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Abstract

Background: The genomes of three major mosquito vectors of human diseases, Anopheles gambiae, Aedes aegypti,
and Culex pipiens quinquefasciatus, have been previously sequenced. C. p. quinquefasciatus has the largest number
of predicted protein-coding genes, which partially results from the expansion of three detoxification gene families:
cytochrome P450 monooxygenases (P450), glutathione S-transferases (GST), and carboxyl/cholinesterases
(CCE). However, unlike An. gambiae and Ae. aegypti, which have large amounts of gene expression data,
C. p. quinquefasciatus has limited transcriptomic resources. Knowledge of complete gene expression information is
very important for the exploration of the functions of genes involved in specific biological processes. In the present
study, the three detoxification gene families of C. p. quinquefasciatus were analyzed for phylogenetic classification
and compared with those of three other dipteran insects. Gene expression during various developmental stages
and the differential expression responsible for parathion resistance were profiled using the digital gene expression
(DGE) technique.

Results: A total of 302 detoxification genes were found in C. p. quinquefasciatus, including 71 CCE, 196 P450, and
35 cytosolic GST genes. Compared with three other dipteran species, gene expansion in Culex mainly occurred in
the CCE and P450 families, where the genes of α-esterases, juvenile hormone esterases, and CYP325 of the CYP4
subfamily showed the most pronounced expansion on the genome. For the five DGE libraries, 3.5-3.8 million raw
tags were generated and mapped to 13314 reference genes. Among 302 detoxification genes, 225 (75%) were
detected for expression in at least one DGE library. One fourth of the CCE and P450 genes were detected uniquely
in one stage, indicating potential developmentally regulated expression. A total of 1511 genes showed different
expression levels between a parathion-resistant and a susceptible strain. Fifteen detoxification genes, including
2 CCEs, 6 GSTs, and 7 P450s, were expressed at higher levels in the resistant strain.

Conclusions: The results of the present study provide new insights into the functions and evolution of three
detoxification gene families in mosquitoes and comprehensive transcriptomic resources for C. p. quinquefasciatus,
which will facilitate the elucidation of molecular mechanisms underlying the different biological characteristics of
the three major mosquito vectors.
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Background
Mosquitoes are the most important vectors of human
diseases. The Culex pipiens complex has a broad geo-
graphic distribution and is the vector of the West Nile
virus and the Wuchereria bancrofti nematode, which
causes filariasis. Over the last several decades, chemical
insecticides have been intensively applied to control dis-
ease transmission. However, such control is undermined
seriously by the increased insecticide resistance of vector
mosquitoes. Three gene families are implicated in insecti-
cide metabolism in mosquitoes: cytochrome P450 monoox-
ygenases (P450s) are responsible for pyrethroid resistance
[1], glutathione S-transferases (GSTs) are responsible for
DDT resistance [2], and carboxyl/cholinesterases (CCEs)
are responsible for organophosphate and carbamate re-
sistance [3]. Many insect species show rapid expansion
and diversification of detoxification genes, as disclosed
by their sequenced genomes. The expansion or re-
striction of detoxification genes likely helps insects
adapt to their particular ecological niches and enable
them to survive natural and man-made insecticide
selection.
The genomes of three major taxonomic mosquitoes,

including Anopheles gambiae, Aedes aegypti, and Culex
pipiens quinquefasciatus, have been analyzed and
released to the public [4-6]. Of the three, Ae. aegypti has
the largest genome size (1376 Mb), while C. p. quinque-
fasciatus has the largest number of predicted protein-
coding genes (18883), which is 22% larger than that of
Ae. aegypti and 52% larger than that of An. gambiae.
The extra number of protein-coding genes partially
results from the expansion of its three detoxification
gene families. However, unlike An. gambiae and Ae.
aegypti, which have large amounts of gene expression
data, such as various expressed sequence tag libraries
and transcriptomes, C. p. quinquefasciatus has limited
gene expression resources, with only several salivary
gland transcriptomes currently reported [7,8]. Know-
ledge of complete gene expression information is very
important for the exploration of the functions of genes
involved in specific biological processes and for the dis-
covery of new candidate genes.
In the present study, the three detoxification gene fam-

ilies of C. p. quinquefasciatus were subjected to phylo-
genetic analysis and compared with those of three other
dipteran insects. The CCE and P450 families were found
to undergo large gene expansion. Digital gene expression
tag profiling (DGE) technology was used to perform a
deep transcriptome analysis of C. p. quinquefasciatus
during development and in response to organophosphate
insecticide selection. The gene expression profiles
obtained provide an invaluable resource for the identifi-
cation of genes involved in the development and insecti-
cide resistance of C. p. quinquefasciatus.
Results and discussion
C. p. quinquefasciatus detoxification gene families
When 1e-10 was used in the HMMER searches, 79, 203,
and 17 candidate genes of CCEs, P450s, and GSTs were
identified in the C. p. quinquefasciatus genome, respect-
ively. After verified by community annotations, only
71 CCEs and 196 P450s were confirmed. The eight false
positives for CCEs were lipases or conserved hypothet-
ical proteins and the seven false positives for P450s were
groucho protein, 25-hydroxyvitamin D-1 alpha hydroxy-
lase, or conserved hypothetical proteins. When the
search stringency was lessened to 2e-2, 35 cytosolic GSTs
were identified and supported by community annota-
tions. Thus, a total of 302 detoxification genes were
found in C. p. quinquefasciatus, including 71 CCE, 196
P450, and 35 GST genes, representing the widest gene
expansion among the dipteran insect genomes
sequenced thus far (Table 1). Gene expansion was
mainly observed in the CCE and P450 families compared
with three other dipteran species.
Seventy-one CCE sequences were detected in the C. p.

quinquefasciatus genome, which was approximately 39%
and 29% gene-expanded compared with An. gambiae
and Ae. aegypti, respectively, and 2-fold the number of
CCEs found in D. melanogaster (Table 1, Additional file 1).
The new functional assignment proposed by Oakeshott
et al. [9] was used to designate the clades in the CCE
phylogeny (Figure 1). A total of 11 clades, representing
dietary/detoxification, hormone/semiochemical proces-
sing, and neuro/developmental functions, were obtained.
The numbers of C. p. quinquefasciatus CCEs in the
three functional classes were 30, 26, and 15, respectively
(Table 1).
The number of CCEs in the neuro/developmental

class was relatively conserved among the four dipteran
insects. Similar conservation occurs in hymenopteran
(Nasonia vitripennis, A. mellifera) and coleopteran
(Tribolium castaneum) genomes [9], which reflects
the relatively ancient origins of this class, where all
members are catalytically inactive except for the
acetylcholinesterases.
CCEs in dietary/detoxification and hormone/semio-

chemical processing classes expanded on the C. p. quin-
quefasciatus genome compared with the three other
dipteran insects. Expansion mainly occurred in α-
esterases (30 genes in clade B) and juvenile hormone
esterases (22 genes in clades F and G). For α-esterases
Culex showed rapid radiation in two clusters, which
contained six and seven members, respectively, and
Aedes displayed an obvious expansion in one cluster
with five α-esterases (Figure 2). The α-esterases are
thought to be involved in the development of metabolic
resistance to insecticides; some examples include αE7 of
Lucilia cuprina [10] and esterase A (CpipJ_CPIJ013918)



Table 1 Classification of detoxification gene families in Drosophila melanogaster, Anopheles gambiae, Aedes aegypti,
and Culex pipiens quinquefasciatus

D. melanogaster A. gambiae A. aegypti C. p. quinquefasciatus

CCE

Dietary/detoxification*

B class (α-esterases) 13 16 22 30 (18)

Hormone/semiochemical processing

D class (integument esterases) 3 0 0 1 (0)

E class (β-esterases) 2 4 2 3 (3)

F class (dipteran JH esterases) 3 6 7 13 (5)

G class (lepidopteran JH esterases) 0 4 6 9 (6)

Neuro/developmental

H class (glutactins) 5 10 7 6 (5)

I class (unknown) 1 1 1 1 (1)

J class (acetylcholinesterases) 1 2 2 2 (2)

K class (gliotactins) 1 1 1 1 (1)

L class (neuroligins) 4 5 5 3 (3)

M class (neurotactins) 2 2 2 2 (2)

Total 35 51 55 71 (46)

P450

CYP2 6 10 11 14 (12)

CYP3 (include CYP6 and CYP9) 36 42 84 88 (72)

CYP4 32 45 59 83 (58)

Mitochondrial 11 9 10 11 (8)

Total 85 106 164 196 (150)

GST

Delta 11 12 8 14 (13)

Epsilon 14 8 8 10 (6)

Omega 5 1 1 1 (1)

Sigma 1 1 1 1 (1)

Theta 4 2 4 6 (6)

Zeta 2 1 1 0 (0)

Others 0 3 3 3 (2)

Total 37 28 26 35 (29)

*The dietary/detoxification functional group follows the new system proposed by Oakeshott et al. (2010).
Data of D. melanogaster, An. gambiae, and Ae. aegypti are taken from Oakeshott et al. (2010).
The number of C. p. quinquefasciatus genes in brackets is from the DGE libraries.
CCE, carboxyl/cholinesterases; P450, cytochrome P450 monooxygenases; GST, glutathione S-transferases.
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and esterase B (CpipJ_CPIJ013917) of C. p. quinque-
fasciatus [3]. Unlike the rapid radiation of other α-
esterases, the esterase A and esterase B were well
conserved: secure 1:1:1 orthologs were found across
Culex, Anopheles and Aedes (Figure 2). Twenty-eight
other α-esterases of the species are probably involved in
the metabolism of endotoxins or naturally occurring
dietary constituents. The α- and β-based nomenclatures
are applied extensively to esterase isozymes in Droso-
phila according to their preferential hydrolysis of isomeric
artificial substracts, α- and β-naphthyl acetate, respectively
[11]. The nomenclatures in themselves represent no broad
biological distinctions. In the culicines, two esterase genes
involved in organophosphate resistance are commonly
designated esterase A and esterase B based on their ability
to use preferentially α- or β-naphthyl acetate in the pres-
ence of equal quantities of both substrates [3,12].
The large expansion of juvenile hormone esterases

(JHEs) on the C. p. quinquefasciatus genome is interest-
ing: 22 compared with 3 to 13 in three other dipteran
genomes and 2 in the hymenopteran and coleopteran
genomes [9]. When compared among the three
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Figure 1 Unrooted distance neighbor-joining tree showing the phylogeny of carboxyl/cholinesterases (CCEs) from the genome of
Culex pipiens quinquefasciatus in relation to CCEs from Drosophila melanogaster (in italics). CCEs of C. p. quinquefasciatus undetected in
DGE libraries are shown in bold. The percentage of bootstrap confidence values greater than 70% (1000 replicates) is shown at the nodes. The
functional assignment of clades follows the new system proposed by Oakeshott et al. [9].
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Figure 2 Unrooted distance neighbor-joining tree showing the phylogeny of α-esterases from the genome of Culex pipiens
quinquefasciatus in relation to those from Aedes aegypti (initiated with ‘AAEL’) and Anopheles gambiae (initiated with ‘agCP’ or ‘ebiP’).
The percentage of bootstrap confidence values greater than 70% (1000 replicates) is shown at the nodes.
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mosquito species, the expansion in the Culex happened
in three clusters, which included five, three, and four
JHEs, respectively, and two JHEs were specific for the
Culex (Figure 3). Among 22 JHEs, 10 have typical
GQSAG nucleophilic elbow motifs around the catalytic
site and 6 have varied motifs, such as GH (W/N/Y)
SAG. Empirical functional data are required to deter-
mine the identity of juvenile hormone esterases.
The secreted β-esterases (clade E) are comparatively

conserved among the three mosquito species: from 2 to
4 β-esterase genes were found in mosquito genomes,
largely different from the expansion (11 β-esterase
genes) found in N. vitripennis genome [9]. Some mem-
bers of the β-esterases have well-described functions in
other insects, such as E4 and FE4 esterases, which con-
fer OP insecticide resistance in Myzus persicae [13], and
the antennal Apo1PDE esterase of the silkworm Anther-
aea polyphemus, which degrades sex pheromones [14].
The functions of the β-esterases in Culex need to be fur-
ther investigated.
Compared with the P450 genes of D. melanogaster

and An. gambiae, those of C. p. quinquefasciatus
expanded by 130% and 85%, respectively, and were
slightly more than the number of those in Ae. aegypti
(Table 1). Expansion was most pronounced in the CYP4
clade, where, among 83 CYP4 genes, 46 belonged to
CYP325 (Figure 4). Some CYP325s were conserved
among the three mosquito species, such as CYP325E,
CYP325K, and CYP325G; some only expanded in the
Culex and Aedes genomes, such as CYP325X, CYP325Y;
even Aedes and Anopheles had their specific CYP325s
(Figure 5). However, Culex is not evolved species-
specific large CYP325 gene expansion. The physiological
function of the CYP325 clade in insects remains unclear,
except that a CYP325A3 gene was found to be overex-
pressed in a permethrin-resistant strain of An. gambiae
[15]. But this gene does not have clear orthologs in
Culex or Aedes (Figure 5), indicating that the resistance
mechanism of CYP325A3 overexpression may be limited
to Anopheles. Other large clades of CYP4 genes included
CYP4H, CYP4D, CYP4J, and CYP4C (Figure 4), mem-
bers of which are involved in DDT and pyrethroid in-
secticide resistance in mosquitoes [15,16]. The P450
genes were also expanded in Ae. aegypti compared to
An. gambiae, but this expansion was most prominent in
the CYP9 of CYP3 family: 37 CYP9 genes in Ae. aegypti
contrasting to just 9 in An. gambiae [15].
While the total number of CYP3 members (includ-

ing CYP6 and CYP9) in C. p. quinquefasciatus was
similar to that in Ae. aegypti, C. p. quinquefasciatus
had more CYP6 members and few CYP9 members
than Ae. aegypti [17]. Sixty-three CYP6 genes of C. p.
quinquefasciatus were mainly distributed in the CYP6BY,
CYP6N, CYP6M, CYP6AG, and CYP6Z groups (Figure 6A),
and 25 CYP9 genes were mainly distributed in the
CYP9J and CYP9M groups (Figure 6B). Members of
CYP6 have been implicated in resistance to a broad range
of insecticides (e.g., OPs, pyrethroids, DDT, and neonico-
tinoids) in many insects [15,18-20], while less evidence
implicates CYP9s in the detoxification of insecticides.
In 11 mitochondrial P450s, 7 genes belonged to CYP12F
(Figure 6C). Members of the CYP12 clade are involved
in DDT resistance in An. gambiae [15] and D. melanogaster
[21]. Several large clusters of P450 genes were found in
the C. p. quinquefasciatus genome, such as a cluster
of 13 CYP9 genes on supercontig 278 and a cluster of
12 CYP6 genes on supercontig 869 (Additional file 2).
C. p. quinquefasciatus had 35 cytosolic GST genes

belonging to the Delta, Epsilon, Omega, Sigma, and
Theta clades (Table 1). The majority of the GSTs were
represented by the Delta and Epsilon clades, which are
insect-specific clades and contain the majority of the
GSTs associated with detoxification in insecticides [22].
Many members of the Delta and Epsilon clades
expanded locally in the C. p. quinquefasciatus genome,
such as 12 Delta GSTs in supercontig 36 and 10 Epsilon
GSTs in supercontig 1224 (Additional file 3). Delta 1, 6,
and 7, and Epsilon 2, 4, and 8 showed 1:1:1 orthologies
across the three mosquito genomes while Delta 11 and
Epsilon 3 clades expanded on the Culex genome
(Figure 7). Furthermore, Culex had specific Delta and
Epsilon clades, which did not have clear orthologs in
other two mosquito species (Figure 7). Unlike hymen-
opteran insects, where the Sigma class of GSTs expands
and is thought to play an important role in protection
against oxidative stress [9], only one Sigma GST gene
was located in the genomes of dipteran insects. The
Omega, Theta, and Zeta classes of GSTs are ubiqui-
tously distributed in nature, but no Zeta GST has been
identified in C. p. quinquefasciatus.
Why does C. p. quinquefasciatus have such an abun-

dance of detoxification genes compared to other insect
species? Several biological characteristics of mosquitoes
may provide clues. The aquatic breeding sites of larvae
and pupae contain numerous microorganisms, phenolic
products of plant degradation, and pesticides. Adults
feed on plant nectars and mammalian blood, which con-
tain some harmful substances, such as heme and plant
toxins. As viral pathogen vectors, mosquitoes have to
deal with the generation of toxic endogenous com-
pounds and reactive oxygen species during the immune
response. But these cannot account for the gene expan-
sion in C. p. quinquefasciatus compared to Anopheles
and Aedes species. Perhaps its more polluted larval
habitat and more diverse geographic range have exerted
a greater selective pressure on C. p. quinquefasciatus
so as to produce a larger repertoire of detoxification
enzymes.
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pipiens quinquefasciatus in relation to those from Aedes aegypti (initiated with ‘AAEL’) and Anopheles gambiae (initiated with ‘agCP’).
The percentage of bootstrap confidence values greater than 70% (1000 replicates) is shown at the nodes.

Yan et al. BMC Genomics 2012, 13:609 Page 7 of 18
http://www.biomedcentral.com/1471-2164/13/609



CpipJ CPIJ001757 4H39
CpipJ CPIJ001759 4H40

CpipJ CPIJ001758 4H39
CpipJ CPIJ006721 4H37_v1

CpipJ CPIJ015681 4H37_v2
CpipJ CPIJ007188 4H30
CpipJ CPIJ001886 4H31
CpipJ CPIJ011127 4H34
CpipJ CPIJ008936 4H41
CpipJ CPIJ010075 4H35
CpipJ CPIJ008937 4H36

CpipJ CPIJ009469 4AR4
CpipJ CPIJ014579 4AR3
CpipJ CPIJ009468 4K3

CpipJ CPIJ009478 4D42_v1
CpipJ CPIJ020229 4D42_v2
CpipJ CPIJ009477 4D19
CpipJ CPIJ009476 4D44
CpipJ CPIJ009475 4D43
CpipJ CPIJ009473 4D41
CpipJ CPIJ009474 4D40

CpipJ CPIJ016284 4J4
CpipJ CPIJ010480 4J20
CpipJ CPIJ000294 4J13

CpipJ CPIJ000293 4J18
CpipJ CPIJ001754 4J6
CpipJ CPIJ001755 4J19
CpipJ CPIJ018668 4G35
CpipJ CPIJ009415 4G36
CpipJ CPIJ001810 4C38_v1

CpipJ CPIJ018716 4C38_v2
CpipJ CPIJ018944 4C51
CpipJ CPIJ018943 4C52_v1

CpipJ CPIJ019395 4C52_v2
CpipJ CPIJ017351 4C50_v1
CpipJ CPIJ018854 4C50_v2

CpipJ CPIJ015963 325L2
CpipJ CPIJ011836 325BN1

CpipJ CPIJ011636 325V5_v1
CpipJ CPIJ015318 325V5_v2

CpipJ CPIJ011838 325V3
CpipJ CPIJ011839  325V4

CpipJ CPIJ011837 325V2
CpipJ CPIJ006952 325BG3
CpipJ CPIJ006950 325BG1
CpipJ CPIJ006951 325BG2P

CpipJ CPIJ000925 325X6
CpipJ CPIJ000924 325X5P

CpipJ CPIJ000927 325X7
CpipJ CPIJ000929 325X9

CpipJ CPIJ011835 325BM1
CpipJ CPIJ009570 325BL1
CpipJ CPIJ009569 325BK1
CpipJ CPIJ010272 325BK2

CpipJ CPIJ009587 325K3_v2
CpipJ CPIJ017021 325K3_v1

CpipJ CPIJ011841 325E3
CpipJ CPIJ005685 325BB2
CpipJ CPIJ005684 325BB1
CpipJ CPIJ007086 325AB1
CpipJ CPIJ007085 325Z2_v1

CpipJ CPIJ007084 325Z2_v2
CpipJ CPIJ005683 325Y10

CpipJ CPIJ007095 325Y9
CpipJ CPIJ007089 325Y4

CpipJ CPIJ007090 325Y6_v1
CpipJ CPIJ007091 325Y6_v2
CpipJ CPIJ007093 325Y8
CpipJ CPIJ007092 325Y7
CpipJ CPIJ014730 325AA2
CpipJ CPIJ011843 325BH1

CpipJ CPIJ015961 325BE1
CpipJ CPIJ015960 325BD1

CpipJ CPIJ015957 325G4
CpipJ CPIJ015959 325BJ1

CpipJ CPIJ010810 325BC2
CpipJ CPIJ015958 325BC1

CpipJ CPIJ017198 325BF1
CpipJ CPIJ015954 325N3_v1

CpipJ CPIJ017200 325N3_v2
CpipJ CPIJ017199 325BF1_v1

CpipJ CPIJ015953 325BF1_v2

100

100

100

100
100

100

100
100

100

100

100
100

100

100

99

100

100
99

100
100

100

100

100
91

100

100
100

100

100

100

99

99

90
98

97

74

99

98

72

100

100
100

100

100

100

92
100

93

99

99

78

81

94

74

80

78

78

88

84

100

100
100

0.05

CYP4H

CYP4D

CYP4J

CYP4C

CYP325

Figure 4 Unrooted distance neighbor-joining tree of P450 CYP4 genes from the genome of Culex pipiens quinquefasciatus. Greater than
70% support in 1000 bootstrap replications is indicated at the corresponding nodes. Genes undetected in DGE libraries are shown in bold. P450s
were named by the P450 nomenclature committee (http://drnelson.uthsc.edu/CytochromeP450.html). Genes with v1 and v2 designation are very
recent duplications and have not yet been assigned individual gene names.
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Figure 5 Unrooted distance neighbor-joining tree showing the
phylogeny of P450 CYP325 genes from the genome of Culex
pipiens quinquefasciatus (initiated with ‘CP’) in relation to those
from Aedes aegypti (initiated with ‘AA’) and Anopheles gambiae
(initiated with ‘AG’). The percentage of bootstrap confidence
values greater than 70% (1000 replicates) is shown at the nodes.
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DGE library sequencing and mapping to genome
Using the DGE technique, which measures absolute,
rather than relative, gene expression levels, the tran-
scriptome was analyzed during the development of C. p.
quinquefasciatus. For the five DGE libraries, 3.5 million
to 3.8 million raw tags were generated (Table 2). The
ratio of low quality reads was lower than 0.1% in all li-
braries except in that of the adult SG (Additional file
4). The number of distinct clean tags ranged from
113095 to 156922 (Table 2). The distribution of the
total tags and distinct tags over different tag abun-
dance showed similar patterns among the five libraries,
indicating the normality of the DGE data (Figure 8).
Highly expressed tags with copy numbers larger than
100 dominated in the distribution of the total clean
tags, while tags with low expression and copy numbers
smaller than 5 occupied the majority of the distinct
clean tags (Figure 8). Pearson correlations between de-
velopment stages ranged from 0.76 to 0.95, indicating
uneven transcriptome divergence during mosquito de-
velopment or the existence of lowly expressed genes
not detected, while the Pearson correlation between
the two third instar larva libraries of the SG and S-lab
strains was relatively high (0.98), reflecting the reprodu-
cibility of DGE sequencing (Additional file 5). Among
20306 reference genes in VectorBase, a total of 13314
(65.6%) reference genes were mapped by unambiguous
tags combining the five DGE libraries. Sequencing satur-
ation analysis showed that the increase in the identified
gene number nearly stopped when the number of reads
reached 3 million (Additional file 6).
GO and KEGG pathway classification of the genes
expressed in C. p. quinquefasciatus
GO and KEGG pathway assignments were performed on
the expressed genes to classify their functions and dis-
sect the molecular events behind the expressed genes
from the five DGE libraries. Of the 13314 genes, 2391
genes could be categorized into 48 GO function groups,
among which binding, catalytic activity, metabolic
process, cellular process, and cell part or cell were pre-
dominant categories. In contrast, few genes were classi-
fied into groups for antioxidant activity, rhythmic
process, pigmentation, cell wall organization, and carbon
utilization (Figure 9). A total of 1629 genes were mapped
to 125 KEGG pathways. The most-represented pathways
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genome of Culex pipiens quinquefasciatus. The presentation format is same as Figure 4.
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were metabolism (578 genes), microbial metabolism in di-
verse environments (101 genes), RNA transport (100 genes),
spliceosome (95 genes), and protein processing in endo-
plasmic reticulum (95 genes).
Life-stage specific detected genes
Comparing the four DGE libraries of the SG strain, 2666
genes were detected in only one library, and their func-
tions and involvement largely diverged (Additional file 7).
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Table 2 DGE sequencing statistics

SG S-lab

Egg 3rd Larva Pupa Adult 3rd Larva

N % N % N % N % N %

Total raw tag 3762501 3790500 3524500 3769500 3727501

Total clean tag 3759150 3787346 3521826 3734683 3724228

Distinct clean tag 156922 118011 132376 113095 143277

Distinct tag mapping to gene 59206 37.7 42706 36.2 45666 34.5 41254 36.5 51264 35.8

Distinct unambiguous tag mapping to gene 48378 30.8 34772 29.5 37693 28.5 34449 30.5 39475 27.6

Unambiguous tag-mapped genes 10917 53.8 9808 48.3 10252 50.5 9759 48.1 10976 54.1

Distinct tag mapping to genome 48679 31.0 36533 31.0 40063 30.3 35062 31.0 47035 32.8

Total unknown tag 424236 11.3 397001 10.5 442991 12.6 415816 11.1 355720 9.6

Distinct unknown tag 49037 31.2 38772 32.9 46647 35.2 36779 32.5 44978 31.4

For each number (N) of tags or tag-mapped genes, the associated percentage (%) regarding the distinct clean tags (156922), the reference genes (20306), or total
clean tags (3759150) is indicated.
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[11, 20] (93150, 2.48%)
[21, 50] (185820, 4.94%)
[51, 100] (211529, 5.63%)
> 100 (3001082, 79.83%)

Tag copy number

Distribution of total clean tags

[1, 5] (96918, 82.13%)
[6, 10] (6763, 5.73%)
[11, 20] (4965, 4.21%)
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> 100 (2818, 2.39%)
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Figure 8 Distribution of total clean tags and distinct clean tags over different tag abundance in each DGE library. Numbers in square
brackets indicate the range of copy numbers for a specific category of tags. Numbers in parentheses show the total number of tags in that
category.
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Among 302 detoxification genes, 225 (75%) were
detected for expression in at least one DGE library
(Table 1). About 25% of the genes that were not detected
in any library were either not constitutively expressed
in the life stages or were possibly untranscribed pseudo-
genes. Among expressed detoxification genes, 30% of the
CCE genes, 25% of the P450 genes, and 72% of the GST
genes were expressed in all life stages, indicating that
they play a general housekeeping or detoxification func-
tion; some detoxification genes were developmental-
stage specific (Table 3). Around 28% of the CCE genes
were detected in only one stage, and two α-esterases,
CpipJ CPIJ018232 and CpipJ CPIJ004752, were expressed
at extremely high levels in larvae and pupae, respectively.
Two insecticide-resistance-responsible esterases, CpipJ_
CPIJ013917 for encoding esterase B and CpipJ CPIJ013918
for encoding esterase A, were expressed in all life stages,
and their expression levels in larvae were higher than in
adults. Only two GST genes showed stage-specific expres-
sion. Of the P450 genes, around 25% were detected in only
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Figure 9 Gene ontology classification of the genes expressed in Culex
one stage and most of them belonged to CYP4. Most
strikingly, of 46 CYP325 genes, representing the widest ex-
pansion within the P450 family, 27 genes (59%) were de-
tectable for expression and nearly half of the expressed
genes (12 CYP325) were developmentally regulated. The
larva and adult are feeding stages while the egg and pupae
are non-feeding. Hence enzymes expressed specifically or
highly in larva or adult are important in digestion and de-
toxification of dietary component whereas those in egg or
pupae are vital for detoxification of metamorphosis bypro-
ducts or synthesis of specific hormones.
For gene expansion clusters of detoxification genes, the

expression profiles were different among the members.
For example, among the six members of one expanded
α-esterase cluster (Figure 2), CpipJ_CPIJ007825 was
detected for expression in pupae and adults while the
other five members were not detected in any stage. For
the seven members of another expanded α-esterase clus-
ter (Figure 2), CpipJ_CPIJ016025, CpipJ_CPIJ005694, and
CpipJ_CPIJ008749 were not detected for expression;
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Table 3 Developmental-stage specifically expressed
genes of carboxylcholinesterase (CCE), glutathione-S-
transferase (GST), and cytochrome P450 monooxygenase
(P450)

Family Stage Gene Class TPM

CCE Egg CpipJ_CPIJ007135 F 0.27

CpipJ_CPIJ016026 B 0.27

CpipJ_CPIJ009768 M 0.53

CpipJ_CPIJ013027 F 0.53

Larva CpipJ_CPIJ016341 B 0.26

CpipJ_CPIJ016682 G 2.00

CpipJ_CPIJ018231 B 5.81

Pupa CpipJ_CPIJ018232 B 32.74

CpipJ_CPIJ013679 B 0.57

CpipJ_CPIJ013175 F 13.63

Adult CpipJ_CPIJ004752 B 118.69

CpipJ_CPIJ016681 G 0.54

CpipJ_CPIJ005122 G 5.62

GST Larva CpipJ_CPIJ002674 Delta 3.96

CpipJ_CPIJ014051 Theta 7.66

P450 Egg CpipJ_CPIJ019395 CYP4C52 v2 0.27

CpipJ_CPIJ009478 CYP4D42 v1 0.27

CpipJ_CPIJ017198 CYP325BF1 0.27

CpipJ_CPIJ003361 CYP6BY2 0.80

CpipJ_CPIJ017244 CYP304B5 2.00

Larva CpipJ_CPIJ009474 CYP4D40 0.26

CpipJ_CPIJ010228 CYP12F12 v1 0.26

CpipJ_CPIJ015428 CYP6Z10 0.26

CpipJ_CPIJ001755 CYP4J19 0.26

CpipJ_CPIJ014220 CYP9M12 0.53

CpipJ_CPIJ014219 CYP9M11P 1.06

CpipJ_CPIJ014730 CYP325AA2 1.06

CpipJ_CPIJ007188 CYP4H30 1.32

CpipJ_CPIJ007091 CYP325Y6 v2 1.58

CpipJ_CPIJ011127 CYP4H34 1.85

CpipJ_CPIJ010075 CYP4H35 2.11

CpipJ_CPIJ003376 CYP6BY4 2.64

CpipJ_CPIJ007089 CYP325Y4 4.22

CpipJ_CPIJ015223 CYP6F4 6.6

CpipJ_CPIJ010858 CYP6F1 47.0

CpipJ_CPIJ014942 CYP305A10 1.00

Pupa CpipJ_CPIJ001754 CYP4J6 0.28

CpipJ_CPIJ007095 CYP325Y9 0.28

CpipJ_CPIJ005685 CYP325BB2 0.28

CpipJ_CPIJ010810 CYP325BC2 0.28

CpipJ_CPIJ004410 CYP6Z11 0.85

CpipJ_CPIJ009477 CYP4D19 1.42

Adult CpipJ_CPIJ019587 CYP6Z14 0.27

CpipJ_CPIJ006951 CYP325BG2P 0.27

Table 3 Developmental-stage specifically expressed
genes of carboxylcholinesterase (CCE), glutathione-S-
transferase (GST), and cytochrome P450 monooxygenase
(P450) (Continued)

CpipJ_CPIJ010542 CYP9J38 0.27

CpipJ_CPIJ003377 CYP6BY5 0.54

CpipJ_CPIJ015960 CYP325BD1 1.87

CpipJ_CPIJ011837 CYP325V2 2.68

CpipJ_CPIJ019586 CYP6Z13P 2.68

CpipJ_CPIJ006950 CYP325BG1 3.21

CpipJ_CPIJ010203 CYP9AM1 5.36

CpipJ_CPIJ015957 CYP325G4 51.68

CpipJ_CPIJ009471 CYP4AR4 2.00

TPM, number of transcripts per million clean tags.
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CpipJ_CPIJ000049 and CpipJ_CPIJ000051 were ex-
pressed in pupae and adults, CpipJ_CPIJ000050 in larvae
and pupae, and CpipJ_CPIJ016026 only in eggs. Similar
phenomenon was observed in the three expansion clus-
ters of juvenile hormone esterases (Figure 3). For the five
members of cluster, only CpipJ_CPIJ013027 was detected
for expression and in eggs. No expression was found in
the three members of cluster. For the four members
of cluster, three were detected for expression: CpipJ_
CPIJ016681 and CpipJ_CPIJ016682 in adults, and
CpipJ_CPIJ017763 in larvae and adults. The different
expression patterns of these duplicated detoxification
genes are probably indicative of their subfunctionaliza-
tion or retrogression as pseudogenes.

Differentially expressed genes between parathion
resistant and susceptible larvae
When the third instar DGE library of the parathion-
resistant strain SG was compared with the same stage in
the susceptible strain S-lab, a total of 1511 genes showed
different expression levels, among which 619 genes had
up-regulated expression levels in the SG strain (Add-
itional file 8). The most prominent GO functions of
these up-regulated genes were endopeptidase or serine-
type peptidase activity, such as genes encoding trypsin,
chymotrypsin, mast cell protease 2, urokinase-type plas-
minogen activator, and elastase. However, not all of the
differentially expressed genes are responsible for para-
thion resistance because comparison strains were not
selected from the same panmictic population such that
genetic background differences could be ruled out.
A total of 15 detoxification genes were expressed at

higher levels in the SG strain, including 2 CCEs, 6 GSTs,
and 7 P450s (Table 4). The expression of the known es-
terase B gene, CpipJ CPIJ013917, increased 16-fold in
the resistant strain, while the esterase A gene, CpipJ
CPIJ013918, did not show differential expression be-
tween the two strains. Three Epsilon GSTs had
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prominent involvement in resistance, as previously
reported in DDT- and OP-resistant mosquitoes and
houseflies [22,23]. Seven P450 genes with elevated ex-
pression in the resistant strain belonged to either the
CYP9 or CYP6 groups, which are usually implicated in
pyrethroid resistance in mosquitoes and other species
[18]. P450 monooxygenases are relatively less commonly
involved than carboxylesterases in resistance to OP
insecticides, although evidence shows that CYP6A1 from
Musca domestica and CYP6A2 from Drosophila are cap-
able of metabolizing diazinon [24,25]. Unless direct evi-
dence demonstrates the detoxification or sequestration
of insecticide compounds by P450s, the conclusion that
the 7 up-regulated P450 genes are involved in OP resist-
ance is too early to draw. Most of the 15 detoxification
genes were expressed in all life stages, while 6 were
expressed only in certain stages, especially Theta GST
(CpipJ CPIJ014051), CYP9J34 (CpipJ CPIJ010546), and
CYP6F1 (CpipJ CPIJ010858), which were not found in
adults. The different responses of detoxification genes
may account for the different resistance levels between
the larval and adult stage in some circumstances.

Conclusion
C. p. quinquefasciatus is an important vector that transmits
human diseases different from those by An. gambiae and
Ae. aegypti. The lack of transcriptomic data available for
this species has hampered characterization of the molecu-
lar mechanisms underlying the different biological charac-
ters of the three major mosquito vectors. The five DGE
libraries described in the present study represent a dra-
matic expansion of the existing transcriptomic sequence
available for C. p. quinquefasciatus. This expansion will
Table 4 Detoxification genes up-regulated in parathion resist

Gene family Classification Gene numb

CCE α esterases CpipJ_CPIJ0

JH esterases CpipJ_CPIJ0

GST Epsilon CpipJ_CPIJ0

Epsilon CpipJ_CPIJ0

Epsilon CpipJ_CPIJ0

Theta CpipJ_CPIJ0

Delta CpipJ_CPIJ0

Others CpipJ_CPIJ0

P450 CYP9J34 CpipJ_CPIJ0

CYP9J40 CpipJ_CPIJ0

CYP6AG11 CpipJ_CPIJ0

CYP6BZ2 CpipJ_CPIJ0

CYP9AE1 CpipJ_CPIJ0

CYP6F1 CpipJ_CPIJ0

CYP9AL1 CpipJ_CPIJ0

*Ratio, TPM of SG/TPM of Slab. TPM, number of transcripts per million clean tags.
facilitate the investigation of the fundamental biology of C.
p. quinquefasciatus and its pathogenic interactions. In
addition, the results of the present study provide new
insights into the functions and evolution of the three de-
toxification gene families of mosquitoes. A larger number
of detoxification genes were identified on the genome of C.
p. quinquefasciatus compared with three other dipteran in-
sect genomes, representing the widest gene expansion
sequenced thus far. Comparative genomic analysis sug-
gested that gene expansion mainly occurs in α-esterases,
juvenile hormone esterases, and P450 CYP325. Some de-
toxification genes were expressed in all developmental
stages, while some were developmentally regulated. The
expression profiles were different among the members of
gene expansion clusters, probably indicative of their sub-
functionalization or retrogression as pseudogenes. Fifteen
detoxification genes showed the potential to take part in
the parathion resistance of Culex, including unexpected
P450 genes.

Methods
Mosquito strains
Mosquito strains of C. p. quinquefasciatus used included
S-lab, which was OP-susceptible and reared at the la-
boratory without any contact with insecticides for many
years [26] and Shengui (SG), a field population collected
in Foshan, Guangdong Province, in 2007 and constantly
treated with parathion at the laboratory. The parathion-
resistance of SG was 115-fold that of S-lab before use in
the DGE analysis. The mosquitoes were maintained at
26°C ± 1°C and a long-day photoperiod (14 h light/10 h
darkness cycle). Fifty egg rafts, forty third instar larvae,
forty pupae, and forty adults (twenty females and twenty
ant larvae of the SG strain

er log2Ratio
* Expression stage

13917 4.4 All

02073 1.7 All

18629 8.7 All

18632 5.0 All

18627 3.5 All

14051 2.2 Larva

02675 1.9 Egg, larva, adult

14694 1.1 All

10546 4.0 Larva, pupa

10543 3.3 Larva, pupa, adult

02537 3.0 All

05956 2.6 All

00655 2.0 All

10858 1.3 Larva

12470 1.1 Larva, adult
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males) of SG and forty third instar larvae of S-lab were
collected and frozen at −80°C for further analysis.

Identification and phylogenetic classification
of detoxification genes
Sequences encoding GSTs, P450s, and CCEs were identi-
fied from the protein set of the C. p. quinquefasciatus
whole genome sequencing database at the Broad Insti-
tute (http://www.broadinstitute.org/annotation/genome/
culex_pipiens) using the HMMER program (http://hmmer.
janelia.org/) with the protein domains for CCEs (PF00135),
GSTs (PF00043 and PF02798), and P450s (PF00067) as
described in the Pfam database. A significance value of
1e-10 was used in the searches for CCEs and P450 and
2e-2 for GSTs. Community annotations and VectorBase
were referred to verify the searches [27]. Those candidate
genes not supported by the community annotations as
CCEs, P450 or GST were not accounted. P450s were
named by the P450 nomenclature committee (http://
drnelson.uthsc.edu/CytochromeP450.html). Known de-
toxification genes from An. gambiae, D. melanogaster
[28], and Ae. aegypti [17] were used as references for the
phylogenetic classification of the detoxification genes
from C. p. quinquefasciatus. Protein sequences were
aligned with ClustalW2 at EMBL-EBI (http://www.ebi.
ac.uk/Tools/msa/clustalw2). Unrooted distance neighbor-
joining trees showing the phylogeny of detoxification
gene families were constructed using the pairwise deletion
and p-distance functions of Mega 4.0 software. Bootstrap
analysis (1000 replicates) was applied to evaluate the in-
ternal support of the tree topology.

Pipeline of DGE
Six micrograms of total RNA from each of the above five
mosquito samples were isolated using TRIzol reagent
(Invitrogen, Carlsbad, CA, USA) according to the manu-
facturer’s instructions. Tag library preparation was per-
formed with an Illumina Gene Expression Sample Prep
Kit. The raw data (tag sequences and counts) were
deposited in the NCBI Sequence Read Archive (SRA)
database under submission number SRA049959.

Pipeline of bioinformatics analysis on DGE
Sequencing-received raw image data were transformed
by base calling into raw sequence data. Clean tags were
obtained after raw sequences were filtered to remove
adaptor sequences, empty tags, low quality tags, tags that
were too long or too short, and tags with a copy number
of 1. The distribution of clean tags was used to evaluate
the normality of the whole data. Saturation analysis was
performed to determine whether or not the number of
detected genes continues to increase when the sequen-
cing amount increases. Pearson correlation analysis of
two parallel libraries was performed to evaluate the
reliability and operational stability of the experimental
results. All clean tags were mapped to C. p. quinquefas-
ciatus whole genome reference sequences and allowed
no more than 1 nucleotide mismatch. The number of
unambiguous clean tags for each gene was calculated
and then normalized to TPM (number of transcripts per
million clean tags). When the expression of a gene was
not detected, TPM was set to 0.01.
A rigorous custom written algorithm using the method

described by Audic et al. [29] was developed to identify
differentially expressed genes between two samples. The
p value corresponded to the differential gene expression
test. False discovery rate (FDR) was used to determine
the p value threshold in multiple tests and analyses [30].
FDR ≤ 0.001 and the absolute value of log2Ratio ≥ 1
were used as thresholds to judge the significance of the
gene expression difference.
Unigenes matched by clean tags were assigned to Gene

Ontology (GO) terms using Blast2GO and canonical
pathways in KEGG (Kyoto Encyclopedia of Genes and
Genomes). GO or pathway enrichment analysis of the
differentially expressed genes was performed based on
the algorithm presented by GOstat [31]. The difference
between the differentially expressed gene group and the
whole gene expression background was represented by a
p value, which was approximated by a chi-square test.
The Fisher exact test was used when any expected count
value was below 5, which will result in inaccurate chi-
square test results. Benjamini multiple-testing correction
of the p value was done by FDR.

Additional files

Additional file 1: Summary of the carboxylcholinesterase genes of
Culex pipiens quinquefasciatus. TPM, number of transcripts per million
clean tags. When the expression of a gene was not detected, TPM was
set to 0.01.

Additional file 2: Summary of the cytochrome P450
monooxygenase genes of Culex pipiens quinquefasciatus. TPM, see
Additional file 1.

Additional file 3: Summary of the glutathione S-transferase genes
of Culex pipiens quinquefasciatus. TPM, see Additional file 1.

Additional file 4: Distribution of the total tags in each DGE library.

Additional file 5: Pearson correlation analysis of the DGE libraries.
Dots in the figures indicate individual tag entities. TPM (Transcripts Per
Million clean tags) indicates the number of transcript copies in every 1
million clean tags. A–F, correlation between the four developmental
stages of the SG strain; G, correlation between third instar larvae of the
SG and S-lab strains.

Additional file 6: Relationship between the number of identified
genes and sequencing amount.

Additional file 7: Enriched GO function groups* and KEGG
pathways involved by genes specifically expressing in various life
stages of Culex pipiens quinquefasciatus. *GO function groups include
three main categories: biological process (BP), molecular function (MF),
and cellular component (CC). †The p value represented the difference
between the specifically expressed gene group and the total 13,314 gene
group approximated by chi-square test. Fisher exact test is used when
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any expected count value is below 5. ‡Benjamini is the multiple-testing
correction of the p value by FDR.

Additional file 8: Differentially expressed genes between the
parathion-resistant and susceptible larvae of Culex pipiens
quinquefasciatus. TPM, see Additional file 1.
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