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Abstract

in lipid and fatty acid metabolism.

Background: New advances in high-throughput technologies have allowed for the massive analysis of genomic
data, providing new opportunities for the characterization of the transcriptome architectures. Recent studies in pigs
have employed RNA-Seq to explore the transcriptome of different tissues in a reduced number of animals. The
main goal of this study was the identification of differentially-expressed genes in the liver of Iberian x Landrace
crossbred pigs showing extreme phenotypes for intramuscular fatty acid composition using RNA-Seq.

Results: The liver transcriptomes of two female groups (H and L) with phenotypically extreme intramuscular fatty
acid composition were sequenced using RNA-Seq. A total of 146 and 180 unannotated protein-coding genes were
identified in intergenic regions for the L and H groups, respectively. In addition, a range of 5.8 to 7.3% of repetitive
elements was found, with SINEs being the most abundant elements. The expression in liver of 186 (L) and 270 (H)
INcRNAs was also detected. The higher reproducibility of the RNA-Seq data was validated by RT-qPCR and porcine
expression microarrays, therefore showing a strong correlation between RT-gPCR and RNA-Seq data (ranking from
0.79 to 0.96), as well as between microarrays and RNA-Seq (r=0.72). A differential expression analysis between H and
L animals identified 55 genes differentially-expressed between groups. Pathways analysis revealed that these genes
belong to biological functions, canonical pathways and three gene networks related to lipid and fatty acid
metabolism. In concordance with the phenotypic classification, the pathways analysis inferred that linolenic and
arachidonic acids metabolism was altered between extreme individuals. In addition, a connection was observed
among the top three networks, hence suggesting that these genes are interconnected and play an important role

Conclusions: In the present study RNA-Seq was used as a tool to explore the liver transcriptome of pigs with

extreme phenotypes for intramuscular fatty acid composition. The differential gene expression analysis showed
potential gene networks which affect lipid and fatty acid metabolism. These results may help in the design of

selection strategies to improve the sensorial and nutritional quality of pork meat.

Background

Pigs, an important source of human food, accounting
for over 40% of the meat produced worldwide. In
addition, due to the similarities in anatomy and physi-
ology with humans, they have been used in biomedicine
as an important animal model for the study of the gen-
etic basis of metabolic diseases such as obesity, type II
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diabetes, metabolic syndrome and atherosclerosis. As
well it is often mentioned as the preferred animal species
for organ xenotransplantation [1,2].

Over the last decade, a growing awareness of the associ-
ation between diet and health has led nutritional quality to
become a relevant factor in consumers’ food choices. A
major development has been the recognition that certain
fatty acids (FA), such as oleic acid, and a-linolenic acid
(ALA), can improve human health status and prevent dis-
ease [3,4]. Production of meat with a fatty acids profile
more in line with public health recommendations has the
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potential to improve long-term human health without re-
quiring substantial changes in consumer habits. It is well
known that the fatty acid meat composition of pigs is
largely dependent on genotype, physiological status and en-
vironmental factors such as nutrition [5-11].

The liver a highly specialized organ present in verte-
brates and other animals regulates a wide variety of
metabolic processes, which play a key role in the digest-
ive function, the decomposition of red blood cells, hor-
mone production and detoxification. Together with
adipose tissue and skeletal muscle, the liver is crucial in
regulating lipid metabolism. In pigs, the liver is the pri-
mary site of de novo cholesterol synthesis and fatty acid
oxidation, whereas lipogenesis occurs essentially in liver
and adipose tissues [12-16].

In the last few years, new high-throughput technologies
have been developed for the massive analysis of genomic
data. These methodologies yield new opportunities to ex-
plore the genetic variability of populations, as well as the
characterization of the transcriptome architectures. Until
the development of Next-generation sequencing (NGS)
technologies, most mRNA expression studies have used
microarray or quantitative PCR-based (qPCR) approaches.
The development of RNA-Seq, a method based on NGS
which consisting of the direct sequencing of RNA mole-
cules present in a given sample, has provided a new tool
for both transcriptome characterization and gene expres-
sion profiling. In RNA-Seq, the counts corresponding to
each transcript can be used for quantification and these
sequences can be mapped to the genome for their annota-
tion. In comparison to microarrays, RNA-Seq provides a
higher dynamic range, specificity and sensibility [17]. In
addition, it provides a picture of the transcriptome, allow-
ing the characterization of alternative splicing, variation in
the usage of promoters and polyadenilation sites, non-
coding RNAs (ncRNA), single nucleotide variants (SN'Vs)
and transposable elements. Furthermore, RNA-Seq data
may allow the discovery of novel transcripts and long inter-
genic non-coding RNAs (IncRNAs) [18-20].

Recent studies in livestock species have employed
RNA-Seq to explore the transcriptome of animal pro-
ducts, such as cow milk [21], bovine embryos [22], and
tissue as pig gonads [23], liver, muscle, and abdominal
fat [24], sheep bone [25] and bovine abomasal [26].
However, most of the RNA-Seq studies in pigs have
included analysis of only a few animals, and ignored
within group intrinsic variability. For instance, two single
animals of different breeds were compared by Esteve-
Codina et al., (2011) and three tissues in two phenotyp-
ically extreme full-sib F, females formed the basis of
Chen et al., (2011) study.

The main goal of this study was the identification of
differentially-expressed genes in the liver of groups of
Iberian x Landrace crossbred pigs showing extreme
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phenotypes for intramuscular fatty acid composition
using RNA-Seq. In addition, the porcine hepatic tran-
scriptome was analyzed and transposable elements, new
putative protein-coding genes and IncRNAs were
identified.

Results and discussion

Phenotypic variation between extreme groups

Analyzed animals were a backcross (25% Iberian x 75%
Landrace) obtained by crossing three Iberian (Guadyer-
bas) boars and 30 Landrace sows. Subsequently five F1
boards were backcrossed with 26 Landrace sows. A Prin-
cipal Component Analysis (PCA) was performed to ob-
tain the low-dimensional representation of the data and
to describe the phenotypic variation of traits related to
carcass quality and intramuscular fatty acid composition.
The first two principal components explained the 48.7%
of the global phenotypic variance of these traits
(PC1=34.6%, PC2=14.1%, Figure 1).

According to the score information for the first principal
component the animals were ranked in two groups High
(H) and Low (L), of 20 individuals each. Figure 1 shows two
clusters of animals with the relative weight of all traits in
the two first principal components. The first principal com-
ponent grouped several traits related to the profile of fatty
acids in Longissimus dorsi (LD) muscle. Group L showed a
higher proportion of saturated (SFA) and monounsaturated
fatty acids (MUFA), including palmitoleic and oleic acids.
Conversely, H group had a higher content of polyunsatur-
ated acids (PUFA) and related indices like the double bond
index (DBI), the unsaturated index (UI) and the peroxid-
ability index (PI). Remarkably, H group also presented a
higher proportion of essential PUFA, like linolenic (LA),
ALA, eicosadienoic (EDA), eicosatrienoic (ETE) and arachi-
donic (AA) acids (Table 1). These phenotypic differences
are likely determined by genetic variability in: 1) absorption
of LA and ALA acids; 2) elongation and desaturation of es-
sential PUFA to longer-chain w-3 and w-6 fatty acids; 3)
de novo synthesis and metabolism of palmitoleic and oleic
acids; and 4) transport deposition, storage or degradation
and oxidation of all these fatty acids.

Previous studies have reported that, in both backfat
and LD muscle, Iberian pigs have higher percentages of
palmitic acid, oleic acid, SFA and MUFA, and lower con-
centrations of LA and ALA acids than commercial
breeds [7,27,28]. Moreover, Pascual et al., (2007) [9]
reported that Landrace pigs have a higher content of LA
and AA acids in their muscle than other commercial
breeds. In general, fatter pigs show higher proportions of
SFA and MUFA, but less PUFA than lean pigs [6,29].
The genetic architecture of intramuscular FA compos-
ition in the Iberian x Landrace backcross was described
in a genome-wide association study (GWAS), showing
43 chromosomal intervals associated with these traits
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Figure 1 Graphical representation of the first and second principal components summarizing the phenotype variation of traits related
to carcass quality and intramuscular fatty acid composition. Low group (L) animals are indicated with green triangles and High (H) animals
with red triangles, while blue squares represent the whole populations. The ten sequenced animals are represented with circles containing
asterisks. Abbreviations are defined in Table 1.

[30]. Since all animals were raised and fed under the
same standard management conditions, differences be-
tween H and L groups are probably caused by the segre-
gation within the analyzed animals of Iberian and
Landrace alleles.

Phenotypic means between groups were compared
and significant statistical differences in 73% of the ana-
lyzed traits was noted (19/26), mainly relating to intra-
muscular fatty acid composition (Table 1). The
maximum differences between groups were observed for
the profiles of essential PUFAs (AA, ETE, LA and ALA
acids). Significant differences were also observed for PI
and the percentage of palmitic, palmitoleic, heptadece-
noic and heptadecanoic acids. From the 20 extreme ani-
mals, 10 females were selected for RNA sequencing (five
per group). Pedigree information was used to select ani-
mals representing the parental genetic diversity. In
addition, full-sibs within groups were avoided, animals
within groups had different mothers, and four different
fathers were selected per group. However, interesting fa-
milial relationships between animals of different groups

were retained: there were two pairs of full-sibs and two
pair of maternal half-sibs belonging to opposite groups.
As before, the phenotypic means differed between
groups. However, due to the reduced sample size, only
sixteen traits showed significant differences (Additional
file 1, Table S1).

Mapping and annotation

The pig liver transcriptome of two groups (H=5, L=5) of
phenotypically extreme females for intramuscular fatty
acid composition was sequenced. After removal of se-
quencing adaptors and low-complexity reads, Tophat
software was employed [31] to map the reads against the
reference pig genome assembly Sscrofa 9.61. A total of
136.65 M of 100 bp single-end reads (7.28 — 12.43 M of
single-end reads per individual) were obtained from two
lanes of an Illumina Hi-Seq 2000 machine. Observed
percentages of mapped reads per individual were higher
(around 71.42 — 77.75%) than obtained previously in
other porcine transcriptome studies; 61.4 - 65.6% [24]
and 66.7 [23]. The number of reads and the mean
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Table 1 Mean comparison + standard deviation between
high and low groups for the traits included in the
principal components analysis (PCA)

Carcass quality Mean Low Mean High  Significance
Carcass height (CH) 7279+990 6957 +1273 NS
Weight of ham (WH) 1988 + 246 1966+310 NS
Weight of Shoulder (WS) 1026 £125 1093 +210 NS
Intramuscular fat (IMF) 221+088 149+038 NS
Fatty acids

Saturated FA

Myristic acid (C14:0) 1224013  1.12+0.12 NS
Palmitic acid (C16:0) 2378079 2139+069  ***
Heptadecanoic acid (C17:0) 020+ 003 033 +£009 FHx
Stearic acid (C18:0) 1465+116 1369+077 *
Arachidic acid (C20:0) 026005 021 +008 NS
Monounsaturated FA

Palmitoleic acid (C16:1 n-7) 274+024 220+033 o
Heptadecenoic acid (C17:1) 020+ 005 032+020 **
Oleic acid (C18:1 n-9) 4257 +£134 3492 +£296  ***
Octadecenoic acid (C181n-9) 404 +027 370+ 031 *
Eicosenoic acid (C20:1 n-9) 086 +008 077 =007 NS
Polyunsaturated FA

Linoleic acid (C18:2 n-6) 716 £052 1511165  ***
a-Linolenic acid (C182 n-3)  046+008  1.10 + 056 e
Eicosadienoic acid (C202 n-6) 041 £005 063 +0.13 HEE
Eicosatrienoic acid (C203 n-6) 016+ 003 053 +0.15 e
Arachidonic acid (C20:4 n-6) 084 +0.17  3.10+0.77 i
Metabolic ratios

Average Chain Length (ACL) 1744+ 002 1749+012 *
Saturated FA (SFA) 40102+ 151 3672122  ***
Monounsaturated FA (MUFA) 5072 £ 156 4238 £3.13  ***
Polyunsaturated FA (PUFA) 903 +064 2046 + 221 HHE
Peroxidability index (PI) 1228 +380 3243 +443  ***
Double-bond index (DBI) 065020 091003 FrE
Unsaturated index (Ul) 163+050 248+0.10 *xx

NS: p-value > 0.05, * p-value < 0.05, ** p-value < 0.01, *** p-value < 0.001.

percentages of mapped reads were equivalent for the H and
L groups (Table 2).

S-MART ([32] was used to calculate the proportion of reads
mapping to exons, introns and 1kb upstream/downstream of
the annotated genes. As expected, the highest percentage of
reads mapped to exons (604 — 66.5%), while 11.1 — 16.4%
corresponded to introns and the lowest percentage was
located either 1 kb upstream or downstream of the annotated
genes (4.06 — 546%) (Table 3). The proportion of reads
mapped to exons of annotated genes was in accordance with
the study of Chen et al, (2011) in three pig tissues
(60.2 — 74.9%), but was higher than that reported by Esteve-
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Table 2 Number of single-end 100 bp reads obtained and
percentages of mapped reads per animal

Animal’ Total M? Mapped M? %

L1 9.87 7.28 73.82
L2 1244 8.88 7142
L3 13.98 10.62 75.95
L4 11.15 847 75.96
L5 1442 11.21 7775
H1 16.05 1243 7745
H2 12.57 9.77 77.68
H3 14 10.75 76.77
H4 14.94 11.52 77.14
H5 17.23 131 76.03
Total 136.65 104.03 7613

L1 to L5 and H1 to H5 correspond to animals of the L and H groups,
respectively.
2 Indicate millions of reads.

Codina et al.,, 2011 (44.1%) in porcine male gonads. These
differences (=~ 12%) may be explained by the use of different
versions of both the pig genome assembly and annotation,
Sscrofa9.61 in the present study and Sscrofa9.58 in Esteve-
Codina et al., (2011). Moreover, in the present study a newer
version of Tophat was used, which includes improvements in
mapping. However, differences between tissues in the propor-
tion of annotated genes cannot be ruled out.

The total number of assembled transcripts with cufflinks
was in agreement with the previously reported pig liver
transcriptome [24]. These transcripts fall into the following
categories: annotated exons (8.7 — 11%), intron retention
events (11 — 13.5%), intergenic transcripts (19.1 — 21.7%),
potentially novel isoforms of genes (17.1 — 20.3%), known
isoforms (14.7 — 17.8%), pre-mRNA molecules (2 — 3.3%)
and polymerase run-on fragments (5.9 — 8.3%) (Table 4).

Table 3 Proportion of reads mapping to exons, introns or
within 1 Kb upstream or downstream of the annotated
genes

Animal’ % Exons % Introns % 5 or 32
L1 60.44 1644 503
L2 66.48 13.59 4.06
L3 65.52 13.06 5.31
L4 63.35 14.71 457
L5 62.86 12.71 46
H1 63.54 13.52 544
H2 62.1 15.08 478
H3 64.87 14.11 428
H4 65.95 1112 546
H5 66.46 12.98 444

11 to L5 and H1 to H5 correspond to animals of the L and H groups,
respectively.
2 Reads located either 1 Kb upstream or downstream of the annotated genes.
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Table 4 Number of transcripts assembled (TA) with Cufflinks and the percentage they represent in each sample

Code L1 L2 L3 L4 L5 H1 H2 H3 H4 H5
TA % TA % TA % TA % TA % TA % TA % TA % TA % TA %

= 1971 87 2486 104 2526 11 2244 92 2762 102 2642 101 2363 94 2761 99 2119 104 2838 105
C 4059 178 4202 176 3953 172 4203 173 4289 159 3955 151 4083 163 4183 150 3569 175 3961 147
e 745 33 508 21 518 23 672 28 576 21 616 24 736 29 604 22 489 24 529 20

i 3115 137 2719 114 2629 114 3153 130 3248 120 3301 126 3373 135 3637 131 2250 110 3234 120
j 4348 191 4709 197 4436 193 4666 192 5373 199 5288 202 4833 193 5658 203 3488 17.1 5428 20.
o 1067 47 1175 49 1139 50 1157 48 1237 46 1142 44 1154 46 1170 42 1129 55 1204 45
p 1570 69 1656 69 1566 68 1682 69 1635 61 1603 61 1606 64 1676 60 1699 83 1598 59
S 60 03 77 03 72 03 76 03 94 04 86 03 71 03 72 03 68 03 100 04
u 4447 195 4560 191 4541 197 4789 197 5468 202 5456 209 5089 203 5680 204 4421 217 5638 209
X 1392 61 1838 77 1630 71 1663 68 2346 87 2006 79 1761 70 2415 87 1192 58 2496 92
Total 22774 100 23930 100 23010 100 24305 100 27028 100 26155 100 25069 100 27856 100 20424 100 27026 100

Class codes described by Cuffcompare: "=" Exactly equal to the reference annotation, "c " Contained in the reference annotation, "e" possible pre-mRNA molecule,
"i " An exon falling into an intron of the reference, "j " New isoforms, "o" Unknown, generic overlap with reference, "p" Possible polymerase run-on fragment, “s”
An intron of the transfrag overlapping a reference intron on the opposite strand, "u" Unknown, intergenic transcript, “x” Exonic overlap with reference on the
opposite strand. L1 to L5 and H1 to H5 correspond to animals of the L and H groups, respectively.

Gene expression analysis

The total amount of expressed genes in liver was similar
between groups (L= 8797 — 10161, H= 8765 — 10083).
Taking into account only those genes with a mean
FPKM (normalized number of fragments per kilobase of
exon per million reads) higher than zero, an aggregate of
10,485 expressed genes in L and 10,626 in H groups was
observed. A total of 10,280 common genes were
expressed in both groups. The correlation of mean gene
expression levels between both groups (H vs L) was very
high (r = 0.99), suggesting that the major fraction of the
liver transcriptome is conserved between groups. Gene
expression distribution reveals that less than 10% of
these genes were expressed between 1 — 10 FPKM;
around 42% between 10 FPKM - 100 FPKM; 38% among
100 — 1000 FPKM and, approximately, 8% more than
1000 FPKM (Additional file 2, Figure S1).

All 10 individuals were also assayed with the Gene-
Chip® Porcine microarray (Affymetrix, Santa Clara, CA)
which allows the expression analysis of 20,201 Sus scrofa
genes. After probe normalization, correlation between
the expression data of microarrays and RNA-Seq was
calculated. In accordance with previous studies [17,23], a
strong Spearman correlation (r=0.72) was observed
(Additional file 3, Figure S2). Results from both tech-
nologies were, in general, more similar for genes that
showed intermediate expression values, whereas major
differences were observed for low and high expressed
genes in the Affymetrix microarray data. This pattern
can be explained by the higher dynamic range of RNA-
Seq [17,33]. Finally, in line with the previous description
of liver transcriptome [34], the top 100 expressed genes
showed an overrepresentation in biological gene ontolo-
gies related to oxidoreductase activity, transport,

proteolysis, translation, signal transduction, cholesterol
homeostasis and lipid transport (p < 0.001).

Transposable elements analysis

The percentage of repetitive elements identified
the pig liver transcriptome was around 5.8 — 7.3%
(Additional file 4, Table S2), similar to that found in
male gonad transcriptome (7.3%) [23]. However, it should
be noted that the total length of base pairs masked and
the total number of transcripts were higher in male gonad
transcriptome [23] than in our study. Two possible expla-
nations may account for these differences: 1) in liver from
73 — 124 M of single-end reads per individual were
obtained (Table 2), whereas in gonads [23] a total of 20 M
paired-end reads were observed and, thus, a better frag-
ment distribution and a higher number of transcripts were
analysed; 2) the transcriptome complexity has been
reported [35] to be higher in kidney, testes and brain tis-
sues in comparison to liver and muscle.

in

Gene orthology and IncRNAs detection

From the unannotate (Sscrofa 9.61 assembly) intergenic
expressed regions, a range of 3488-5658 intergenic novel
transcripts were identified in each sample (Table 4). How-
ever, to find not annotated genes, transcripts expressed in
at least four of the five animals of each group were consid-
ered. Then, Augustus software [36] was used to examine
which of these transcripts were predicted to encode pro-
teins. A total of 146 and 180 putative proteins were identi-
fied for the L and H groups, respectively (Table 5).
According to BLASTP results, these proteins correspond
for L group to: 19 novel computationally predicted and 95
known human proteins, 3 novel and 107 known bovine
proteins and 43 novel and 7 know-porcine proteins.
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Table 5 Putative proteins identified in each H and L
groups and orthologies detected against Homo sapiens,
Bos taurus and Sus scrofa protein databases

Group Total Bos taurus Homo sapiens Sus scrofa Esteve-Codina

et al. (2011)
L 146 110 114 50 82
H 180 133 135 59 104

Predicted proteins reported in pigs by Esteve-Codina et al., (2011) are also
included.

Similarly, for the H group predicted proteins correspond
to: 25 novel computationally predicted and 110 known
human proteins, 5 novel and 128 known bovine proteins
and 51 novel and 8 known porcine proteins. Interestingly,
in both H and L groups, around 86% of the predicted novel
proteins were found in the Sus scrofa protein database
[ftp://ftp.ensembl.org/pub/release-65/fasta/sus_scrofa/pep/]
as novel computationally predicted proteins. Moreover, the
number of matches increased to 58% (104/180) when the
predicted novel proteins were compared against the puta-
tive coding transcripts reported by Esteve-Codina et al.,
(2011). This result indicates that a high number of genes
are not annotated in the Sscrofa 9.61 pig genome assembly
and they are expressed in both liver and gonad tissues. Fi-
nally, these results constitute an experimental confirmation
of the novel computationally predicted genes in pigs.

For IncRNAs annotation, the previously reported
sequences in pig male gonad transcriptome [23] were
used as a reference database. A total of 186 (L) and 270
(H) of these putative IncRNAs was also expressed in pig
liver. Within groups, 101 and 108 IncRNAs were
expressed in all L and H animals, respectively, but only
89 IncRNAs were expressed in both groups (Additional
file 5, Figure S3).

Differential gene expression analysis

DESeq software [37] was employed to detect
differentially-expressed (DE) genes between H and L
groups. First, some exploratory analyses to estimate
the variance and quality of the data were performed.
Per-gene estimates of the base variance against the
base levels showed that the fit (red line) closely fol-
lowed the single-gene estimates (Additional file 6, Fig-
ure S4). The residualsEcdfPlot' function, which checks
the uniformity of the cumulative probabilities, revealed
a similar pattern for the curves of the empirical cumula-
tive density functions (ECDF) in both groups (Additional
file 7, Figure S5). It was also noted that ECDF followed
well the diagonal, except for very low counts, but that is to
be expected because at this level shot noise dominates and,
therefore, the deviations become stronger (Additional file 8,
Figure S6). Afterwards DE analysis between groups was per-
formed. Figure 2 shows that, at selected cut-off (-logl0(p-
value)>2.3 or g-value < 0.17), there is a clear departure from
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expected among transcripts accepted as differentially
expressed (indicated by the blue trend being above the strait
red line). Therefore according to the employed cut-off (fold
change > 1.5 and p-value < 0.005), 55 protein-coding genes,
two pseudogenes [ENSEMBL_Id: ENSSSCG00000004170,
ENSSSCG00000016238] and one non-coding RNA
[ENSEMBL_Id: ENSSSCG00000019010] were identified as
differentially-expressed (Figure 3, Table 6).

In order to validate the expression data obtained by
RNA-Seq, five genes (APOA2, LPINI, ME3, CYP7AI and
CYP2C49) were selected among the differentially-
expressed protein-coding genes to perform real time re-
verse transcription (RT-qPCR) assays. When the pattern
of gene expression levels was compared, strong correla-
tions ranking from 0.79 to 0.96 between RT-qPCR and
RNA-Seq platforms were observed, confirming the high
reproducibility of the data (Additional file 9, Table S3).

Interestingly, one of the studied genes, the CYP2C49
[ENSEMBL_Id: ENSSSCG00000010488] which belongs
to the highly diverse superfamily of CYP450 [38] and it
is homologue to the human CYP2C9 gene, was located
in a genomic region in which copy number variation
(CNV) has been previously described in pigs [39]. In
order to assess whether observed differences of gene ex-
pression were influenced by differences in the CNV be-
tween animals, a real time quantitative PCR (qPCR) to
determine the number of copies of the CYP2C49 gene
was developed. For the first time, CNV affecting the
CYP2C49 gene was described with relative quantification
values ranging from 1 to 5.2 copies (Additional file 9,
Table S3). However, no correlation between the number
of copies and gene expression was observed. Therefore,
further analysis will be necessary to elucidate the pos-
sible role of these structural variants in the fatty acid
metabolism.

Moreover, it is noteworthy that six of the differentially-
expressed genes related to fatty acids metabolism in liver
(APOB, CYP7A1, APOA2, THBS1, THEMS, ME3) were
previously reported as associated with the profile of intra-
muscular fatty acid composition in a GWAS study in the
same animal population [30]. Therefore, they can be con-
sidered as interesting candidate genes and this suggest
their role in the fatty acid metabolism processes in pigs in
both liver and IMF tissues (Table 7).

Functional clustering of differentially-expressed genes in
the liver

From the 55 differentially-expressed protein-coding
genes, 26 were up-regulated and 29 were down-
regulated in H group in comparison to L (Table 6). To
gain insight into the liver tissue processes that differed
between groups, the list of the differentially-expressed
genes was explored using the core analysis function
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included in Ingenuity Pathways Analysis (IPA). Initially,
the pig gene IDs were converted to human genes but
five protein-coding genes did not match with human
homologs [Ensembl Ids: ENSSSCGO00000007873, ENS
SSCG00000003971, ENSSSCG00000014368, ENSSSCG
00000013116, ENSSSCG00000001229], and therefore
only 50 pig genes were eligible for network construction.

The top seven biological functions identified by IPA
included categories related to a wide variety of physio-
logical and biological events, such as lipid metabolism,
small molecule biochemistry, molecular transport, drug
metabolism, energy production, nucleic acid metabolism,
and vitamin and mineral metabolism (Table 8). A spe-
cific examination of the lipid metabolism IPA molecular
and cellular function revealed that most of the tran-
scripts relating to lipid metabolism were up-regulated in
H group compared to L group. Remarkably, genes that
play a crucial role in lipoprotein synthesis (APOB), chol-
esterol metabolism (ABCGS8, CYP2C9, CYP2CI9,
CYP4A11, APO and CYP7AI), oxidation of lipids and
palmitic fatty acids (MTMR?), and induction of lipogenic
gene transcription (LPINI) were up-regulated in H
group in contrast to L group. On the contrary, genes
involved with accumulation of triacylglycerol (AQP?7),

uptake of lipids and myristic acid (THBSI), and fatty
acids biosynthesis (ME3) were down-regulated in H
group as opposed to L group. The malic enzyme is
involved in supplying NADPH for the reductive biosyn-
thesis of fatty acids [40]. Based on the above observa-
tions it is tempting to speculate that ALA and LA acids
reaching liver tissue inhibit the expression of ME3 gene,
and consequently, at least partially, reduce lipogenic ac-
tivity. This is in agreement with Guillevic et al. [8], who
reported that ALA acid enriched diets decreased malic
enzyme activity in liver and subcutaneous adipose tissue
of pigs.

Interestingly, the most representative canonical path-
ways significantly modulated in liver when comparing H
vs L groups were involved in Endotoxin lipopolysacchar-
ide / pro-inflammatory cytokines (LPS/IL-1) mediated
inhibition of retinoid X receptors (RXR) function, fatty
acid metabolism (including AA and LA acids) and preg-
nane X receptor / farnesoid X receptor (FXR/RXR) acti-
vation (Figure 4 and Table 9), in which the up-regulation
of ABCGS8, APOB and CYP7A1 genes was observed.
Likewise, the present findings underscore that H group
increased the expression of gene sets regulated by per-
oxisome proliferator-activated receptors alpha (PPAR-a)
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Figure 3 Plot of the 55 differentially-expressed protein-coding genes (represented in blue) with fold change > 1.5 and p-value < 0.005.
X-axis values are base mean expression values and y-axis values are the log2 (fold change).
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(APOA2, CYP2C9, CYP2Ci19) and RXR (ABCGS,
CYP7A1I) transcription factors, both of which are shown
to have an important role in lipid homeostasis. For in-
stance, PPAR-a is an important regulator of cellular fatty
acid uptake and intracellular fatty acid transport, mito-
chondrial and peroxisomal fatty acid oxidation, ketogen-
esis, and gluconeogenesis in several species [41-43],
whereas RXR plays a crucial role in the transcriptional
regulation of a spectrum of genes controlling cholesterol
homeostasis and bile acid homeostasis, together with
nuclear receptor FXR, a key transcription factor that
regulates cholesterol 7 a-hydroxylase (CYP7AI) activity
and mRNA levels.

In addition, the up-regulation of PPAR-a and RXR were
coupled with the increased expression of lipin (LPINI) and
CYP7A1I genes. In mice, it has been reported that LPINI
selectively activates a subset of coactivator la (PGC-1a)
target pathways involved in fatty acid oxidation and mito-
chondrial oxidative phosphorylation, while suppressing the
lipogenic program and lowering circulating lipid levels
[44]. Lipin activates mitochondrial fatty acid oxidative me-
tabolism by inducing expression of the nuclear receptor
PPAR-a, a known PGC-Ia target, and via direct physical
interactions with PPAR-a and PGC-la. Furthermore,
CYP7A1 has been shown to be a key factor of hepatic chol-
esterol homeostasis. All together these results suggest that
H group may present greater uptake of fatty acids into
hepatocytes (mainly LA and ALA acids). It is likely that the

higher PUFA bioavailability in liver may affect expression
of PPAR-a, RXR and their target genes, inducing a greater
stimulation of both peroxisomal and mitochondrial B-oxi-
dation, and leading to reduced triglyceride and cholesterol
synthesis, and an enhanced elimination of cholesterol from
the liver via bile acid formation. This intriguing possibility
remains to be demonstrated, although there is evidence
that FA, in particular unsaturated FA, exert many of their
biological effects by regulating the activity of numerous
transcription factors in liver, such as PPAR-a [45]. Re-
cently, [46] has demonstrated that FA oxidation is regu-
lated by hepatic MUFA to PUFA ratio through the
activation of PPAR-a. In agreement to our results, hepatic
expression of PPAR-a was higher in pigs fed with a higher
level of PUFA. This is also in line with the lower IMF con-
tent in H group than in L animals, and the lower propor-
tion of de novo fatty acids in the IMF. Therefore, these
transcriptome changes may reflect counter mechanisms of
liver tissue to respond or compensate for changes in IMF
fatty acid profile, which depends on possible metabolisa-
tion of FAs and the possibility of being synthesized by the
pig adipose tissue [47]. However, the question remains
how different types of FA control the expression of genes
and a direct examination of the effect of each individual
FA on porcine muscle fatty acid composition is needed.
Finally, the identified genes were mapped to three
genetic networks. The first, having an IPA network score of
38 and 16 focus genes, presented functions related to Lipid
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Table 6 Description of the differentially-expressed genes detected between High and Low groups with fold change

> 1.5 and p-value <0.005

Ensembl_Gene_lId Human homolog Fold change p-value g-value Gene biotype
ENSSSCG00000010610 GSTO1 38 1.1x107'° 22x10"3 protein_coding
ENSSSCG00000010992 AQP7 -6.7 30x 107" 29x107° protein_coding
ENSSSCG00000016401 KIF1A -125 22x 10" 14x10% protein_coding
ENSSSCG00000010488 CYP2C9 25 13x10% 63x10° protein_coding
ENSSSCG00000013865 NWD1 16.2 52x107 20x 10 protein_coding
ENSSSCG00000012015 C210rfo1 204 10x10° 30x 107 protein_coding
ENSSSCG00000007873 - -37 14x10° 40x10™ protein_coding
ENSSSCG00000009871 SDS 22 78x10° 20x10° protein_coding
ENSSSCG00000002383 FOS 20 13x%107° 30x 107 protein_coding
ENSSSCG00000019010 - 143 16x10° 30x 107 SNRNA
ENSSSCG00000000044 C220rf32 -338 18x10° 30x10° protein_coding
ENSSSCG00000003891 CYP4AT1 21 32x10° 10x 107 protein_coding
ENSSSCGO00000016238 - 31 35x 107 10x 102 pseudogene
ENSSSCG00000011937 MORC1 6.1 39x10° 10x102 protein_coding
ENSSSCG00000010487 CYP2C19 21 51x10° 10x 1072 protein_coding
ENSSSCG00000006614 THEMS 180 14x10* 20x 107 protein_coding
ENSSSCG00000005385 NR4A3 27 14x10* 20x 107 protein_coding
ENSSSCG00000006580 S100A2 -37 22x10" 20x 107 protein_coding
ENSSSCG00000000231 ANKRD33 26 30x 10" 30x 107 protein_coding
ENSSSCG00000001642 TBCC -143 32x10* 30x 107 protein_coding
ENSSSCG00000003971 - 20 33x 10" 30x 107 protein_coding
ENSSSCG00000015294 CR1 20 37x 10" 30x 107 protein_coding
ENSSSCG00000006238 CYP7A1 21 56x10* 50x 107 protein_coding
ENSSSCG00000004789 THBST -17 60x 10 50x 107 protein_coding
ENSSSCG00000012832 MXRAS5 21 65x 10 50x 107 protein_coding
ENSSSCG00000004946 ZWILCH 22 6.7 x10* 50% 107 protein_coding
ENSSSCG00000007888 TNFRSF17 -37 6.7 x 10" 50x 107 protein_coding
ENSSSCG00000008595 APOB 16 79x 107 50x 107 protein_coding
ENSSSCG00000014919 ME3 -23 84 x 10™ 60x 107 protein_coding
ENSSSCG00000014368 - -20 10x 103 70 x 107 protein_coding
ENSSSCG00000007529 SYCP2L 26 10x10° 7.0 x 107 protein_coding
ENSSSCG00000013116 - 164 1.1x10° 70x 107 protein_coding
ENSSSCG00000004052 FNDC1 -18 12x10° 70% 107 protein_coding
ENSSSCG00000002277 SPTB -4.0 12x10° 70x 102 protein_coding
ENSSSCG00000016645 C7orf53 -77 13x 103 70x 107 protein_coding
ENSSSCG00000008203 IGKV2-40 -18 13x10° 70x 107 protein_coding
ENSSSCG00000001229 - -20 13x10° 70x 107 protein_coding
ENSSSCG00000000151 APOL6 34 15x 107 80x 102 protein_coding
ENSSSCGO00000004170 - 22 19x10° 80x 107 pseudogene
ENSSSCG00000016190 SLCT1A1 —-38 19%x10° 80x 107 protein_coding
ENSSSCG00000006355 APOA2 18 19x 107 80x 1072 protein_coding
ENSSSCG00000015747 MYOM?2 28 23x 107 90 x 107 protein_coding
ENSSSCG00000014824 RELT -125 27x10° 90x 107 protein_coding
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Table 6 Description of the differentially-expressed genes detected between High and Low groups with fold change

> 1.5 and p-value <0.005 (Continued)

ENSSSCG00000008455 ABCG8 17.1
ENSSSCG00000003777 SLC44A5 26
ENSSSCG00000003999 A1BG -59
ENSSSCG00000002375 RPS6KL1 -22
ENSSSCG00000001006 TUBB2B -29
ENSSSCG00000007478 ATPOA -18
ENSSSCG00000009992 UQCR10 18
ENSSSCG00000010829 MOSC1 1.7
ENSSSCG00000017923 ALOX15 =30
ENSSSCG00000002847 GPT2 1.7
ENSSSCG00000004787 GPR176 30
ENSSSCG00000006985 MTMR? 1.7
ENSSSCG00000000709 PLEKHG6 =19
ENSSSCG00000010892 KCNT2 20
ENSSSCG00000008624 LPIN1 16

2.7 x 107 90 x 107 protein_coding
28x10° 90 x 102 protein_coding
28x10° 90x 107 protein_coding
32x10° 13x 10" protein_coding
34x10° 14x 10" protein_coding
35x%10° 14x 10" protein_coding
39x10° 16x 10" protein_coding
40x10° 16x 10" protein_coding
43x10° 16x 10" protein_coding
46x10° 17x 10" protein_coding
47 %107 17 %107 protein_coding
48x10° 17% 10" protein_coding
50x 103 17x 10" protein_coding
50x 107 17 %107 protein_coding
50x10° 1.7 %107 protein_coding

Metabolism, Small Molecule Biochemistry and Vitamin
and Mineral Metabolism (Figure 5). The second, with a
score of 23 and 11 focus genes centred on Lipid Metabol-
ism, Molecular Transport and Small Molecule Biochemis-
try (Additional file 10, Figure S7), and the third network
scoring 21 and 10 focus genes was associated with Carbo-
hydrate Metabolism, Lipid Metabolism and Molecular
Transport (Additional file 11, Figure S8). When the top
three IPA networks were merged a connection be-
tween them was observed (Figure 6), suggesting that
the differentially-expressed genes detected in this
study are linked and play an important role in lipid
metabolism. Remarkably, IPA results are in conform-
ity with the design of this experiment, which inferred
that LA and AA acids metabolism were altered be-
tween the groups of sequenced individuals.

Implications

In the present study, RNA-Seq was used for the analysis
of the pig liver transcriptome in animals of extreme phe-
notypes for intramuscular fatty acid composition.

The liver plays an important role in lipid metabolism
and, thus, the analysis of liver transcriptome in extreme
pigs for intramuscular fatty acid composition may be rele-
vant to elucidate its functional complexity. Although the
main goal of this study was to find differentially-expressed
genes between phenotypically extreme animals, the use of
RNA-Seq allowed the identification of transposable ele-
ments, IncRNAs and new protein-coding genes in the
porcine liver transcriptome.

The first principal component of PCA analysis classi-
fied animals in two extreme groups for the fatty acid
composition of LD muscle. Group H of animals had a
higher content of PUFA, including essential FA such as
LA, ALA, ELE and AA acids than group L animals.
Conversely, the latter had a higher content of SFA and
MUFA, palmitoleic and oleic acids.

The lipid content and fatty acid profile of muscle plays
an important role in the tenderness, flavour and juici-
ness of cooked meat [6]. In swine production, the reduc-
tion of intramuscular fat (IMF) in some breeds due
to a preference selection for lean pigs, has affected

Table 7 Differentially-expressed genes previously reported to be associated with the profile of intramuscular fatty acid

composition in a genome-wide association study

Ensembl gene ID Chr Start (bp)’ End (bp)’ Gene name Fatty acid
ENSSSCG00000004789 1 138129409 138145238 THBS1T C18:1(n-9), C18:2(n-6), MUFA
ENSSSCG00000008595 3 109052838 109076900 APOB C16:1(n-7), ratio C16:1(n-7)/c16:0
ENSSSCG00000006238 4 77173363 77202771 CYP7A1 C16:1(n-7), C18:2(n-6)
ENSSSCG00000006355 4 92745976 92747590 APOA2 C16:0, C18:2(n-6), rate MUFA/SFA
ENSSSCG00000006614 4 101212520 101222091 THEMS5 rate MUFA/SFA
ENSSSCG00000014919 9 20546397 20647476 ME3 rate C20:1/C20:0

! The genomic coordinates are expressed in bp and are relative to the Sus scrofa April 2009 genome sequence assembly (Sscrofa9).
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Table 8 Description of the top seven molecular and Table 9 Description of the top six canonical pathways
cellular biological functions significantly modulated in significantly modulated in liver tissue when comparing H
the liver tissue when comparing H relative to L animals to L animals
Category Genes p-value Ingenuity canonical pathways Genes
Lipid Metabolism ABCG8ALOX15,AQP7,APOBCYP2C9THBST,  1.15x10 7 LPS/IL-1 Mediated Inhibition ABCG8,CYP2CY9,CYP7AT,CYP2CTY,

APOA2,ME3,NR4A3,LPIN1,CYP7ATMTMR?Z, of RXR Function CYP4AT11,GSTO1

CYPLI9CYPAATT Arachidonic Acid Metabolism ALOX15,CYP2C9,CYP2CT9,CYPAATT
Small Molecule ABCG8 ALOX15,AQP7,APOBCYP2COTHBST,  1.15x10 7 . )
Biochemistry APOA2ME3 GSTO1,FOSNRAA3LPINT,SPTB, Fatty Adid Metabolism CYP2CCYP2CIOSDS CYPAATT

CYP7ALMIMR7,CYP2CT9SDS,SLCTIAT, PXR/RXR Activation CYP2CY,CYP7A1LCYP2CTI

CYP4ATT

Linoleic Acid Metabolism ALOX15,CYP2C9,CYP2CT9

Molecular Transport  ABCG8AQP7,ALOX15APOBTHBST,APOA2,  2.62x10 © o

GSTO1,FOSNR4A3LPINI, CYP7ATSLCTIAT FXR/RXR Activation ABCGBAPOBCYP7AT

FNDC1 Statistical significance of pathway modulation was calculated via a right-tailed

) 6 Fisher's Exact test in Ingenuity Pathway analysis and represented as -log

Drug Metabolism FOS.CYP2CHTHBSI,CYP2CI9 E (P value): -log values exceeding 1.30 were significant FDR <0.05.
Energy Production NR4A3,LPINT,CYP2C9 APOA2 MES3, 7.20x10 ©

CYP2CI9SD5CYPAATI On the other hand, desirable sensorial characteristics
,’:‘AUdeti)C l_ACid CYP2C9THBST,CYP2CT9 585x10 °  tend to be associated with MUFA and SFA [6,48,49].

etabolism . Lipid and fatty acid compositions of food have an

Vitamin gnd Mineral ~ ABCG8APOBCYP2C9.APOA2CYP7AT, 8.65x10 important impact on human health, with a high con-
Metabolism CYP2C19,GSTO1

sumption of SFA associated with obesity, high
Statistical significance of pathway modulation was calculated via a right-tailed lasm holesterol nd rdi lar di
Fisher’s Exact test in Ingenuity Pathway and represented as -log (P value): -log plasma - cholestero a ca . ovascuia sease
values exceeding 1.30 were significant false discovery rate (FDR) < 0.05. [50,51]. Conversely, PUFAs, malnly -3, have been

considered beneficial for human health, by reducing
meat quality. From this point of view, PUFA has a serum low-density lipoprotein-C, total cholesterol
negative effect on the oxidative stability of muscle, concentration and modulating immune functions and
which, in turn, affects flavour and muscle colour [6]. inflammatory processes [52-54].
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Figure 4 Canonical pathway significantly detected when contrasting the up (red) and (green) down-regulated genes in H compared to
L group. X-axis values are the log(B-H correction p-value) and Y-axis values are the canonical pathways. The statistical significance of pathway
modulation was calculated via a right-tailed Fisher's Exact test in Ingenuity Pathway analysis and represented as —log (P value): -log values
exceeding 1.30 were significant false discovery rate (FDR) <0.05).
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Figure 5 Network 1 as generated by IPA. The significant biological functions comprising this network are lipid metabolism, small molecule
biochemistry and vitamin and mineral metabolism. The network is displayed graphically as nodes (gene/gene products) and edges (the biological
relationship between nodes). The node colour indicates the expression of genes: (red) up-regulated and (green) down-regulated in H group
relative to L group. The shapes of nodes indicate the functional classes of the gene products. Relevant canonical pathways that feature
modulated genes were indicted as well (e.g. Arachidonic Acid metabolism, PPARa/RXRa and PXR/RXR Activation).

There is increasing awareness of the wide range of
health benefits of PUFA in general, and of w-3 fatty
acids in particular. Meat is an important basis of
human nutrition, and pork meat is seen to be a
major source of human food. The composition of
fatty acids stored in adipose tissue in pigs largely
reflects that of ingested lipids [5]. Thus, swine meat
enriched with -3 fatty acids can be achieved by
feeding with commercial diets supplemented with

this PUFA [8], and possibly by selective breeding. In
fact, there is a genetic basis of PUFA level in pork
meat. It is likely that H group presented higher ab-
sorption of essential PUFA, increasing their amount
reaching the IMF tissue, which in turn could be con-
sidered as an important factor in the inhibition of
the de novo saturated fatty acid proportion in meat.
Furthermore, differences on elongation, desaturation
and oxidation of those essential PUFA to longer-
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Figure 6 Graphical representation of the three merged networks generated by IPA. Depicted is the result of merging the network 1 (lipid
Metabolism, Small Molecule Biochemistry and Vitamin and Mineral Metabolism), network 2 (lipid Metabolism, Molecular Transport and Small
Molecule Biochemistry) and network 3 (carbohydrate Metabolism, Lipid Metabolism and Molecular Transport). The overrepresented canonical
pathways such as Arachidonic and Linoleic Acid metabolism, PPARa/RXRa and FXR/RXR Activation are overlaid onto the resulting network, to
show which genes are directly involved in these significant processes. Genes and gene products are represented as nodes and the relationship
among these is represented as a line. Red indicates Up-regulated and green Down-regulated expression of genes when comparing H to L
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chain ®w-3 and w-6 fatty acids cannot be discarded.
Therefore, from the human health perspective, in-
creasing H genotypes through breeding programs
could be desirable because meat and meat-derived
foods are still large contributors to saturated fatty
acids intake in humans. These observations, together
with several gene expression effects are the major
factors leading us to believe that genetic was indeed
a significant factor affecting meat IMF PUFA content
and composition. However, an inverse relationship
exists between nutritional value and eating quality of
meat and, as consequence, established selection cri-
teria to all together improve meat quality from the
sensorial and nutritional point of view is a complex
matter. Therefore, a holistic approach including both
nutrigenetic and nutrigenomic disciplines may be
required to improve the pork meat quality from both
points of view.

Conclusions

We used RNA-Seq as a tool to explore the liver tran-
scriptome of ten female pigs with extreme phenotypes
for intramuscular fatty acid composition. Transposable
elements, IncRNAs and new putative protein-coding
genes were identified. Reproducibility of the data was
confirmed by the strong correlation observed between
the values of gene expression obtained by RNA-Seq, RT-
qPCR and microarrays. A total of 55 genes differentially-
expressed between extreme animals were identified.
These genes belong to canonical pathways and gene net-
works related to the lipid and fatty acid metabolism. In
concordance with the initial phenotypic classification,
pathway analysis inferred that linolenic and arachidonic
acid metabolism was altered between extreme animals.
The results obtained may help in the design of new se-
lection strategies to improve pork meat quality from
both the sensorial and nutritional points of view.
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Methods

Animal material and phenotypes

The population studied was originated by crossing three
Iberian boars (Guadyerbas line) with 31 Landrace sows
[55,56]. Five F1 males were backcrossed with 26 Land-
race sows and 144 BC1_LD pigs were obtained. All pigs
were raised in a normal intensive system, fed under
standard management conditions and were slaughtered
at an average age of 179.8 + 2.6 days following national
and institutional guidelines for the ethical use and treat-
ment of animals in experiments.

A total of 48 traits related with growth, carcass quality
and intramuscular fatty acid composition were measured.
A PCA was performed with the prcomp procedure of R
software [57], including phenotypic information from
twenty-six of the total traits. Four of these were related to
carcass quality (carcass height, weight of ham, weight of
shoulder and intramuscular fat) whereas the rest corre-
sponded to fatty acids composition in muscle and indices
of fatty acids metabolism. Animals with extreme pheno-
types, according to the first principal component, were
selected to generate the High (H) and Low (L) groups with
20 animals per group (Figure 1). Phenotypic mean compar-
isons between groups were performed using R. Since sex
differences in liver transcriptome have been reported in
several species[58], selection was made considering pedi-
gree information representing the parental genetic diversity
and only females were retained for RNA sequencing (five

per group).

RNA isolation, library preparation and sequencing

From the 10 selected animals, total RNA was isolated from
liver using the RiboPureTM Isolation of High Quality Total
RNA (Ambion®, Austin, TX) following the manufacturer’s
recommendations. RNA was quantified using the Nano-
Drop ND-1000 spectrophotometer (NanoDrop products,
Wilmington, USA) and checked for purity and integrity in
a Bioanalyzer-2100 (Agilent Technologies, Inc., Santa Clara
CA, USA).

Sequencing libraries were generated using Illumina
mRNA-Seq following manufacturer’s instructions and ten
index codes were added to attribute sequences to each ani-
mal. A total of two channels of an Ilumina Hi-Seq 2000
instrument (Fasteris SA, Plan-les-Ouates, Switzerland)
were used to sequence two pools of five samples (one pool
with five samples per lane with barcoding).

Mapping, assembling and annotation of reads

After removal of sequencing adaptors and low-complexity
readsTopHatv1.2.0 software [31] was employed to map
reads using as reference the version 9.61 of pig genome
(Sscrofa  9.61)  [http://www.ensembl.org/info/data/ftp/
index.html]. Quality control and reads statistics were
determined with FASTQC [http://www.bioinformatics.
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bbsrc.ac.uk/projects/fastqc/]. Transcript assembly was
performed using Cufflinks v0.9.3 [59] , with a minimum
alignment count per locus of 10. Finally, S-MART [http://
urgi.versailles.inra.fr/Tools/S-MART] for read annotation
was used.

Gene expression quantification and correlation analysis
with expression microarrays

Gene expression quantification was performed using the
normalized number of fragments per kilobase of exon
per million reads (FPKM) as reported in Cufflinks output
[59]. Correlations between mean expression values be-
tween groups were calculated. All individuals were also
assayed with high-density oligonucleotide microarray
chips (GeneChip® Porcine) from Affymetrix (Santa Clara,
CA) containing a total of 23,937 probe sets (23,256 tran-
scripts), representing 20,201 Sus scrofa genes. Microrar-
rays were hybridized and scanned at the Inmstitut de
Recerca Hospital Universitari Vall d’Hebron (Barcelona,
Spain) following Affymetrix standard protocols. Expres-
sion data were generated with Gene-Chip Operating
Software (GCOS). Probes were adjusted for background
noises and normalized using the GCRMA R package
[60]. The average probe value per gene was calculated
and a total of 6,025 Ensembl gene IDs could be retrieved
to estimate the Spearman correlation between the log2
expression values of genes analysed by RNA-Seq and
microarrays. Finally, a GO enrichment analysis with the
QuickGO browser [http://www.ebi.ac.uk/QuickGO/] was
performed for the top 100 most expressed genes.

Differential gene expression analysis
Differential expression analysis (DE) between groups was
performed using DESeq [37]. This R package uses as in-
put file the unambiguous table of counts per gene
obtained from HTseq-count [http://www-huber.embl.de/
users/anders/HT Seq/doc/overview.html]. DESeq models
the data using negative binomial distributions assuming
that the mean is a good predictor of variance. Therefore,
it assumes that genes with similar expression level also
have similar variance across replicates [37]. Following the
DESeq author’s recommendations, some exploratory
diagnostic plots were executed to check the dispersion
estimate and data quality. In order to ascertain the base
variance the function 'varianceFitDiagnostics' was used
and the per-gene estimates of the base variance was plot-
ted against the base levels. The uniformity of the cumula-
tive probabilities estimated by the 'varianceFitDiagnostics'
was also verified via the 'residualsEcdfPlot’ function.
Differentially-expressed genes were detected through
the ‘nbinomTest” function of DESeq. All the genes with
a fold change between H and L groups higher than or
equal to 1.5 fold were retained (total of 2051 genes).
Then, for this subset of genes, the R package g-value
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[61] was employed to calculate the false-discovery rate
and genes with a p-value < 0.005 (which is equivalent to
a g-value < 0.17) were retained.

Validation of differentially-expressed genes by RT-qPCR
and copy number determination by gPCR

In order to evaluate the repeatability and reproducibility
of gene expression data obtained by RNA-Seq, a RT-
qPCR assay using SYBR Green chemistry (Fast Start
Universal Sybr green master, Rox; Roche Applied Sci-
ence, Mannheim, Germany) and the comparative Ct
method [62] was performed in an ABI PRISM® 7900
HT (Applied Biosystems, Inc., FosterCity, CA).

The isolated RNA of individual samples was reverse-
transcribed into cDNA using the High Capacity Reverse
¢DNA transcription Kit (Applied Biosystems) in a total vol-
ume of 20 pl containing 1 pg of total RNA, following the
manufacturer’s instructions. PCR primers were designed
using Primer Express™ software (Applied Biosystems) and
are shown in Additional file 12, Table S4. Two genes: 3-2
microglobulin (2m) and hypoxanthine phosphoribosyl-
transferase 1 (HPRTI), previously validated as stable
expressed control genes in liver tissue by geNorm [63]
were used as endogenous controls (Corominas et al., un-
published data). Due to the comparative Ct method requir-
ing the target and endogenous PCR efficiencies to be
nearly equal, validation experiments for each gene were
performed. Thus, the log ¢cDNA dilution (1:2, 1:20, 1:200,
1:2,000) versus ACt, was plotted to obtain absolute slopes
< 0.1 in all cases that allowed the use of the 2" method.
PCR amplifications were performed in a total volume of 20
ul containing 5 pl of cDNA sample diluted 1:125. Depend-
ing on the pair primers, various concentrations were uti-
lized (see Additional file 12, Table S4). Each sample was
analyzed by triplicate, thermal cycle was: 10 min at 95°C
and 40 cycles of 15 sec at 95°C and 1 min at 60°C. A dis-
sociation curve was drawn for each primer pair. Data was
analyzed using the SDS v2.4 and DataAssist™ v3.0 soft-
ware (Applied Biosystems). The sample of lowest expres-
sion level was selected as calibrator. Correlation between
RNA-seq (Htseq) and RT-qPCR data (2*4“") was carried
out with R.

Copy number variation was quantified using the assay
described above with some modifications. PCR amplifi-
cation was carried out with 10 ng of genomic DNA iso-
lated from diaphragm samples by the phenol-chloroform
method [64]. Primers used to amplify CYP2C49 gene are
described in Additional file 12, Table S4. For single copy
endogenous control gene amplification, a previously
described design on the glucagon (GCG) gene [65] was
used, but a single nucleotide substitution on primer for-
ward was introduced to adapt the primer to the porcine
species (Additional file 12, Table S4). A sample with the
lowest copy number was selected as a calibrator.
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Transposable element analysis

To identify repetitive and transposable elements in pig
liver transcriptome RepeatMasker version open-3.3.0
[http://www.repeatmasker.org/] and the ‘quick search’
and ‘pig’ species options with Search Engine: NCBI/
RMBLAST and complete Database: 20090604 were used.

Orthology and IncRNA detection

Intergenic expressed regions not yet annotated in the
Sscrofa 9.61 pig genome assembly as described in [23]
were extracted. Then, a conservative approach was fol-
lowed, using only sequences expressed in at least four of
the five animals of each group (H and L). To identify
which of these transcripts were putative coding tran-
scripts the Augustus software was used [36], providing
exon boundaries and allowing complete protein transla-
tion from the forward strand. Finally, BLASTP was
employed to check which of these predicted proteins
were already annotated in the Homo sapiens, Bos taurus
and Sus scrofa protein databases. For IncRNA annota-
tion, the intergenic expressed regions were compared by
BLAST with the 2,047 putative porcine IncRNA
reported by Esteve-Codina et al. (2011). All transcripts
that matched with an expectation value lower than 107
were retained.

Gene functional classification, network and canonical
pathways analyses

Biological network generation, functional classification
and pathways analyses of differentially-expressed genes
were carried out using Ingenuity Pathways Analysis soft-
ware (IPA; Ingenuity Systems, www.ingenuity.com). The
list of human homologs that correspond to the 50
protein-coding pig genes differentially-expressed was
uploaded into the application. Then, each gene identifier
was mapped to its corresponding gene object in the In-
genuity Pathways Knowledge Base (IPKB). Networks of
these genes were generated based on their connectivity.
Network analysis returns a score that ranks networks
according to their degree of relevance to the network eli-
gible molecules in the dataset [66]. The network score is
based on the hypergeometric distribution and is calcu-
lated with the right-tailed Fisher’s exact test. The score
is the negative log of this p-value. Only those molecules
that demonstrate direct and indirect relationships to
other genes, or proteins were integrated into the
analysis.

IPA Functional Analysis was employed to identify the
most significant biological functions in the comparative
dataset of H and L groups. A canonical pathways ana-
lysis was generated to identify the pathways from the
IPA library that were most significant. Fischer’s exact
test was employed to calculate a p-value which deter-
mines the probability that each biological functions and/
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or canonical pathway is due to chance alone. The cut-off
for considering a significance association was established
by Benjamini & Hochberg (B-H) multiple testing correc-
tion of the p-value (FDR < 0.05) [67].

Data availability

The full data sets have been submitted to Gene Expres-
sion Omnibus (GEO) under accession GSE38588 and at
NCBI Sequence Read Archive (SRA) under Accession
SRA053452, Bioproject: PRINA168072.
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Additional file 1: Table S1. Phenotypic means comparison =+ standard
deviation between the sequenced individuals.

Additional file 2: Figure S1. Profile of gene expression distribution in
both High and Low groups.

Additional file 3: Figure S2. Correlations between expression values of
genes analysed by both RNA-seq and Affymetrix microarray technologies.
X-axis values are the log2 of expression quantified with Affymetrix
Microarray technology and y-axis are values of log2 (FPKM).

Additional file 4: Table S2. Description of the repetitive elements
identified in the pig liver transcriptome.

Additional file 5: Figure S3. Venn diagrams of the predicted IncRNA.

Additional file 6: Figure S4. Per-gene estimates of the base variance
against the base levels. The red line represents the fit variance. X-axis
values are the base mean and y-axis values are the log10 of the base
mean and y-axis values are the log10 of the base variance.

Additional file 7: Figure S5. Curves of the empirical cumulative density
functions in both H and L groups. X-axis values are the chi-squared
probability of residual and y-axis values are the empirical cumulative
density functions.

Additional file 8: Figure S6. Estimated variances as squared coefficients
of variation produced with the function ‘scvPlot’. X-axis values are the
base mean and y-axis values are the squared coefficients of variation.

Additional file 9: Table S3. Comparison between RNA-seq (Htseq) and
RT-gPCR (relative quantification) expression data of APOA2, LPIN1, ME3,
CYP7AT and CYP2C49 genes. Relative CNV data for CYP2C49 in
comparison to the reference individual H3 is indicated in the last column.

Additional file 10: Figure S7. Network 2 as generated by IPA. The
significant biological functions comprising this network are Lipid
Metabolism, Molecular Transport and Small Molecule Biochemistry. The
network is displayed graphically as nodes (gene/gene products) and
edges (the biological relationship between nodes). The node colour
indicates the expression of genes: red up-regulated, green down-
regulated in H group relative to L group. The shapes of nodes indicate
the functional class of the gene product.

Additional file 11: Figure S8. Network 3 as generated by IPA. The
significant biological functions comprising this network are Carbohydrate
Metabolism, Lipid Metabolism and Molecular Transport. The network is
displayed graphically as nodes (gene/gene products) and edges (the
biological relationship between nodes). The node colour indicates the
expression of genes: red up-regulated, green down-regulated in H group
relative to L group. The shapes of nodes indicate the functional class of
the gene product.

Additional file 12: Table S4. Primers designed for the validation of

differentially-expressed genes by RT-qPCR and copy number
determination by qPCR.
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