%),
photosynthesis (4%) and defense & response to stim-
uli (1%); Additional file 1: Table S1, Figure 4.
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Figure 1 Flowers to seed maturation stages of Fagopyrum spp., (A) F. esculentum (B) F. tataricum; Stage 6: Inflorescence; Stage 7: 12
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TDFs representing genes encoding alanine glyoxlate,
methionine sulfoxide, fatty acid desaturase, KAS III, su-
crose 6 phosphatase, ubiquitin protein ligases etc. were
implicated in the biosynthesis of proteins & amino acids
(12%), fatty acids (7%) and carbohydrates (6%). Similarly,
8% of TDFs corresponded to genes for key enzymes
involved in secondary metabolism, including the flavo-
noid and anthocyanin biosynthesis. TDFs (10%) involved
in cellular function included genes coding for pectin
acyltransferases, proline rich extensins, glycine rich pro-
teins, and arabinogalactan etc. TDFs corresponding to
transporters (13%) included ABC transporters, auxin
hydrogen symporter, sugar transporters, zinc and potas-
sium transporters. Genes involved in signal transduction
(14%) and regulation (18%), including Zn finger binding
proteins, Leucine rich repeats calmodulin binding

protein, protein kinases and transcription factors belongs
to MYB and WRKY classes were also detected.

TDFs representing differentially expressed genes were
classified into different categories on the basis of their
presence/absence (qualitative variation) or differences in
amount of expression (quantitative variation) between
both the Fagopyrum species so as to infer whether TDFs
belonging to a particular biological functional class are
preferentially expressed in a particular Fagopyrum spe-
cies; Figure 5A & B. TDFs representing genes involved
in carbohydrate metabolism and signal transduction
were relatively higher in number in F. esculentum,
whereas TDFs representing genes involved in secondary
metabolism, amino acid & protein metabolism, energy
and photosynthesis were more in rice-tartary buckwheat;
Figure 5A. Most of the TDFs belonged to genes for

Rutin content (ug/mg FW.)
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(IC-329457), Common Buckwheat (IC-5408858).
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Figure 2 Rutin content variation: rutin content variation during seed developmental stages of Fagopyrum spp, Rice-tartary Buckwheat
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Figure 3 cDNA-AFLP patterns: Rice-tartary (R) vs Common Buckwheat (E) in seed maturation stages (6, 7, 8, and 9).
.

transporters, transcriptional regulation, secondary me-
tabolism, photosynthesis & energy, carbohydrate, protein
and amino acid metabolism and showed relatively
increased transcript abundance in rice-tartary compared
to common buckwheat; Figure 5B. Whereas, only TDFs
for cellular metabolism showed relatively more tran-
script abundance in common buckwheat compared to
rice-tartary buckwheat.

TDFs representing genes involved in transport of meta-
bolites (ABC and sugar transporters, auxin hydrogen sym-
porter), regulation of biosynthesis (MYB TF, Zn finger
protein), metabolism of metabolites (ubiquitin protein
ligases, extensin protein), signal transduction (calmodulin
binding protein) and energy transfer (ATP CFO subunit)
were chosen for quantitative RT-PCR analysis in different
seed maturing stages of both the Fagopyrum species.
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Four TDFs representing genes for Ubiquitin protein ligase
(JN982742), ABC transporter (JN982732), sugar transporter
(JN982735) and MYB118 (JN982734) showed significantly
increased transcript abundance in flowers (S6) of rice-
tartary compared to common buckwheat with 2.86, 4.71,
7.36 and 1142 folds expression, respectively; Figure 6A.
Relatively higher abundance was observed for TDFs from
genes for ABC transporter, sugar transporter, Ub protein
ligase and Zn finger binding protein (JN982723) in imma-
ture seed stage (S7) of rice-tartary buckwheat with 95.38,

49.25, 18.92, 17.29 folds, respectively over common buck-
wheat; Figure 6B. On the other hand, 5 TDFs from genes
encoding Zn finger binding protein, ATP CFO subunit
(JN982718), calmodulin  binding protein, extensin
(JQ003863) and auxin efflux (JN982731) showed relatively
increased transcript abundance in the immature seeds (S8)
of common buckwheat compared to rice-tartary buckwheat
with 22.22, 11.94, 4.04, 3.89, and 1.64 folds higher abun-
dance respectively. Two TDFs for ABC transporter (2.38
folds) and MYBI118 (1.61 folds) showed relatively
increased abundance in S8 of rice-tartary in comparison
to common buckwheat; Figure 6C. In mature seeds (S9),

(A) TDFs present in Fagopyrum spp.
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Figure 5 Functional classification of differentially expressed TDFs in Fagopyrum species: On the basis of presence/absence and
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Figure 6 Expression of TDFs in different tissues of Fagopyrum species. Fold expression in rice-tartary buckwheat was calculated in
comparison to their expression in different tissues of common buckwheat. A: Flowers (56); B: Immature seeds (S7); C: Immature seeds (S8); D:
Mature seeds (S9); E: Heat map of fold expression of TDFs expressed in seed maturation stages (56-S9) of rice-tartary in comparison to common
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the expression of TDFs Zn finger binding protein (12.54
folds), ABC transporter (6.78 folds), Ub protein ligase
(2.54 folds), calmodulin binding protein (2.32 folds), and
sugar transporter (2.07 folds) was found to be higher in
common compared to rice-tartary buckwheat. Whereas,
extensin and ATP CFO subunit showed relatively higher
expression in rice-tartary over common buckwheat in ma-
ture seeds (S9) with 542 and 2.09 folds, respectively;
Figure 6D. No transcript was detected for MYB 118 and
auxin efflux carrier protein in mature seeds of rice-tartary
buckwheat. Therefore, the transcripts of ubiquitin protein
ligases, ABC transporter and sugar transporter showed
relatively higher expression in three stages of seed devel-
opment, including flowers and immature seeds of rice-
tartary compared to common buckwheat.

Discussion

Understanding types and number of genes differen-
tially expressed during seed maturation would help in
discerning molecular mechanisms contributing to

nutritional superiority, including high rutin content in
the seeds of F. tataricum (rice-tartary buckwheat)
over F. esculentum [16]. De-novo sequencing of tran-
scripts from flowers of Fagopyrum species (F. tataricum
and F. esculentum) had shown that genes contributing to
different biological processes are contributing to variations
in the morphology of flowers in Fagopyrum species [12].
Accumulation of higher amounts of rutin during post-
flowering stages of F. tataricum (rice-tartary buckwheat)
over F. esculentum has also been observed [15]. Overall nu-
tritional superiority of F. tataricum over other Fagopyrum
spp has been found in the mature seeds as well as during
seed maturation stages. For example, increase in fagopyri-
tols content was shown from immature to mature seeds of
buckwheat [19]. In addition, increase in the amount of su-
crose and rutin was also reported during seed maturation
of Fagopyrum species [15,20]. Molecular dissection of the
genetic machinery contributing to nutritional differences in
the seeds of F. tataricum, in particular the rice-tartary type
over F. esculentum (common buckwheat) was undertaken
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through ¢cDNA-AFLP since it is an open architecture tech-
nology for global transcriptional analysis in a non-model
plant species [21,22].

Large numbers of TDFs with differential expression
pattern were observed in different seed developmental
stages of both the Fagopyrum species. TDFs with differ-
ential expression patterns belonged to genes involved in
primary and secondary metabolism, transportation,
signal transduction, gene regulation, photosynthesis &
energy, defense and cellular processes in seed develop-
mental stages of the Fagopyrum spp.; Additional file 1:
Table S1. Out of 167 differential TDFs, only 22 showed
50-70% identity with the available floral transcriptome
of both the Fagopyrum species [12], thereby, suggesting
that most of the TDFs identified in the current study
represented new genes. TDFs involved in transport,
transcription, secondary metabolism, amino acid & pro-
tein metabolism, carbohydrate metabolism and photo-
synthesis were relatively higher in number and
expression pattern in rice-tartary over common buck-
wheat. Higher expression of TDFs involved in secondary
metabolism and transportation such as chalcone syn-
thase, dihydroflavonol reductase, UDP glucosyl trans-
ferases, ABC transporters, MATE efflux carrier proteins,
which are known to be involved in biosynthesis, accu-
mulation and transportation of flavonoids, indicate their
involvement in significantly higher flavonoid content in
rice-tartary buckwheat [14,16,23]. Increased transcript
abundance of TDF encoding Lys/His transporter in rice-
tartary buckwheat was implicated for higher amount of his-
tidine in this species [24]. TDFs involved in amino acid &
protein metabolism (like Ub protein ligases, alanine glyoxy-
late amino transferases, cystein proteases), transcriptional
regulation (MYB 118, MYB 112, GAMYB, histone acetyl
transferases) and signal transduction (calmodulin binding
protein, protein kinases, PEP carboxylase) were also found
to be abundant in rice-tartary buckwheat. Most of these
TDFs represent genes with their direct or indirect role in
controlling the growth and development of seeds and/or
their nutritional composition. On the basis of differential
expression pattern of transcripts in rice-tartary and com-
mon buckwheat, the TDFs representing genes which have
been implicated in biosynthesis, modification, regulation
and transport of secondary metabolites [16,18,23] were
chosen to investigate their role, through qRT-PCR analysis,
in the biosynthesis of higher rutin content in the seeds of
rice-tartary over common buckwheat.

The flavonoid content increase in buckwheat seedlings
has been attributed to the increase in the concentration
of sucrose [25]. In addition, sugars also act as develop-
mental signals regulating seed maturation and accumu-
lation of flavonoids in plants such as Arabidopsis, V.
vinifera [26-28]. Exponential increase in the transcript of
a sugar transporter (JN982735) from flowers (S6) to
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immature seeds (S7) of rice-tartary compared to com-
mon buckwheat suggests its contribution in higher con-
tent of flavonoids and fagopyritols in the seeds of rice-
tartary buckwheat. Relatively increased transcript abun-
dance of auxin efflux carrier protein (JN982731) in dif-
ferent seed maturation stages (S8 & S9) of F. esculentum
suggests its negative role in the biosynthesis of flavo-
noids, which are present in lower amounts in different
growth stages of F. esculentum [15]. Flavonoids have
been implicated as inhibitors of auxin transport in Ara-
bidopsis [18,29]. The ABC and MATE classes of transpor-
ters are known to be involved in the transport of
flavonoids from cytosol into vacuoles [16,23,30]. In
present study the abundance of TDF ABC transporter
(JN982732) was relatively higher in flowering to seed mat-
uration stages, S6 (4.7x), S7 (95.4x), and S8 (2.4x) of rice-
tartary buckwheat compared to common buckwheat sug-
gested that this gene might be playing a key role in the
transport of flavonoids (rutin, quercetin and quercitrin) in
rice-tartary buckwheat. Also, it has been shown that bio-
synthesis of flavonoids takes place in lower parts of Fago-
pyrum spp. and then gets transported to upper parts [13].

Significantly higher expression of 4 TDFs representing
genes for ubiquitin protein ligase, ABC transporter, sugar
transporter and calmodulin binding protein in S7 of rice-
tartary buckwheat compared to F. esculentum suggests
their major involvement in nutritional superiority of rice-
tartary buckwheat. The calmodulin binding proteins
regulate diverse cellular processes by interacting with
other proteins and help in secondary metabolism by act-
ing as secondary messengers through signal transduction
[31,32]. In addition, calmodulin proteins are also known
to induce anthocyanin biosynthesis in V. vinifera [33].
Extensins, the major structural proteins in plant cell wall
play important role in various biological processes such
as embryo development, root hair growth, seed coat de-
velopment, defense, etc. [34,35]. Increased transcript
abundance of extensin protein (JQ003863) in mature
seeds of rice-tartary buckwheat in comparison to com-
mon buckwheat may contribute to development of seeds
of both the Fagopyrum species.

Transcription factors are known to play important role in
various seed development processes and regulation of sec-
ondary metabolism [36-38]. Zn finger binding proteins
(JN982723) have been implicated in regulation of important
biological processes such as flower and seed development,
seed germination, stress tolerance in Arabidopsis [39,40].
Expression of a TDF representing a gene for Zn finger
binding protein was relatively higher in seed developing
stages S8 and S9 of common buckwheat compared to rice-
tartary buckwheat. Transcript of a TDF encoding for an-
other transcription factor MYB 118 (JN982734) was high in
the flowers (S6) of rice-tartary compared to common
buckwheat.
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Ub protein ligases (JN982742) are known to regulate
various biological processes like photomorphogenesis,
hormonal response, senescence, floral, embryo and seed-
ling development through degradation of proteins as
well as regulates phenylpropanoid pathway during UV
stress and sugar signaling during seedling development
[41-43]. Relatively higher expression of Ub protein ligase
in immature seeds (S7) of rice-tartary buckwheat has
been observed in the present study. Significantly higher
expression of most of the selected TDFs during early
seed formation stage (S7) of rice-tartary buckwheat
(Figure 6E) reflects their biological importance in main-
taining higher amounts of rutin, which otherwise drops
significantly in the same stage of F. esculentum.

Conclusions

The present study concludes that in addition to struc-
tural genes, the other classes of genes such as regulators,
modifiers and transporters are equally important in con-
tributing to higher flavonoids content and nutritional su-
periority of F. tataricum (rice-tartary buckwheat) over F.
esculentum. Increased transcript abundance of selected
TDFs in rice-tartary buckwheat during early seed matur-
ation stage (S7) i.e. the transition from flowers to seed
formation also reflects their contribution not only in
higher rutin content but also in other biological pro-
cesses which are contributing to overall nutritional dif-
ferences between both the Fagopyrum species. In
summary, the cDNA-AFLP technology was successfully
utilized to identify genes that are differentially expressed
in seed maturation stages of two Fagopyrum spp. There-
fore, identification of several genes representing regula-
tors, modifiers or transporters, has opened up avenues
to investigate their precise role in contributing to higher
rutin content as well as overall nutritional superiority of
rice-tartary over common buckwheat.

Methods

Plant material

Seeds of F. tataricum (rice-tartary buckwheat) and F.
esculentum (common buckwheat) were procured from the
National Bureau of Plant Genetic Resources (NBPGR),
Regional Research Station, Phagli, Shimla (H.P. India), India
and germinated in a potting mixture consisting of soil and
vermiculite in a ratio of 1:1. Seedlings were grown under
controlled conditions of light (intensity 300-1400 Ix),
temperature (25 + 2°C), humidity (= 70%), and photoperiod
of 14 hday/10 h night. Samples of different seed develop-
mental stages ie. from flowering to seed maturation
(Figure 1) were collected (June to September). Samples
were harvested between 9 and 10 AM, immediately frozen
in liquid nitrogen and stored at —80°C for further use in iso-
lation of genomic DNA and mRNA.
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Isolation of genomic DNA, RNA and cDNA synthesis
Genomic DNA was isolated from leaf samples of both the
Fagopyrum spp. by following the protocol of Murray and
Thompsan [44]. Total RNA was isolated from flowers, im-
mature seeds and mature seeds of both the Fagopyrum spp.
by using Raflex RNA isolation kit (GeNei'™, Bangalore,
India) by following manufacturer's instructions. Quality of
DNA and RNA was checked by 1% (w/v) ethidium
bromide-stained agarose gel and from the absorbance
spectrum at wavelengths 260 nm and 280 nm.

First strand cDNA was synthesized from 5 pg of RNA-
free from DNA (RNA preparation was treated with 2U of
DNAse I), reverse transcribed by using M-MuLV reverse
transcriptase (GeNei'™) and an oligo-dT (1_1) primer.
Double-stranded ¢cDNA was synthesized according to a
standard double-stranded ¢cDNA synthesis protocol [45],
using DNA polymerase 1 (Escherichia coli) and T4 DNA
ligase (New England Biolabs Inc., Beverly, MA).

cDNA-AFLP analysis

About 500 ng of double stranded cDNA was subjected to
standard AFLP template production according to Vos et al.
[46]. cDNA was digested with restriction enzymes AMsel
and PstI(NEB, England). Digested products were then
ligated to adapters with sequences as follows: Msel adapter,
5-GACGATGAGTCCTGAG-3; 3-TACTCAGGACTCAT-
5’; Pstl adaptors 5-CTCGTAGGACTGCGTACATGCA-3;
3-TGTACGCAGTCTAC-5. Adapter-ligated DNA served
as a template for pre-amplification, with PCR parameters of
30 cycles of 30 s at 94°C, 60 s at 56°C, and 60 s at 72°C.
The diluted (30-fold) amplified products were used as the
template for selective amplification. Equal amounts of pre-
amplified products were amplified with primers having se-
lective nucleotides at the 3" end in a total volume of 20 pl;
Additional file 2: Table S2. First selective amplification cycle
consisted of 30 s at 94°C, 30 s at 65°C, and 60 s at 72°C;
annealing temperature was lowered by 0.7°C per cycle dur-
ing the next 12 cycles, followed by 23 cycles at 94°C for
30s, 56°C for 30 s, and 72°C for 60s. All PCR reactions
were carried out in Applied Biosystem model no-9902
Veriti thermal cycler. To each PCR product 7.5 ul of for-
mamide dye (98% formamide, 10 mM EDTA, 0.005% xy-
lene cyanol FF, and 0.005% bromophenol blue) was added,
and 7 pl of each sample was loaded onto a pre-warmed
6% polyacrylamide gel using 1X Tris—borate—EDTA
(TBE) buffer. Electrophoresis was then run for 2.5 h at
65 W and the gels were silver stained using a silver stain-
ing kit (Promega cat. #Q4132, Madison, WI), following
the manufacturer's instructions.

Transcript-derived fragment (TDF) isolation and
re-amplification

Differentially expressed TDFs based on presence, ab-
sence or differences in intensity were cut with a sharp
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blade from the gel with care to avoid any contaminating
fragment(s), eluted in 50 pl of sterile double distilled
water, incubated at 95°C for 15 min and then hydrated
overnight at 4°C. An aliquot of 2 pl was used for re-
amplification in a total volume of 25 pl, using the same
set of corresponding selective primers and PCR condi-
tions as used for the selective amplification, except that
an annealing temperature of 56°C for 35 cycles was used.
PCR products were resolved in a 2% agarose gel; each
single band was isolated and eluted using the Genaxy
DNA gel extraction kit (Genaxy Biosciences Inc., USA).
The reproducibility of ¢cDNA AFLP was verified by
repeating the experiment twice.

Cloning and sequencing of TDFs

Eluted TDFs were cloned into the plasmid pGEM-Teasy®
vector (Promega Corp., Madison, WI) following the manu-
facturer’s protocol and then sequenced. Sequences of TDF
(with vector sequences trimmed off, where plasmid was
used as the template) were then analyzed for their hom-
ology against the publicly available non-redundant genes/
ESTs/Transcripts in the database (http://www.ncbi.nlm.
nih.gov/BLAST, http://www.arabidopsis.org/Blast) using
BLASTN and BLASTX algorithms. TDFs were also
checked for putative function against Arabidopsis database
using FASTA tool (http://www.arabidopsis.org/cgi-bin/
fasta/nph-TAIRfasta.pl) developed by TAIR, [47].

Real-time RT-PCR analysis

Specific primer pairs were designed for TDFs; Add-
itional file 3: Table S3 and tested by real time RT-
PCR. Primers specific for buckwheat 26 S rRNA and
Histone H3 were used for the normalization of reac-
tions. Real-time PCR reactions were performed in du-
plicate on a CFX 96 system (Bio-Rad Laboratories;
Hercules,CA) with the iScript one step RT PCR Kit
(Bio-rad). PCR protocol was as follows: denaturation for
5 min at 94°C, followed by 40 cycles each of denaturation
for 20 s at 94°C, annealing for 30 s at 55-61°C, and one
elongation step for 20 s at 72°C. Significance of differences
between treatments was statistically analyzed. Whisker
plots were drawn for qRT-PCR data to determine folds ex-
pression of TDFs in F. tataricum compared to F. esculen-
tum by using MINITAB-14.

Additional files

Additional file 1: Table S1. Sequence homology: Functional
characterization of transcript derived fragments (TDFs) based on BLAST X
and TAIR FASTA analysis.

Additional file 2: Table S2. Primers List: Primers used for cDNA-AFLP
analysis.

Additional file 3: Table S3. Primers List: Primers used for real time gRT-PCR
analysis.
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