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Abstract

patterns post-Ml.

ventricular remodelling post-MI.

Background: About 6 million Americans suffer from heart failure and 70% of heart failure cases are caused by
myocardial infarction (MI). Following myocardial infarction, increased cytokines induce two major types of
macrophages: classically activated macrophages which contribute to extracellular matrix destruction and
alternatively activated macrophages which contribute to extracellular matrix construction. Though experimental
results have shown the transitions between these two types of macrophages, little is known about the dynamic
progression of macrophages activation. Therefore, the objective of this study is to analyze macrophage activation

Results: We have collected experimental data from adult C57 mice and built a framework to represent the
regulatory relationships among cytokines and macrophages. A set of differential equations were established to
characterize the regulatory relationships for macrophage activation in the left ventricle post-MI based on the physical
chemistry laws. We further validated the mathematical model by comparing our computational results with
experimental results reported in the literature. By applying Lyaponuv stability analysis, the established mathematical
model demonstrated global stability in homeostasis situation and bounded response to myocardial infarction.

Conclusions: We have established and validated a mathematical model for macrophage activation post-Ml. The
stability analysis provided a possible strategy to intervene the balance of classically and alternatively activated
macrophages in this study. The results will lay a strong foundation to understand the mechanisms of left

Background

Mpyocardial infarction is defined by pathology as myocytes
necrosis and apoptosis due to prolonged ischemia. Since
myocytes cannot divide and replace themselves, myocytes
in the infarct area deprived of oxygen die and are replaced
by a collagen scar. There is a series of cellular and molecu-
lar activities respond to MI in the myocardium. Myocytes
apoptosis appears in the first 6 to 8 hours post-MI, and
necrosis occurs in 12 hrs to 4 days post-MI [1]. Necrosis
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of myocytes results in significantly elevated interlukin-1
(IL-1), tumour necrotic factor-f (TNF-f), IL-10, and
monocyte chemotactic protein-1 (MCP-1) levels. MCP-1
is a strong chemoattractants that recruit and confine
monocytes to the injury site. It’s been reported that over
95% of monocytes differentiate to macrophages [2]. There
are two major types of macrophages post-MI: classically
activated macrophages (M1) and alternatively activated
macrophages (M2). Porcheray has reported a switch
between M1 and M2 macrophages with in vitro stimuli
including IL-4, IL-10, and TNF-f [3]. In addition, biomar-
kers of M1 and M2 macrophages show a temporal in vivo
transition [3]. Since M1 and M2 macrophages are
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responsible for extracellular matrix (ECM) destruction and
construction, respectively, the transition and dynamic bal-
ance between two macrophage phenotypes might lead to
the balance between ECM destruction and construction,
and thus determine the ECM remodeling post-MI.[4]
Therefore, characterizing macrophage activation pattern
is essential to better understand the ECM remodeling
post-ML

A large amount of experimental research has been con-
ducted to elucidate the underlying mechanisms of
macrophage activation, and an abundant accumulation of
experimental results define on macrophage responses to
different stimuli. There is a need, however, to systemi-
cally analyze the accumulated data and integrate the
results into a framework that will allow a more complete
understanding. To address this need, several mathemati-
cal models have been established to characterize the
effects of macrophages on wound healing, inflammatory
responses, and collagen synthesis post-MI [5-9]. How-
ever, most models do not consider the effect of macro-
phage activation patterns and ignore the differences
between macrophage phenotypes. Therefore, the aim of
this study was to establish and validate a set of ordinary
differential equations to characterize macrophage activa-
tion patterns post-MI. Since our mathematical model
was established based on iz vivo and in vitro experimen-
tal results, all parameters in the model were determined
by the averages of the experimental data.

Results

We have collected experimental data from adult C57 mice
and built a framework to represent the regulatory relation-
ship among cytokines and macrophages. Based on this fra-
mework, we established a set of nonlinear differential
equations to characterize the regulatory relationship for
macrophage activation in the left ventricle post-myocardial
infarction using physical chemistry laws. Our framework
and the mathematical model were established based on
the following three assumptions.

1) All monocytes that migrate to the infarct region
are differentiated to unactivated macrophages [10].
2) All activated macrophages are differentiated from
unactivated macrophage since previous studies have
shown that <5% of macrophages undergo mitotic
division [11,12].

3) All parameters and coefficients in this model are
constant.

Framework of regulatory relationship for macrophage
activation

In this framework, myocytes and monocytes were con-
sidered as inputs to the system. Cellular densities of M1
and M2 macrophages were considered as the outputs of
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the system. We chose IL-1, IL-10, and TNF-a as three
molecules which regulate macrophage activations in this
mathematical model since they were well-recognized as
stimuli for macrophage activation [13-15]. M1 macro-
phages and myocytes secrete IL-1 and TNF-a. M2
macrophages secrete IL-10 [3]. Further, TNF-& and IL-1
promote M1 activation and IL_10 promotes M2 activa-
tion [16]. IL-10 inhibits TNF-¢, IL-1, and itself [17].
The input-output and regulating relationship were
shown in Figure 1.

Input to the framework

Temporal profiles of monocytes and myocytes densities
were used as inputs to our mathematical framework
(Figure 1). Myocytes density in healthy adult mice was
6 x 10” cells/ml as an initial value. Myocytes numbers
monotonically decreases post-MI and is directly asso-
ciated with LV wall thickness. We have measured the
LV wall thickness at days 0, 1, 3, 5, and 7 post-MIL. The
temporal profile of myocytes was determined by com-
bining the initial value and the monotone progression
trend (the crosses) as shown in Figure 2(A).

Macrophages density in the left ventricle of healthy
adult mice is 2000 cells/ml, which will be used as initial
values of unactivated macrophage density in this study
[18,19]. Yang et al has measured temporal profiles of
macrophages post-MI in mice at days 1, 2, 4, 7, 14, 21,
and 28 [20]. The temporal profile of macrophages was
obtained by fitting the experimental results as a continu-
ous function as shown in Figure 2(B).

Based on our assumptions 1 and 2, all macrophages
were differentiated from monocytes and emigrated from
infarct area to the lymph node system. The estimation
of unactivated macrophage based on the experimental
results [18] is shown as follows,

t
Mun(t) = My (0)e ™ + / e = Mds, )
0

where M denotes the differentiation rates of mono-
cytes, M, denotes the unactivated macrophage density,
and y denotes the emigration rate of inactivated macro-
phage. Based on the temporal profile of unactivated
macrophage, the monocytes differentiation rate can be
estimated as shown in Figure 2(C).

Mathematical model for macrophage activation

The mathematical model of macrophage activations is a
set of nonlinear differential equations represented by
cellular densities (cell number/ml) of M,,,, M1 and M2,
and concentrations (pg/ml) of chemical factors such as
IL-1, IL-10, and TNEF-a. Cellular densities were deter-
mined by the difference between immigration and emi-
gration rates. Concentrations of chemical factors were
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Figure 1 A framework representing regulatory relationship macrophage activation post-MI. Myocytes and monocytes are two inputs as
shown in the blue dotted box. The red dotted box denotes outputs of the system, including M1 and M2 densities. Secretion function is
denoted by thick arrow, activation and differentiation are denoted by thin arrow. The regulatory relationship shown in the framework was
determined by published results [3,13-17].

determined by the balance between their synthesis and
degradation rates. The established mathematical model
can be written as

activated to M1 activated to M2

emigration

dm, - ILy Ta Lo o~ (2)
v M —koM — ksM —k - ,
dt 2Mun ILy + o 3 Mun T, +cr 4 Mun Ly + o un
activation effects by IL, and TNF,
transation between M1 and M2 emigration
™ IL, T, —_— - (3)
P koM +ksMyy + K 1iMy — kyM, — uM; ,
ILy + e Ty +c1,
activation effects by ILyo
transation between M1 and M2 emigration
IL1o —— e
W = kaMu kiMy —K1My = uM,
IL1o + cir10
secretion by M2 .
v degradation
— (5)
dIL a1
4’ =hksMa —di10l Lo,

Cc1 + ILl()

i M1
secretion by M1 and myocytes degradation

— (6)
dT, ke M c
= cM1 + AMc — dT Ty ,
dt ( )C + ILm o
secretion by M1 and myocytes degradation
7)

———
— dimliLy,

[
dliil = (k7M1 + )\,MC) c4 ILm

where M,,,, M;, M, denote the cell densities of unacti-
vated macrophages, M1 macrophages, and M2 macro-
phages, respectively. Variables IL;q, Ty, and IL; denote
the concentrations of IL-10, TNF-¢, and IL-1. Variable
denotes M the differentiation rate of monocytes and M,
denotes the myocytes density. The parameters used in
these equations with their biological meanings, experi-
mental values, units, and references are listed in Addi-
tional file 1. All parameters were determined based on
the published data or estimation from other mathemati-
cal models [3,6,21-28].
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Figure 2 Temporal profiles of monocytes and myocytes. The wall thickness of left ventricle and observed a monotone decrease of wall
thickness at day 1, 3, 5, 7 post-MI, suggesting the same trend of myocytes density based on the experimental results [18]. Temporal profiles of
myocytes and the monotone progression trend are shown in Figure 2(A). We established the temporal profiles of monocytes based on our own
experimental measurement on total macrophage density and the control value of macrophage density in health adult mice is 5 x 10%cells/ml.
Temporal profiles of monocytes are shown in Figure 2(B). The estimation of monocytes for each day are shown in Figure 2(C).

Equation 2 determines the density of unactivated
macrophages in the infarct area. For the construction
part, the unactivated macrophages are differentiated
from monocytes as shown in Figure 2(C). For the
destruction part, the unactivated macrophages are acti-
vated to M; or M,. Additionally, inactivated macro-
phages do not die locally in the scar tissue but die out
in the lymph node system [27].

Equation 3 determines the activation rate of M1 macro-
phages. For the construction part, IL-1 and TNF-a pro-
mote M1 activation. Parameters k, and k3 denote the
activation rates of M1 macrophages by IL-1 and TNF-c.
Hill equations are used to represent the promotion effects
of IL-1 and TNF-o and parameters ¢;;; and Ct, are the
effectiveness of IL-1 and TNF-o promotion on M1 calcu-
lated based on the experimental results [3,29]. Steinmuller
has shown the transition between M1 and M2 phenotypes

in vivo [21]. Correspondingly, we use parameter k; to
denote the transition from M1 to M2 and parameter ¥ for
the transition from M2 to M1 [21]. The destruction part
includes emigration of macrophage (#)and transition from
M1 to M2 macrophages (k) [27].

Equation 4 determines the activation rate of M2
macrophages. The construction part is denoted by acti-
vation of M2 macrophages promoted by IL-10, and
transition from M1 to M2. IL-10 promotes M2 activa-
tion and this activation rate has been approximated by
parameters k, based on the experimental results [3].
The transition rate from M1 to M2 is denoted as k;.
The destruction part includes emigration of M2 macro-
phages (¢#) and transition from M2 to M1 macrophages
(K}), similarly as described in equation 3.

Equation 5 determines the secretion rate of IL-10. For
construction part, IL-10 is secreted by M2 macrophages,
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and parameter ks denotes the secretion rate of IL-10 by
M2 macrophages [22,30]. The destruction part includes
the self-inhibition and degradation of IL-10. A Hill
equation is employed to represent this self-inhibition
effect and parameter c; denotes the self-inhibition effect
of IL-10 post-MI [6,17]. Parameter dj,, denotes the
decay rate of IL-10 determined by its half-life time [13].
Equation 6 determines the deposition rate of TNF-¢,
which is secreted by both M1 macrophages and myo-
cytes [6,23,28,31]. We used in vitro results from Meng
to determine the secretion rate of TNF-oo by M1 and
secretion rate of TNF-a by myocytes (1) is determined
by Horio’s experimental results [23,31]. The inhibition
of IL-10 is presented by a Hill equation where para-
meter c represents the effectiveness of IL-10 inhibiting
TNF-o [25]. The destruction part is denoted by the
degradation of TNF-o. Parameter dr, is the decay rate
of TNF-o determined by its half-life time [15,26].
Equation 7 determines the deposition rate of IL-1. IL-1
is secreted by both M1 macrophage and myocytes. Para-
meter k; denotes the secretion rate of IL-1 in cultured rat
cardiac myocytes [31]. The inhibition of IL-10 is pre-
sented by a Hill equation similarly as in equation 6 [25].
In the destruction part, parameter d;;; represents the
decay rate of IL-1 determined by its half-life time [14].

Stability analysis

If there is no myocardial infarction, monocytes differen-
tiation and myocytes apoptosis should be at a very low
level, and the studied macrophage activation pathway
should maintain homeostasis. We have calculated the
equilibrium point of the system without any input and
performed Lyapunov stability analysis. Our analysis
showed that without any monocytes differentiation and
myocytes secretion, the system would stay at the origin
when t — co.

In the case of myocardial infarction, myocytes apopto-
sis and necrosis triggered inflammatory responses and
significant monocytes differentiation, which will drive the
system to a new equilibrium point. Correspondingly, the
cell densities of M1 and M2 increase post-MI. We have
obtained a steady state as E = [20, 1200, 3500, 0.73, 1.1,
5.9] from our computational simulations. The steady
states match with the experimental measurements col-
lected from healthy adults without myocardial infarction
[32]. In addition, the stable region of the established
mathematical model depends on the strength of the
input.

Computational results

Computational simulations of macrophage activation
were carried out by solving the nonlinear differential
equations with MATLAB. The initial conditions of
unactivated, M1 and M2 macrophage densities were
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chosen as M,,,, = 2000 cells/ml and M;(0) = M5(0) = 0
cells/ml. The concentrations of IL-1, TNF-a, and IL-10
were set as 0.1 pg/ml. The inputs of this system were
shown in Figure 2. Outputs of the system, M1 and M2
densities, were shown in Figure 3. The concentrations of
IL-1, IL-10 and TNF-a were shown in Figure 4. Our
computational results were shown as solid lines while
the experimental results were shown as discrete crosses
in these figures [17,33,34].

Our computational results demonstrated that from
days O to day 3 post-MI, cellular densities of the M1
phenotype increased at a faster rate than the M2 pheno-
type. At day 10, the M2 phenotype dominates over the
M1 phenotype. This prediction agrees with the results
reported by Troidl [4]. Additionally, temporal profiles of
IL-1 and TNF-« significantly increased from days 0 to 1
post-MI in our computational simulations, which match
the experimental results reported by Sumitra [33]. Com-
parison between the computational and experimental
results demonstrates a similar trend for the temporal
profiles, suggesting the effectiveness of our model.

Discussion

This study established a mathematical model for macro-
phage activation in the left ventricle post-MI by combin-
ing experimental and computational approaches. This is
the first mathematical model focusing on the dynamic

x 10
3.5

I -_M1
M2

Macrophage [

) 5 10 15 20 25 30
time
Figure 3 Temporal profiles of cell densities of M1 (red line),
M2 (blue line), and the total macrophage (black line) in LV 28
days post-MI. Computational results were normalized to initial
conditions and shown in solid lines. The initial cells number of
unactivated macrophage is 2 x 10° cells/ml. The differentiated rate
from monocytes to M1 macrophages « is 0.5. Then, the initial
condition of macrophage densities were chosen as M1(0) = M2(0) =
0 cells/ml. Previously published experimental results were
normalized to the corresponding measurements in control group
and are shown as black crosses collected from C57 adult mice at
days 1, 3,5, 7, 14, 21, 28 [35]. Values are mean + SE. All experiments
were carried out in mice with MI.
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Figure 4 Concentrations of IL-10, IL-1 and TNF-a from day 0 to day 30 post-MI. The comparisons between the experimental
measurements and temporal files were presented. In Figure 4 (A), experimental measurements of IL-10 from adult C57 mice at day 0.25, 3, 5
post-MI [34], were shown as crosses with standard deviations shown as the bar. In Figure 4 (B), experimental measurements of IL-1 from adult
mice at day 025, 1, 3, 5, 7, 21 [36], were shown as crosses with standard deviations shown as the bar. In Figure 4 (C), experimental
measurements of TNF-a from adult rats at day 0.25, 1, 3, 5, 7, 14, 21 [37], were shown as crosses with standard deviations shown as the bar.

interactions among cytokines, myocytes, monocytes, and
macrophages. Computational predictions based on this
mathematical model match with experimental measure-
ments, suggesting effectiveness of the model. In addition,
our stability analysis provided insight for the activation
pattern of macrophages post-myocardial infarction. In
our mathematical model, there are two inputs, myocytes
apoptosis and monocytes differentiation. In this study,
we have predicted a stable equilibrium for homeostasis,
which means without myocardial infarction or following
small injury stimuli, macrophage densities and concen-
trations of IL-1, IL-10, and TNF-a should stay at the
equilibrium. After MI, the monocytes differentiated into
macrophage and apoptotic myocytes secreted significant
amounts of cytokines to activate the macrophages. The
strength of the monocytes differentiation and myocytes
apoptosis (inputs of the system) drive the system to

different states while all states will be bounded due to the
bounded strength of the inputs.

However, there exist some differences between compu-
tational predictions and real experimental results. To
address this issue and the variation in different experi-
ments, a stochastic parameter distribution will need to be
introduced to replace the constant parameters. In addi-
tion, more detailed measurements on monocytes and
myocytes and concentration temporal profiles of IL-1,
IL-10 and TNF-¢ from C57 mice will be carried out in
our future research, which will help to solidify our
equations.

Conclusions

Our study has established framework for macrophage
activation and used ordinary differential equations to
model the cellular interactions between macrophage
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activation types post-MI. The results on stability analysis
can be used as a useful tool to predict the behaviour of
biological systems.

Methods

To incorporate the experimental data, curve fitting algo-
rithm was applied to obtain temporal continuous density
profiles of myocytes and monocytes based on discrete
experimental data.

Stability analysis of the established mathematical model
To analyse the stability of the proposed mathematical
model, we have calculated the equilibrium point of the
system and performed the Lyapunov stability analysis of
the system.

In our mathematical model, equations (2-7) are
six first-order equations with input M and M.,.
Now we use xi, X9, X3, X4, X5, X6 to denote M,,,
My, My, ILqg, Ty, ILy. We first examined the stability
of the system without any input and obtained an equi-
librium of E; = (x7,%5, %% %3, x5, x%) = (0,0,0,0,0,0).
With the temporal input of monocytes differe-
ntiation and myocytes secretion, our computa-
tional simulation generated a steady state as
E, = (x7, x5, x3, x4, x5, x¢) = (20,1200, 3500, 0.73,1.1,5.9). To
further analyze the stability property of the system, we
chose a positive definite Lyapunov function

1N o
UOEED DT 8)
and obtained its derivative as the following equation

. 6 .
V(x) = ZH Xi;

= 7/1)6% — X1 [kle

X6

X4 ]
X6 +CIL1

X5
+ kal X5+C7, + k4x1 Xg+CiL1o
2 X6 s /
— (i + k1)x5 + kpxaxy ones F Fsx1x; wsren, T K 1%x3%2 9)

Xq

/ 2
(k 1+ ,u)x3 + k1x2x3 + k4e1x3 Xa+CiL10

c

1 2 c 2 c
+ k5x3x4 1+ dmes + k6x2x5 e dIleG + k7x2x6 P

By applying the boundary of the Hill equations, we got

V(x) < —(m+ky+ks+ k4)x§ —(n+hk )x% + koxaxy + k3xixy + K 1x3%2
(10)

— (K1 + ;L)x§ + kixoxs + kgx1x3 — d",mxﬁ + ksxsxg — d-rﬂxg + keXoXs

— d”_lxé + k7xyx6.

Applying the parameters in Table 1 to equation (10),
we got

V(x) < —1.622 — 0.275x3 — 0.25x2 — 2.5x3 — 5542 — 10.5x2 + 1.1x1%; + 0.3%1%3
0.125x5x3 + 0.0005x3x4 + 0.0007x2x5 + 0.0006x2%6
< —0.02x} — 0.02x3 — 0.05x3 — 0.5x — 5x2 — 0.5x% — 1.28(x; — 0.429x,)?
—0.3(x; — 0.5x3)% — 0.25(x3 — 0.25x3)% — 2(x4 — 0.000125x3)?
— 50(x5 — 0.000007x;)? — 10(xs — 0.00003x,)*
< 0.

(11)

Since the derivative of Lyapunov function is negative
semi-definite and the semi-definite is satisfied with all
states equal to zero, the system is globally asymptotically
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stable without any input. Given any bounded differenti-
ate rate of monocytes and myocytes density as input,
the system will have bounded states.

Additional material

Additional file 1: Table 1. Pre-determined parameters from literature }
search.
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