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Abstract

BPH-induced pathways in resistant rice varieties.

molecular responses to BPH feeding in rice.

Background: Brown planthopper (BPH), Nilaparvata lugens Stal, is one of the most destructive insect pests of rice.
The molecular responses of plants to sucking insects resemble responses to pathogen infection. However, the
molecular mechanism of BPH-resistance in rice remains unclear. Transcription factors (TF) are up-stream regulators
of various genes that bind to specific DNA sequences, thereby controlling the transcription from DNA to mRNA.
They are key regulators for transcriptional expression in biological processes, and are probably involved in the

Results: We conducted a microarray experiment to analyze TF genes related to BPH resistance in a Sri Lankan rice
cultivar, Rathu Heenati (RHT). We compared the expression profiles of TF genes in RHT with those of the susceptible
rice cultivar Taichun Native 1 (TN1). We detected 2038 TF genes showing differential expression signals between
the two rice varieties. Of these, 442 TF genes were probably related to BPH-induced resistance in RHT and TN1, and
229 may be related to constitutive resistance only in RHT. These genes showed a fold change (FC) of more than 2.0
(P<0.05). Among the 442 TF genes related to BPH-induced resistance, most of them were readily induced in TN1
than in RHT by BPH feeding, for instance, 154 TF genes were up-regulated in TN1, but only 31 TF genes were
up-regulated in RHT at 24 hours after BPH infestation; 2-4 times more TF genes were induced in TN1 than in RHT
by BPH. At an FC threshold of >10, there were 37 induced TF genes and 26 constitutive resistance TF genes. Of
these, 13 were probably involved in BPH-induced resistance, and 8 in constitutive resistance to BPH in RHT.

Conclusions: We explored the molecular mechanism of resistance to BPH in rice by comparing expressions of TF
genes between RHT and TN1. We speculate that the level of gene repression, especially for early TF genes, plays an
important role in the defense response. The fundamental point of the resistance strategy is that plants protect
themselves by reducing their metabolic level to inhibit feeding by BPH and prevent damage from water and
nutrient loss. We have selected 21 TF genes related to BPH resistance for further analyses to understand the
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Background

Rice, Oryza sativa L., is the staple food of more than three
billion people in Asia. In natural environments, rice plants
are often attacked by microbial pathogens and insect pests.
One of the most destructive insect pests of rice is the
brown planthopper (BPH), Nilaparvata lugens Stal. BPH
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use their stylets to probe intercellularly through epidermal
and mesophyll cell layers until they reach the phloem sieve
element to extract phloem sap as their food [1]. This differs
from the feeding pattern of chewing insects. Their feeding
activity extracts the phloem sap of rice and causes damage
known as ‘hopper burn; which can be lethal to rice plants
attacked by large populations of the insect. Their feeding
also transmits certain rice viruses such as ragged stunt virus
and grassy stunt virus [2]. In recent years, BPH infestations
have devastated many rice crops in Asia [3]. Therefore, the
rice resistance against BPH is very important to rice
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production. Generally, according to the gene’s expression
level whether can be affected by BPH attack, the rice resist-
ance were divided into induced resistance and constitutive
resistance. The “induced resistance” refers to induced
changes in preference, performance, or reproductive suc-
cess of the attacker [4]. Most of plants will produce induced
resistance reaction once they were attacked by herbivore
insects. While in contrast, constitutive plant resistance
refers to the constant level of resistance in a plant, regard-
less of herbivore attack. Most prominent resistance factor,
for example the morphological features and the chemical
composition of the plant, have been recognized as constitu-
tive resistance characters [5].

Few studies have been conducted on the molecular
responses of plants to sucking insects. Most studies on
plant defense responses to phloem-feeding insects have
focused on aphids and whiteflies [6,7]. In the interaction
between rice and BPH, gene expression is controlled
after activation of salicylic acid (SA)-dependent and jas-
monic acid (JA)/ ethylene (ET)-dependent signaling
pathways [8,9]; this was thought to be a response to
pathogen infection [10]. Analyses of physiological
responses and gene expression profiles in rice showed
that the genes significantly induced or repressed by BPH
infestation were involved in several different pathways,
including cellular transport, signal transduction, metab-
olism, macromolecular degradation, and plant defenses
[9,11,12]. Although differential expression profiles related
to BPH infestation have been analyzed by several groups,
the molecular mechanism of BPH resistance in rice is
remains unclear.

Previously, we conducted a series of microarray ana-
lyses to find potential BPH resistance genes in a Sri Lan-
kan rice cultivar, Rathu Heenati (RHT). We compared
its gene expression profiles under BPH stress with those
of the susceptible cultivar Taichun Native 1 (TN1),
which was used as the negative control [13]. Using this
screening strategy, we identified many transcription fac-
tor (TF) genes related to BPH resistance. The products
of these genes play important regulatory roles in many
resistance-related pathways. TFs are proteins that can
bind to specific DNA sequences, thereby controlling the
transcription from DNA to mRNA [14,15]. They are key
regulators of transcriptional expression in many bio-
logical processes [16]. Previous studies also indicated
that TF genes directly or indirectly regulate the plant
defense response [17-20]. In the model plant Arabidop-
sis, bPHLH and WRKY gene families have been impli-
cated in R gene-mediated resistance against aphids [18].
The Arabidopsis TF AtWRKY70 modulates the cross-
talk between the salicylic acid and jasmonic acid signal-
ing pathways, which play important roles in plant
defense against pathogens [21-23]. Over-expression of a
rice TF gene, WRKY89, increased plant resistance to
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white-backed planthopper, a phloem-feeding insect [24].
OsERF3 is another rice TF gene that belongs to the AP2/
EREBP family. It positively regulates TrypPI activity and
plays a role in the resistance of rice to the chewing
herbivore, rice striped stem borer. It also appears to be a
negative regulator of resistance against BPH [8]. TF
genes that contain a zinc finger motif have been impli-
cated in the regulation of plant tolerance to biotic or abi-
otic stresses [25-28]. Other TF families, including MYB
[29,30], NAC domain-containing [31-34], and bZIP fam-
ilies [35-38], also have important roles in plant-defense
response pathways. DNA microarray technology provides
a high-throughput method to measure expression levels
of thousands of genes simultaneously. The technique is a
powerful tool for global analysis of altered gene expres-
sion in plants under different conditions [39-41]. The
results of previous studies suggest that it is feasible and
practical to use microarrays to measure the expression
levels of TF genes in rice plants infested by BPH.

In this study, we analyzed the expression profiles of
2720 TF genes in an Affymetrix rice genome array at two
time points during the plant-BPH interaction. Analyses
of differential expression profiles between susceptible
(TN1) and resistant (RHT) rice cultivars allowed us to
identify TF genes that showed significant changes in ex-
pression levels after BPH infestation. We identified 37
induced and 26 constitutive TF genes related to BPH re-
sistance. Of these, 21 TF genes were further analyzed and
identified as those that were most likely to be related to
BPH resistance in RHT. We speculate about the molecu-
lar mechanisms of resistance to BPH in RHT based on
the expression patterns of TF genes after BPH feeding.

Methods

Plant and insect materials

We used the BPH-susceptible rice cultivar Taichung Na-
tive 1 (TN1) and the BPH-resistant cultivar Rathu Hee-
nati (RHT) [42]. Pre-germinated seeds were sown in a
plastic tray (60x45x45 cm) and were grown under a 14-
h light/10-h dark photoperiod at 28/22°C. The TN1 cul-
tivar was used to raise the BPH populations.

The BPH population was obtained from the China Na-
tional Rice Research Institute, Fuyang, Zhejiang. The
BPH population was reared in a greenhouse under the
same temperature and light regime described above. We
used second or third instar nymphs of BPH for infest-
ation experiments, and the fourth or fifth instar nymphs
for the host-plant choice experiment.

BPH infestation and sample collection

The second or third instar nymphs were transferred to
6-week-old seedlings (10 BPH nymphs per plant) in a
box covered with nylon mesh. Stems of the rice
plant infected by BPH were collected as samples for
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microarray and qPCR at 0, 2, 4, 8, 12, 18, 24, or 36 h
after BPH infestation. The stems were transferred to li-
quid nitrogen immediately and then stored at —-70°C.

The herbivore host-plant choice experiment was per-
formed in plastic pots with two plants each. To deter-
mine the colonization preferences of BPH, the two
plants were covered with a plastic cage for each experi-
ment (diameter 15 cm, height 50 cm), and 20 nymphs of
4~5 instar BPH were introduced into the cage. The BPH
nymphs on each plant were counted at 2, 4, 6, 8, 10, 12,
24, 36, 48, and 72 h after release. This experiment had
five replicates.

RNA extraction, Affymetrix microarray hybridization, and
data normalization

Total RNA was extracted using the QIAGEN RNA Ex-
traction kit (QIAGEN, Hilden, Germany) according to
the manufacturer’s instructions. The RNA samples were
purified with the QIAGEN RNAeasy kit (QIAGEN,
Hilden, Germany), and an Agilent 2100 Bioanalyzer was
used to monitor sample quality. Only RNA samples
from the 0, 8, and 24 h time-points were used for Affy-
metrix microarray hybridizations.

The Shanghai Bio Corporation carried out Affymetrix
rice genome microarray hybridizations. RNA target
preparation and microarray hybridization were per-
formed with the GeneChip® 3’ IVT Express kit (Affyme-
trix, Cleveland, USA) and GeneChip® Hybridization,
Wash, and Stain kit (Affymetrix, Cleveland, USA),
strictly following the manufacturer’s instructions. The
signal intensity for each probe set on the GeneChip
microarray was detected with a GeneChip® Scanner
3000 (Affymetrix, Cleveland, USA), and the raw signal
value for each probe set was analyzed with GeneChip
operating software (GCOS; Affymetrix, Cleveland, USA).
The original data has already submitted to GEO, and the
GEO record is “GSE29967 - Expression data from rice
after brown planthopper attack”.

For microarray analyses, we included six treatments of
RHT and TN1 before and after BPH infestation with
three biological repeats for each treatment. We con-
ducted quintile normalization for all microarrays using
MAS 5.0 to standardize the distribution of probe inten-
sities for each array in a set of arrays. For quality control
of samples, we compared all sample expression files
using principal component analysis (PCA) to ensure that
all samples representing the same experimental condi-
tions were similar to each other. Primary screening was
performed with Genespring GX 11.5 (Agilent Technolo-
gies, Santa Clara, CA) using one-way ANOVA and a
Benjamini Hochberg false discovery rate threshold of
less than 0.05. The expression values were compared
pair-wise with the fold-change tool and a Student’s t-test
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was performed during this step to obtain the P-value for
each probe set.

Transcription factor screening and microarray probe

set filters

The rice transcription factors analyzed in this experi-
ment were described in the transcription factor database
[43]. According to the annotation of Affymetrix genome
microarray (release 30), we screened for TF genes that
were differentially induced or repressed after BPH infec-
tion in RHT and TN1 with a fold change (FC) of >2.0
and a P-value of <0.05. The results were shown as a
Venn diagram (http://bioinformatics.psb.ugent.be/webt-
ools/Venn/). Further probe filtering for TF genes that
were significantly induced by BPH or constitutively
expressed in the resistant cultivar RHT was performed
with the fold-change tool in Genespring GX 11.5.

Quantitative reverse-transcription PCR (qPCR) analyses
Purified RNA samples were treated with RNase-free
DNase (NEB, Ipswich, USA) at 37°C for 1 h. Reverse
transcription was performed with the RevertAid™ First
Strand ¢DNA Synthesis kit (Fermentas, Boston, USA)
using Oligo(dT);g primers. The reactions were incubated
at 42°C for 60 min and 70°C for 5 min, chilled on ice for
5 min, and the ¢cDNA was stored at —-20°C until use.
qPCR analyses were performed with Maxima™ SYBR
Green qPCR Master Mix (2x) (Fermentas, Boston, USA)
in 25-pl reaction mixtures following the manufacturer’s
instructions. The actin gene was used as an internal con-
trol to normalize Ct values obtained for each gene. Data
analysis was performed according to the methods
described by Livaka and Schmittgen [44]. Primer pairs
are given in Online Resources (Additional file 1); these
were designed using the PCR primer design tool primer3
(http://frodo.wi.mit.edu) according to the probe set tar-
get sequences accessible on the Affymetrix website
http://www.affymetrix.com/analysis/index.affx).

Results

RHT has an efficient resistant mechanism to brown
planthopper

The Sri Lankan rice variety RHT contains a resistance
gene, Bph3, and shows resistance to all four biotypes of
BPH [42]. This variety has an efficient resistance mech-
anism to BPH [42]. A previous study showed a low
survival rate of BPH populations on RHT [1]. Another
study on BPH showed that up to 80% of their time was
spent on non-feeding behaviors, and they could not
draw phloem sap from RHT [45]. When RHT and TN1
were exposed to BPH, RHT was less affected and sur-
vived longer than TN1. By 7 days of BPH infestation,
TN1 plants were dead and dry, whereas RHT plants
were still alive (Figure 1A). The herbivore host-plant
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choice experiment showed that BPH nymphs chose host
plants randomly during the first 6-8 h, but showed a
preference for TN1 from 8 h after BPH infestation
(Figure 1B). These findings indicated that RHT has an
efficient resistance mechanism to BPH.

Transcription factor expression profiles in susceptible or
resistant rice varieties

We compared a series of Affymetrix rice genome arrays
to measure the expression profiles of TF genes in two
rice varieties before and after BPH infestation. According
to the descriptions in the transcription factors database
[43], we extracted a total of 2720 probes from the array
that were annotated as TFs. In this study, the probes
revealed 2038 TF genes (74.9%) that were expressed at
detectable levels after normalization. These could be
subdivided into 79 gene families (Additional file 2). All
of these TF genes were analyzed by pair-wise compari-
sons between resistant and susceptible varieties before
and after BPH infestation using Genespring GX 11.5
software (Agilent Technologies). After comparison, of
the 2038 TF genes with detectable expressions, 442 were
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identified as being related to BPH-induced resistance
and 229 TF genes were related to constitutive resistance
in RHT (fold change >2, P<0.05) (Additional files 3 & 4).
Those TF genes that were related to induced resistance
were up-regulated or down-regulated by BPH attack.
Those that were related to constitutive resistance were
up-regulated or down-regulated in RHT compared with
their respective expressions in TN1 at the same time
points. These genes are considered as being specific to
the resistant rice variety, RHT.

Potential transcription factor genes associate with BPH-
induced resistance

As described above, there were 442 genes that were prob-
ably related to BPH-induced resistance. These showed
differential expressions between BPH-infested and non-
infested plants. Further analysis showed that in the
resistant rice variety RHT, 28 TF genes were specifically
up-regulated and 39 genes were specifically down-
regulated at 8 h after BPH infestation (Figure 2A); at 24 h
after BPH infestation, 31 genes were specifically up-
regulated and 20 genes were specifically down-regulated

15t Day
B 100.00 -
90.00 -
80.00
70.00 -
60.00 |
50.00 <\
/

40.00 -

Ratio of BPH nymphs

30.00 -

20.00

10.00 -

0.00

3rd Day

herbivore host plant choice experiment

7th Day

e RHT
=——TN1

2h ah 6h  8h

10h  12h  24h  36h  48h  72h
Hours after BPH infestation

Figure 1 Brown planthopper (BPH) feeding and selection test on rice varieties RHT (resistant) and TN1 (susceptible). A, Phenotypes of
RHT and TN1 on days 1, 3, and 7 of BPH infestation. B, BPH host selection experiment between rice varieties RHT and TN1 (72 h).
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(Figure 2B). However, at the same time points, there were
2-3 times more TF genes that were up- or down-
regulated by BPH attack in the susceptible rice variety
TNI1 (Figures 2A & 2B).

As shown in Figures 2A and 2B, there were 105 up-
regulated TF genes in TN1 at 8 h after infestation and
154 at 24 h after infestation. There were 61 and 65
down-regulated genes at 8 and 24 h after infestation, re-
spectively. In contrast, in the resistant variety RHT, there
were more down-regulated than up-regulated genes after
BPH infestation (Figures 2A).

The up- or down-regulated TF genes at two time
points were further analyzed (Figures 2C & 2D). There
were more TF genes up- or down-regulated in TN1 than
in RHT after BPH attack. In other words, expressions of
more TF genes were induced in the susceptible rice var-
iety TN1 than in the resistant rice variety RHT. How-
ever, only a few genes were commonly expressed in the
two rice varieties at different time points after BPH at-
tack (Figures 2C & 2D).

Main families of TF genes related to BPH resistance

A fold change of >5 was considered to indicate signifi-
cantly differentially expressed TF genes. There were 119
TF genes related to induced resistance and 66 related to
constitutive resistance with fold change values of >5
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(Additional files 5 & 6). The 119 TF genes related to
induced resistance belonged to 35 TF gene families,
mainly the WRKY, AP2-EREBP, HB, MYB, and NAC
families (Figure 3A). The 66 TF genes related to consti-
tutive resistance belonged to 25 families, mainly the
WRKY, bHLH, MYB, and TRAF families (Figure 3B).

Further analyses indicated that there were significant
differences in the expressions of zinc-finger TF family
members between induced and constitutive TF genes.
For instance, C2C2-CO like and C2H2 were the main
zinc finger TF genes among the genes related to BPH-
induced resistance, whereas Tify and TRAF were the
main zinc finger TF genes among those related to con-
stitutive resistance (Figures 3A & 3B).

Further analysis of TF genes related to BPH-induced
resistance

To further identify TF genes that were induced by BPH
and associated with BPH resistance, we screened 37
genes with FC values of >10 (P<0.05) (Table 1). Accord-
ing to the FC value after BPH attack and the resistance
of the two rice varieties to BPH, the induced TF genes
were divided into three categories: (1) Those that were
strongly up- or down-regulated in TN1, but unaffected
or barely affected in RHT (FC<5). These TF genes are
likely to be sensitive to a biological stress, but are

-
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Figure 2 Analysis of 442 TF genes showing differential expression between resistant (RHT) and susceptible (TN1) rice varieties during
BPH infestation. A, Up- or down-regulated TF genes in RHT or TN1 at 8 h after BPH infestation. B, Up- or down-regulated TF genes in RHT or
TN1 at 24 h after BPH infestation. C, Up-regulated TF genes in RHT and TN1 at 8 and 24 h after BPH infestation. D, Down-regulated TF genes in
RHT and TN1 at 8 and 24 h after BPH infestation.
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unlikely to participate in BPH-resistance (Table 1, lines
1-14). (2) Those that were strongly up- or down-
regulated at 8 h after BPH infestation in the two rice
varieties, but showed expression levels similar to those
before BPH attack thereafter. These genes probably par-
ticipate in the early stages of the biological stress re-
sponse (Table 1, lines 15-24). (3) Those that were up- or
down-regulated in both rice varieties, or strongly down-
regulated only in RHT. These TF genes were likely to be
involved in BPH-inducible resistance, and included the
remaining 13 TF genes (Table 1, lines 25-37).

Transcription factor genes most likely related to
constitutive resistance in RHT

To identify some specific TF genes from the resistant
rice variety RHT, we analyzed TF gene expression in
RHT uninfested or infested with BPH. In total, 26 genes
had FC values of >10 (P<0.05) (Table 2). These TF genes
were divided into three categories: (1) Those that were
strongly up- or down-regulated in RHT compared with
TN1 before BPH infestation (13 genes, Table 2, lines 1—
13). The expression patterns of these genes showed little
difference before and after BPH infestation; therefore,
these were genes that were constitutively expressed at
high levels during the normal life cycle, and were not
likely to be involved in the BPH resistance response. (2)
Those that were strongly up- or down-regulated in RHT
compared with TN1 before BPH attack (5 genes, Table 2,
lines 14—19). The expression levels of these genes chan-
ged significantly after BPH attack. Therefore, these genes
were probably involved in BPH resistance by regulating
expression of resistance-related genes. (3) Those that

showed almost the same expression levels in TN1 and
RHT before BPH attack, but changed significantly in
RHT after BPH attack. The remaining eight TF genes
were in this category. These were the TF genes that most
probably participated in BPH resistance in RHT (Table 2,
lines 19-26).

Confirmation of microarray expression profiles by qPCR

To verify the expression profiles of TF genes, we
selected six TF genes for qPCR analyses, and increased
the number of analyzed time points (8 in total). The ex-
pression patterns of all six TF genes determined by
qPCR were the same as those predicted from microarray
analyses (Figures 4 A-F). Figures 4A, 4B, and 4C show
expressions of three BPH-induced TF genes. Figure 4A
shows expression of a Tify family TF gene; its expression
was up-regulated in RHT and TN1 after BPH infestation.
When this result is compared with data in Table 1
(line 13, showing expression at 8 and 24 h after BPH in-
festation), a slight difference was that its expression was
up-regulated at 4 h after BPH infestation. Therefore, for
accurate analysis of expressions of genes induced by
BPH, qPCR analyses provided additional data to array
data. Figures 4D, 4E, and 4F illustrate expressions of
three TF genes showing differential expression between
uninfested and infested RHT. In the resistant variety
RHT, these genes were up- or down-regulated before
and after BPH infestation (Figure 4 D-F, blue bars).
However, in the susceptible rice variety TNI, their
expressions were up-regulated after BPH attack (Figure 4
D-F, red bars). These TF genes represent those that are
constitutively expressed in RHT in the normal life cycle,
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Table 1 TF genes related to BPH-induced resistance (fold change >10; P<0.05)
No Family Gene ID Te/To T2a/To Re/Ro Rz4/Ro

FC RP FC RP FC RP FC RP
1 ABI3VP1 0s03g0164300 10.14 U 10.28 u 1.50 u 431 U
2 AP2-EREBP 0s01g0224100 191 D 1240 D 2.66 D 1.53 D
3 AP2-EREBP 050390860100 19.22 U 8.30 u 213 u 2.08 U
4 bzIP 050390336200 437 U 10.25 u 1.55 u 3.08 U
5 C2C2-CO-like 050990240200 2947 D 1.22 D 3.57 D 1.83 U
[§ C2H2 050390437200 10.14 U 327 u 2.00 u 1.67 U
7 FAR1 050890389800 746 U 11.87 u 1.36 u 1.36 D
8 FHA 051290124000 14.24 D 1.23 D 391 D 1.38 D
9 GRAS 050190948200 14.58 U 6.82 u 1.30 D 2.28 U
10 HB AK064665 8.88 D 14.77 D 2.18 D 3.32 D
" NAC 050290214500 10.52 U 6.62 u 1.27 D 2.11 D
12 RWP-RK 050990549450 269 D 10.01 D 1.39 D 283 D
13 Tify 050390180800 1045 U 1.51 u 4.29 u 3.75 U
14 WRKY 050390335200 6.85 U 10.14 u 213 u 2.02 U
15 AP2-EREBP 0s07g0410700 535 U 1.73 U 10.02 u 3.12 U
16 C2C2-CO-like 050690298200 34.79 U 141 u 23.97 u 1.02 U
17 C2C2-CO-like 050990509700 11.88 U 2.39 u 549 u 2.53 U
18 G2-like 0s01g0971800 1789.73 U 1.71 u 804.09 u 2.39 U
19 HSF 0s01g0733200 3245 U 264 u 4558 u 3.06 U
20 MBF1 050690592500 12.14 D 1.58 D 5.60 D 2.77 D
21 MYB-related 0s08g0157600 45.27 D 213 u 47.13 D 1.70 U
22 Orphans 050490493000 534 D 2.08 u 12.51 D 1.54 U
23 Sigma70-like 050590586600 24.58 D 2.50 u 92.84 D 1.87 U
24 Sigma70-like 050590586600 38.02 D 2.82 u 53.11 D 1.50 U
25 GNAT 050390205800 5.79 u 10.28 u 543 U 6.77 u
26 MADS 0s12g0501700 29.97 u 86.44 u 579 U 12.58 u
27 MYB-related 050590579600 52.39 D 2825 D 7.56 D 13.03 D
28 MYB-related 0s06g0728700 9.13 D 6.10 u 16.15 D 3.19 u
29 NAC 0s12g0477400 7.13 u 22.52 u 2.00 U 833 u
30 NAC 051190126900 3.56 u 11.59 u 1.06 D 6.55 u
31 HB 050390109400 561 u 17.60 u 3.09 U 798 u
32 HMG 050290258200 1.02 u 7.29 D 14.23 D 763 D
33 MYB-related 050290685200 2.34 D 10.57 u 575 D 337 u
34 PHD 0s06g0187000 1.10 u 6.72 D 22.53 D 362 D
35 GRAS 0s06g0127800 1.14 u 3.59 D 30.11 D 7.77 D
36 GRF 050290678800 1.39 u 1.75 D 11.22 D 2.60 D
37 HB 051090575600 1.78 u 1.62 D 12.97 D 1.25 D

* To and Ry refer to rice cultivars TN1 and RHT before attack by BPH (0 h); Tg, To4, Rs, and R4 refer to the same cultivars sampled 8 or 24 h after attack by BPH; FC,
fold change; RP, regulation pattern; U, up-regulation; D, down-regulation.
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Table 2 TF genes that were unaffected by BPH and those that showed constitutive differential expression in RHT

(FC>10, P<0.05)

No Family Gene ID Ro/To Rs/Tg R24/T24
FC RP FC RP FC RP

1 bHLH 0s01g0108400 60.02 U 30.02 U 59.83 U
2 MYB-related 050790634900 584.50 U 121935 U 216.66 U
3 C3H 0s01g0192000 24.32 u 2573 U 2562 U
4 FAR1 050590128700 2044 D 106.39 D 29.94 D
5 FAR1 050490316800 10.96 D 12.35 D 17.78 D
6 GNAT 0s08g0260000 9.35 D 9.66 D 12.28 D
7 MADS 0s08g0112700 961 U 37.64 U 23.08 U
8 MADS 050490387500 12.88 D 41.15 D 13.56 D
9 mTERF 050690224400 7.50 D 6.11 D 23.84 D
10 GNAT 050290806000 14.71 U 21.75 U 19.65 U
1 Orphans 0s01g0530300 6.53 U 520 U 5091 U
12 TRAF 0s03g0667100 223.89 D 118.10 D 110.88 D
13 TRAF 050890227200 21.53 U 33.62 U 17.75 U
14 bHLH 0s04g0301500 553 D 1320 D 2.85 D
15 bzIP 0s01g0859500 1039 D 6.31 D 117 U
16 FAR1 050890389800 25.22 U 4.59 U 1.56 U
17 FAR1 050690246700 10.18 D 1.50 U 135 U
18 Orphans LOC_0s04g13480.1 2593 U 1.16 D 373 U
19 Tify 050990439200 4.82 U 720 U 3032 U
20 TRAF LOC_0s08g41240.1 441 D 397 D 1030 D
21 MYB 050290624300 2.17 D 11.48 D 438 D
22 ARF 050490664400 1.99 U 14.99 D 4.05 U
23 NAC 050190339500 1.70 D 1.64 U 10.83 D
24 SET 050890244400 1.92 u 18.66 U 8.11 U
25 TCP 050390706500 1.36 D 11.25 D 2.18 U
26 Tify 050490395800 1.10 u 14.08 D 1.20 D

*To and Ry refer to rice cultivars TNT and RHT before attack by BPH (0 h); Tg, T24, Rg, and Ry, refer to the same cultivars sampled 8 or 24 h after attack by BPH; FC,

fold change; RP, regulation pattern; U, up-regulation; D, down-regulation.

and most are unlikely to be involved in the BPH resist-
ance reaction.

Discussion

Studies on the resistance mechanism of rice to BPH
have been based on physical interactions, and more re-
cently, on gene expression levels [9,11,46-48]. There is
increasing evidence that TF genes play important roles
in plant defense responses against phloem-feeding
insects. TF genes represent a key element in the modifi-
cation of gene expression during the plant defense reac-
tion [8,17,18,49].

Here, we provide an overview of the expression profile
of TF genes related to BPH resistance, based on compar-
isons of susceptible and resistant rice plants. Using TF
gene probes, we detected 2038 TF genes showing differ-
ential expressions between the two rice varieties RHT

and TN1 (Additional file 2). Of these, 442 TF genes were
probably related to BPH-induced resistance, because
their expressions were increased or decreased in re-
sponse to BPH infestation (Additional file 3). All these
induced TF genes showed an interesting expression pat-
tern at two time points (8 or 24 h) after BPH infestation
(Figure 2A, 2B). After BPH feeding, the susceptible
strain TN1 had more up- or down-regulated TF genes
than did the resistant strain RHT. According to the dif-
ferent patterns of gene expression profiles, more TF
genes were induced by BPH in the susceptible rice var-
iety TN1 than in the resistant rice variety RHT. For in-
stance, as shown in Figure 2A and 2B, TF genes specially
up-regulated at 8, and 24 hours in TN1 were 105 and
154, respectively; while the numbers in RHT were 28
and 31. And TF genes specially down-regulated at 8, and
24 hours in TN1 were 61 and 65, respectively; while the
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J

numbers in RHT were 39 and 20. Because induced re-
sistance is defined from the point of view of the herbi-
vore and it does not necessarily benefit the plant. This
means that the induced resistance may render the plant
more susceptible to other stresses [4]. This may be the
one important reason why TN1 rice is more susceptible
than RHT. Further analysis results also support this
point of view. In TNI, there were more up-regulated
than down-regulated TF genes in response to BPH. In
contrast, in RHT, there were more down-regulated than
up-regulated genes in response to BPH (Figures 2A).
This finding suggested that the damage caused by BPH
feeding to the susceptible variety TN1 triggered

expressions of a series of genes. The products of these
genes may play roles in repairing damage to the phloem
to prevent the loss of phloem sap, and in defense against
invasion of the pathogen and bacteria. In the resistant
variety RHT, this reaction involved cessation of several
metabolic pathways to prevent the loss of phloem sap,
and metabolic activity was repressed throughout the en-
tire plant. This is an efficient method of defense against
BPH feeding, because it reduces the amount of sub-
stances supplied to the phloem, similar to the function
of the resistance gene Bphl4 [49]. Therefore, various
TFs could have different functions in this reaction. This
finding provided evidence at the molecular level for why
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the resistant cultivar, RHT, suffered less damage than the
susceptible cultivar, TN1.

Studies on the physical test phenotype by EPG (elec-
trical penetration graph) of these cultivars showed that
TN1 had a greater damage score after exposure to BPH,
while the phloem sap of RHT could not be extracted
constantly by BPH stylets [1,45]. According to this study,
the expressions of many TF genes were induced in TN1
by exposure to BPH. This would probably lead to meta-
bolic disorders in TN1, which probably the reason why
this rice variety is susceptible to BPH. However, in RHT,
far fewer TF genes were induced after BPH exposure.
Most of the TF genes showing altered expressions in
RHT were down-regulated (Figure 2A and 2B), so we
boldly deduced that certain metabolic pathways were
turned off. This may explain why BPH was unable to ex-
tract nutrition from the RHT phloem sap.

Among the down-regulated TF genes, all members of
FHA, Orphans, and Sigma70-like families, and most
members of the MYB family were significantly down-
regulated at 8 h after BPH infestation (Additional file 5).
A similar pattern of regulation also occurred in Arabi-
dopsis after aphid infestation [17]. Members of the MYB
family have highly diversified biological functions, and
the expressions of most Arabidopsis MYB genes were re-
sponsive to one or multiple types of hormone and stress
treatments [50]. Studies of the Arabidopsis defense re-
sponse to chewing insects showed that knockdown of a
MYB gene, AtMYB102, enhanced susceptibility to white
cabbage butterfly (Pieris rapae) [51]. In tobacco, trans-
genic plants overexpressing a wheat MYB gene,
TaPIMPI, showed significantly enhanced resistance to
the pathogen Ralstonia solanacearum, and increased tol-
erance to drought and salt stresses [30]. Another study
on TFs suggested that several members of the MYB fam-
ily play important roles in photosynthesis and metabol-
ism [52]. During their physiological responses to insects,
plants reallocate energy from photosynthesis to the
defense response [9]. During BPH feeding, the chloro-
phyll level, net photosynthetic rate, stomatal conduct-
ance, and transpiration rates significantly decreased in
the susceptible cultivar, MH63 [11]. These patterns of
decreased metabolic activity were consistent with the
down-regulation of MYB family genes observed in BPH-
infested rice plants in this study. The down-regulation of
these genes may have played a role in reducing photo-
synthesis. Microarray analyses have shown that down-
regulation of TF genes occurs during compatible plant-
aphid interactions [53].

In both rice varieties used in the present study, the
up-regulated TF genes after 8-h of BPH infestation
included most members of the AP2-EREBP, NAC, and
WRKY families and all members of the ABI3VP1 family
(Additional file 5). The AP2 TF family is one of several
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that are unique to the plant lineage. This family, whose
members contain an EREBP (ethylene responsive
element binding factor) domain, is involved in regula-
tion of plant disease resistance [19]. Genes encoding
members of the AP2-EREBP family of TFs are also
involved in plant resistance to insects. The AP2-EREBP
TF response to herbivore attack might depend on a
hormone-dependent signaling pathway. Over-expression
of OsERF3 positively regulated TrypPI activity and
boosted the resistance of rice to the chewing herbivore
SSB, whereas it negatively regulated resistance against
BPH [8]. The expression pattern of up-regulated AP2-
EREBP genes may reflect those induced by physical
damage during BPH feeding, and the down-regulated
AP2 TFs may be involved in the BPH resistance inter-
action. Previous studies on NAC, WRKY, and Zn-finger
TF families mainly focused on responses to fungal and
bacterial pathogens [23,25,33]. According to those stud-
ies, their functions rely on JA and SA signaling path-
ways, which are involved in the BPH-resistance
response.

We narrowed down the number of TF genes that were
probably involved in BPH resistance by increasing the
FC value to >10 (P<0.05). At this FC level, there were 37
TF genes that were BPH-induced and 26 associated with
constitutive resistance in RHT. Further analysis indi-
cated that there were 13 and 8 TF genes most probably
involved in BPH-induced and constitutive resistance,
respectively. Further research is underway to study
these 21 genes in more detail. Most of the microarray
expression profiles were consistent with the qPCR
results. (Figure 4 & Additional file 7). However, only a
few time points were analyzed in the microarray ana-
lyses, and so it is difficult to determine the exact time at
which gene expression peaked after induction by BPH.
To address this point, more time points should be
included in qPCR analyses of gene expression.

Conclusions

TFs are up-stream regulators that control transcription
by DNA binding. By analyzing the TF gene expression
profiles after BPH feeding, especially those of genes that
were differentially expressed between resistant (RHT)
and susceptible (TN1) rice varieties, we obtained infor-
mation about the resistance mechanism to BPH at the
molecular level. Our results indicate that the levels of
gene expression play an important role in the plant
defense reaction. The down-regulation of TF genes will
repress many active pathways, which can prevent further
damage related to loss of water and nutrients.

An interesting aspect of the molecular mechanism of
TFs in plant resistance to BPH was that the TF genes
showing down-regulated or repressed expressions were
probably the main reason for BPH resistance in RHT.
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We identified a total of 21 TF genes that are probably
involved in BPH resistance in the resistant rice variety,
RHT.

Additional files

Additional file 1: Primer pairs for quantitative RT-PCR to verify
relative expression levels of transcription factor genes.

Additional file 2: All transcription factor genes detected by
microarray analyses. This file lists all 2038 transcription factor genes
detected by microarray analyses, and shows TF genes showing
differential expression profiles between two rice varieties TNT and RHT
before and after attack by BPH.

Additional file 3: Transcription factor genes related to BPH-induced
resistance showing changes in expression with fold-change values
of >2 after BPH infestation (P<0.05). This file lists 442 transcription
factor genes showing changes in expression after BPH attack (fold-
change >2, P<0.05). It also shows TF genes showing differential
expression profiles between two rice varieties TNT and RHT before and
after attack by BPH.

Additional file 4: Transcription factor genes related to constitutive
resistance in RHT showing changes in expression with fold-change
values of >2 (P<0.05). This file lists 229 transcription factor genes that
were up-regulated or down-regulated before and after BPH attack in RHT
compared with their respective expressions in TN1.

Additional file 5: BPH-induced transcription factor genes showing
altered expression after BPH infestation with fold-change values of
>5 (P<0.05). This file lists 119 transcription factor genes showing altered
expression after BPH attack with fold-change values of >5 (P<0.05). It also
shows TF genes showing differential expression profiles between two
rice varieties of TN1 and RHT before and after attack by BPH.

Additional file 6: Transcription factor genes related to constitutive
resistance in RHT with fold-change values of >5 (P<0.05). This file
lists 66 transcription factor genes showing up- or down-regulated
expressions before and after BPH attack in RHT compared with their
respective expressions in TNT.

Additional file 7: The other results of qRT-PCR analyses to verify TF

gene expression profiles in RHT and TN1 at different time-points
before and after BPH attack.
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