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Abstract

Background: High-throughput RNA interference (RNAI) screens have been used to find genes that, when silenced,
result in sensitivity to certain chemotherapy drugs. Researchers therefore can further identify drug-sensitive targets
and novel drug combinations that sensitize cancer cells to chemotherapeutic drugs. Considerable uncertainty exists
about the efficiency and accuracy of statistical approaches used for RNAi hit selection in drug sensitivity studies.
Researchers require statistical methods suitable for analyzing high-throughput RNAi screening data that will reduce
false-positive and false-negative rates.

Results: In this study, we carried out a simulation study to evaluate four types of statistical approaches (fold-
change/ratio, parametric tests/statistics, sensitivity index, and linear models) with different scenarios of RNAI
screenings for drug sensitivity studies. With the simulated datasets, the linear model resulted in significantly lower
false-negative and false-positive rates. Based on the results of the simulation study, we then make
recommendations of statistical analysis methods for high-throughput RNAi screening data in different scenarios.
We assessed promising methods using real data from a loss-of-function RNAi screen to identify hits that modulate
paclitaxel sensitivity in breast cancer cells. High-confidence hits with specific inhibitors were further analyzed for
their ability to inhibit breast cancer cell growth. Our analysis identified a number of gene targets with inhibitors
known to enhance paclitaxel sensitivity, suggesting other genes identified may merit further investigation.

Conclusions: RNAI screening can identify druggable targets and novel drug combinations that can sensitize cancer
cells to chemotherapeutic drugs. However, applying an inappropriate statistical method or model to the RNAI
screening data will result in decreased power to detect the true hits and increase false positive and false negative
rates, leading researchers to draw incorrect conclusions. In this paper, we make recommendations to enable more
objective selection of statistical analysis methods for high-throughput RNAi screening data.

Background

Over the last decade, short RNA molecules (~20 to 30 nt)
have emerged as critical regulators of the expression and
function of eukaryotic genes. In particular, RNA interfer-
ence (RNAI) is a valuable tool for modulating gene
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expression through the introduction of short interfering
RNAs, including small interfering RNAs (siRNAs) and
short hairpin RNAs (shRNAs) [1]. With its ability to
silence genes in mammalian cells, RNAi has emerged as a
powerful technology to knock down specific genes for
functional analysis and for therapeutic purposes, particu-
larly as we continue to learn more about specific genes
involved in disease processes [2]. Recent research has
focused on the use of high-throughput screens to analyze
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gene expression in cancer cell lines. Several RNAi studies
conducted with human tumor cell lines, using synthetic
siRNAs/shRNAs targeting defined gene families or geno-
mic-wide libraries, have identified modulators of drug
sensitivity [3-6].

Large-scale systematic RNAi screens aim to test hun-
dreds, or even thousands, of siRNAs/shRNAs to identify
hits rapidly and accurately. One major challenge of data
processing and analysis for siRNA or shRNA screens in
cancer research is to identify efficiently and accurately
genes that, when lost, significantly reduce or increase cell
growth/viability in response to chemical treatment. Two
types of error can occur with screening experiments: false-
positives and false-negatives. Strategies to reduce false-
positives and false-negatives in the laboratory setting focus
on making technical and procedural improvements and
increasing the number of replicate measurements. It is
also important to realize that enhanced statistical analysis
methods also play an essential role in reducing error.

A number of statistical approaches have been applied to
the analysis of high-throughput RNAi data. In their appli-
cation, however, it is unclear whether: (1) effects of both
the drug and the RNAI, as well as their interaction effect,
are taken into consideration; (2) quantitative variation
between and within replicates is taken into account in the
estimation; and (3) decision error rates false-positive and
false-negative are appropriately controlled. In this study,
we carried out a simulation study to evaluate and compare
statistical approaches for using RNAi screens to identify
genes that alter sensitivity to chemotherapeutic drugs. We
focused on combined RNAi and drug effect on cell viabi-
lity, control of false-positive and false-negative rates, and
the influence of drug concentration on the statistical
power. The methods being evaluated were also applied to
a real loss-of-function RNAI screening dataset to identify
genes that modulate paclitaxel sensitivity in breast cancer
cells.

Methods

Data processing and normalization

Several sources of noise, including technical and procedural
factors, may influence measurement quality, generating
inferential errors. Usually normalization is done prior to
data analysis in RNAi screening studies such that variations
contributed by unequal amounts of cells and/or RNAi are
substantially reduced. Within-plate normalization can be
performed using the non-silencing RNAi controls in the
plate as a reference to give a relative measurement of
target-gene knockdown effect, often adjusting for the var-
iance by dividing by the standard deviation (SD) or median
absolute deviation (MAD). Some approaches use a positive
control or both positive and negative controls [7], others do
not use a control, including Z score/robust Z score and B
score [8]. Across-plate normalization is the process that
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makes measurements comparable across culture plates by
removing systematic plate-to-plate variation. Common
approaches include mean- or median-centered normaliza-
tion, and standardization. In drug sensitivity studies, how-
ever, it is important to realize that such approaches can
conceal true differences between drug-treated and
untreated plates and consequently produce false-negatives.
Instead, the raw viability data can be centered using the glo-
bal mean or median of untreated non-silencing (NS) siRNA
controls. Therefore, we recommend including untreated
NS controls in all culture plates for drug sensitivity studies.

Statistical approaches

One major purpose of RNAIi screens is to identify genes
that mediate the effects on cells of certain conditions, such
as treatment with a chemotherapeutic drug or endocrine
therapy. Such experiments explore the effect of gene
knockdown in treated versus untreated wells, aiming to
find meaningful associations between genes and the treat-
ment. Different rules have been used to identify hits. A
commonly used parametric approach is mean + kSD
under the assumption of normality [8,9] or its more robust
version by replacing SD with MAD [10]. When distribu-
tion is skewed, a quartile-based method is an option [11].
Strictly standardized mean difference (SSMD) was first
proposed to assess siRNA effect size, and modified later to
balance false-negatives and false-positives in hit selection
[12,13]. In high-throughput RNAi screens designed for
drug sensitivity studies, available statistical approaches are
much fewer; most commonly used by biologists include
fold-change methods (sometimes combined with percent
cell viability), parametric two-sample tests such as the
t-test and Z-factor and their variants, and sensitivity index
(SI).

Under the assumption that most features are not signifi-
cant in high-dimensional data analysis, feature selection
methods like Lasso (L; penalty) and Elastic Nets (both L,
and L, penalty) and their variants are often found useful
and efficient in dimension reduction and feature selection.
However, it may be difficult to adopt similar strategies to
RNAI screening studies for drug sensitivity evaluation
because, firstly, our main interest focuses on testing the
gene-drug interactions, therefore in addition to siRNAs
whose gene-drug interaction effect showed significance,
the final model also needs to include drug effect regardless
of its statistical significance. This however cannot be guar-
anteed by the automatic variable selection methods men-
tioned above. Secondly, when the number of features (p) is
larger than the number of samples (#), lasso methods can
select at most n features. This may be problematic for
RNAI screening studies where p > >n is usual (in practice
such experiments are usually designed with 3, 6, or 9
-replicate). Thirdly, lasso methods generate a number of
most important features. Nevertheless, for gene function
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and drug discovery purposes in a high-throughput screen-
ing experiment, finding features with a small effect can be
substantively important and a ranked list of candidate fea-
tures, based on their significance, are often helpful.

Based on above considerations, we conducted a simula-
tion study to evaluate the performance of commonly
applied methods: fold change, ¢ test, SI. We also fit a linear
model (LM) of the probability of being a hit for each gene
with an interaction term of drug and RNAI effect on cell
viability. Each method is described as below.

Fold change/ratio

Fold change is the most intuitive approach used to repre-
sent the relative cell viability between two conditions,
which usually is calculated as average cell viability (mea-
sured, for example, through an Alamar blue dye assay)
over all wells in a condition divided by average viability
over all wells in another condition. Because most genes
knocked down in a siRNA screen do not have a significant
effect on cell viability/growth in the background of the
treatment, the log2 viability ratios between treated and
untreated wells will be around zero for most genes. An
arbitrary cut-off level, such as two- or three-fold change, is
typically used to select hits for further experiments and
analysis.

Parametric tests/statistics

Many biologists favor tests of two-group comparison for
their easy calculation and interpretation. One widely used
test is Student’s two-sample ¢ test. For each siRNA, a ¢ sta-
tistic, Ti, is computed, and an siRNA is considered signifi-
cant if |Ti | exceeds some threshold. The Z-factor and
Z’-factor have been used for similar purposes; however,
such analysis is usually based on the difference of the aver-
aged readings over replicates between treated and
untreated groups. These methods are more sophisticated
than fold-change in the sense that they not only consider
the average ratios between the groups but also incorporate
information on the variation of the measurements and the
number of replicates in the experiment.

Sensitivity index (Sl)

The SI method was developed to measure the influence of
siRNA-induced gene knockdown on drug sensitivity, by
estimating the difference between the expected and
observed combined effects of RNAi and drug on cell viabi-
lity. Different from the methods discussed above, the SI
method estimates both the influence of siRNA-induced
gene knockdown on drug sensitivity and the individual
drug and RNA:I effects. The SI index can be calculated for
each siRNA as SI = (Rc/Cc*Cd/Cc)-(Rd/Cc), where Rc is
the average viability in drug-untreated wells transfected
with active siRNA, Rd is the average viability in drug-trea-
ted wells with active siRNA, Cc is the average viability in
drug-untreated wells with control siRNA, and Cd is the
average viability in drug-treated wells with control siRNA.
The SI value ranges from -1 to 1, with positive values
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indicating a sensitizing effect and negative values indicat-
ing an antagonizing effect. The SI method makes no
assumption about the underlying probability distribution
and therefore no p-values can be calculated.

Linear models with an siRNA-drug interaction effect

The SI method attempts to estimate combined RNA and
drug effect. Nevertheless, one major disadvantage of the
SI method is that it ignores the cross-plate variation of a
particular siRNA, as the calculation of sensitivity ratio
(Rd/Cd)/(Rc/Cc) involves only averaged reading levels
over the replicate plates. Model-based methods are often
used for feature selection in other types of high-through-
put genomic data, including gene-expression microarray
data and single nucleotide polymorphism (SNP) data. In
our study, we used a simple linear model with an interac-
tion term to assess RNAI effect, drug effect, and their
combined effect. Assuming normal distribution, a full lin-
ear model D, of cell viability (Y) for each siRNA i can be
constructed based on the predictor variables: drug effect
(%15 yes/no), RNAI effect (x,; yes/no), and their interac-
tion term (xq; xy;).

Yi = Bo + Bix1i + Paxoi + B3X1iXoi + & (1)

This model not only allows for estimating the gene-
drug effect but also takes into consideration the variance
among the replicates in its estimations. A test based on
the difference between the deviance of the null model
(model with no explanatory variables) Dy and the
deviance of the fitted full model D, may vyield significant
result when the drug effect is significant, even if the
siRNA does not have any effect on cell viability. There-
fore, we calculated the difference between the residual
deviance of the fitted full model D, and the deviance of
the reduced model D, including only drug effect (x;):

Yi = Bo + Bix1i + & (2)

This statistic, D; -D,, follows a chi-square distribution
with 2 degrees of freedom. The p-value based on this
statistic reflects the combined effect of drug and RNAi
as well as the RNAj effect alone of the given siRNA.
The reason we did not include RNAI effect (x,) in D is
that a significant RNAI effect alone without a significant
interaction effect with drug treatment also provides vital
information about the gene that is silenced, which can
be very useful in identifying novel therapeutic targets for
future studies.

Simulation of datasets

We evaluated the methods using datasets simulated to
represent different scenarios corresponding to a given
combination of parameters of number of true hits, the
amount of noise, the skewness of the data, the strength
of chemotherapeutic drug effect, and the RNAi effect.
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We focused on combined RNAi and drug effect on cell
viability, control of false-positive and false-negative
rates, and the influence of drug concentration on the
statistical power.

Data for ten 96-well plates with three, six, nine, or
twelve replicates were simulated. For each scenario, 500
simulations were carried out. For each simulation, a num-
ber of true hits were drawn randomly from the distribu-
tion Uniform{10, 11, ..., 60} with an average of 35 out of
900 siRNA wells being truly sensitizing or antagonizing.
The viability measurements of the samples transfected
with non-hits were generated from N(uyy, 6°), with o at
values of 0.2, 0.4, 0.6, or 0.8. The distribution of true hits
is assumed to have a shifted mean relative to the distribu-
tion of non-hits: N(u;-C;, 0°) with C; > 1 for a sensitiz-
ing effect and N(up;»Co, 0°) with C, < 1 for an
antagonizing effect (C; =7, C, = 0.15; C; = 5, C5 = 0.3;
C;=2,C,=0.5; and C; = 1.25, C, = 0.8). The average cell
viability in control wells is usually higher than that in
siRNA-transfected wells. The parameter of the chemother-
apeutic drug effect D was used to tune the strength of
such effect. Specifically, the distribution of drug-treated
samples (with active or control siRNA) has a shifted mean
relative to untreated: g, = 4yn*D, D = 0.3, 0.6, and 0.8,
where py = pine > neeCr s pineCz , or pnpK as pre-
viously defined. In addition, parameter K is defined to be
K =1.05, 1.10, 1.15, or 1.2, such that control wells have a
distribution with mean g = y4,,,,*K, where p,,,, = pnp or
yUnerD. Parameters png, 0, C;, Co, D, and K were chosen
such that the simulated data would resemble data with dif-
ferent distributions and properties, similar to those we
have observed in real siRNA screening experiments. In
particular, C; and C, were chosen such that the sensitizing
and antagonizing effects would be equal in magnitude in
order to have roughly same number of true hits simulated
in both directions of the effect.

To evaluate the robustness of the methods for skewed
data, gamma distributions were used instead of normal.
The shape and scale parameters of gamma distributions
were calculated by solving 4 = rA and o = rA® based on
previously used parameters of normal distributions. The
skewness value (2/4/r) is taken to be 0.5, 1, 1.5, or 2.
Two situations were considered: when a strong drug
effect is present (D = 0.3) and when a weak drug effect
is present (D = 0.8).

Criteria for the evaluation of statistical approaches

In practice, RNAi screening studies often involve a great
deal of variation and noise in the raw data. Moreover,
due to cost constraints, the number of replicates is often
very limited. Hypothesis-testing under such conditions
is, therefore, error-prone, with errors falling into two
types: type I error (false-positive, FP) and type II error
(false-negative, FN). To evaluate the performance of the
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methods, we calculated the false-positive rate (FPR) and
the false-negative rate (FNR) of each method and in
each scenario:

FPR = FP/ (FP + TN) = 1 — Specificity,

FNR = FN/ (TP + EN) = 1 — Sensitivity.

The FPR corresponds to the portion of genes that,
when silenced, have no influence on drug sensitivity
among those identified as influential by the method.
The FENR corresponds to the portion of genes influen-
cing drug sensitivity among those claimed non-influen-
tial by the method.

Real data analysis

Paclitaxel is a potent anti-microtubule agent used in the
treatment of patients with locally advanced and metastatic
breast cancer. Despite its wide use, paclitaxel-based che-
motherapy results in full response in only a small portion
of patients; many patients have an incomplete response or
are resistant to treatment. We performed a loss-of-function
RNAI screen to identify genes that modulate paclitaxel sen-
sitivity [14]. We targeted a subset of genes (n = 428) fre-
quently found to be “deregulated” in breast cancers and
known to be associated with a targeted pharmacological
agent (i.e., druggable), with the idea these could be ana-
lyzed in preclinical models for synergistic activity with
paclitaxel. An shRNA screen was initially performed to
identify druggable gene targets; we then validated the top
high-confidence hits from the shRNA screen by designing
two independent siRNAs for each gene, to be assayed in
two representative breast cancer cell lines, MDA-MB-231
and MDA-MB-468. The two cell lines were reverse-trans-
fected with siRNAs complexed with lipid reagent in each
well of a 96-well plate for 48 h and subsequently split into
six replicate plates. Following transfection of siRNAs,
plates/cells then were treated for 24 h + paclitaxel (i.e., 3-
replicate plates +paclitaxel, 3-replicate plates -paclitaxel)
and incubated for an additional 72 h to allow for changes
in cell viability. To account for plate-to-plate variability and
to control for the effects of siRNA transfection, data were
normalized to non-silencing (NS) siRNA or shRNA con-
trols, which do not target any human gene, for all plates.
The full experiment (i.e., transfection, drug treatment, via-
bility assay, and data normalization) was repeated, resulting
in high reproducibility Pearson’s correlation coefficients
~0.70-0.80.

Results

Simulation study

We report nine most representative scenarios simulated
separately for each of the three, six, nine, and twelve-
replicate datasets as described above. Because no critical
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value/threshold can be universally applied to all meth-
ods, results based on significance thresholds of different
methods are not directly comparable. For the purpose of
fair comparison, we selected the same number of hits
from each method according to the true number of hits
simulated in each dataset. We ranked all genes based on
their significance assessed by each method and selected
the top n7y hits (n7y = number of true hits), with half
in each direction. FPRs and FNRs were then calculated
from 500 simulations for each scenario at common tar-
get error control.

We compared the accuracy of the methods at different
combinations of level of noise, drug effect, and RNAi
effect. Table 1 lists simulation features and ranks the
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four methods based on their performances for identify-
ing influential siRNAs in each scenario. In real data ana-
lysis, the degree of noise can be estimated from the
coefficient of variation (CV = o/u) or variance to the
mean ratio (VMR = 0°/u) within the untreated data.
Similarly, the effect of siRNA and the effect of the che-
motherapeutic drug may be estimated from Rc/Cc and
Cd/Cc (see the SI method section), respectively.

Since power = sensitivity = 1-FNR, controlling FNR
automatically controls power/sensitivity. Figures 1, 2, 3,
4,5, 6,7, 8,9 show that the LM always has the lowest
FNR among all four methods compared. The FNR
decreases with the number of replicates in all scenarios
for the ¢ test, LM, and SI methods. In addition, the

Table 1 Recommendation of analysis method based on simulation study

Number of replicates Scenario Noise Drug effect RNA effect Performance ranking order*
3 1 low strong strong LM, t, SI, FC
2 moderate strong strong LM, t, SI, FC
3 strong strong strong LM, t, SI, FC
4 low moderate strong LM, t, SI, FC
5 low weak strong LM, t, SI, FC
6 moderate weak strong LM, ¢, SI, FC
7 strong weak strong LM, SI, t, FC
8 low strong moderate LM, ¢, SI, FC
9 low strong weak LM, t, SI, FC
6 1 low strong strong LM, t, SI, FC
2 moderate strong strong LM, t, SI, FC
3 strong strong strong LM, t, SI, FC
4 low moderate strong LM, ¢, SI, FC
5 low weak strong LM, t, SI, FC
6 moderate weak strong LM, t, SI, FC
7 strong weak strong LM, ¢, SI, FC
8 low strong moderate LM, t, SI, FC
9 low strong weak LM, ¢, SI, FC
9 1 low strong strong LM, ¢, SI, FC
2 moderate strong strong LM, t, SI, FC
3 strong strong strong LM, SI, ¢, FC
4 low moderate strong LM, t, SI, FC
5 low weak strong LM, t, SI, FC
6 moderate weak strong LM, t, SI, FC
7 strong weak strong LM, t, SI, FC
8 low strong moderate LM, t, SI, FC
9 low strong weak LM, t, SI, FC
12 1 low strong strong LM, t, SI, FC
2 moderate strong strong LM, SI, t, FC
3 strong strong strong LM, SI, t, FC
4 low moderate strong LM, t, SI, FC
5 low weak strong LM, t, SI, FC
6 moderate weak strong LM, t, SI, FC
7 strong weak strong LM, t, SI, FC
8 low strong moderate LM, t, SI, FC
9 low strong weak LM, t, SI, FC

* The ranking is based on average FNRs and FPRs of the methods: linear model (LM), t-test (t), sensitivity index (Sl), and fold-change (FC).
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advantage of using the LM is obvious when the drug
effect is low to moderate (in practice, such a drug effect
can result from a low drug concentration). In such
cases, the FNR of LM can be as low as < 10%, while
other methods have a FNR higher than 40%.

When a strong drug effect is present, the SI method is
less powerful with skewed data than with unskewed
data. The LM method is very stable: FNR with skewed
data is only slightly higher than with unskewed data in
simulations with a small number of replicates. The ¢-test

has a similar behaviour as the LM in this situation. On
the other hand, when drug effect is weak, FNR of the
LM decreases faster with number of replicates in the
case of skewed data than in the case of unskewed data.
Our simulation study suggests that the LM method
performs overwhelmingly better than all other methods
considered. When the data have a strong drug and
RNAI effect but with a small number of replicates, the
t-test in general has a better performance than the SI
and fold-change. However, a single ¢-test observation of
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cell viability from one experiment may not yield reliable
results for a specific siRNA, because perceived variability
in that siRNA when the target gene is knocked down
may actually arise from experimental noise. The SI
method may provide a useful alternative to the ¢-test,
potentially resulting in a lower FPR/FNR when the data
has a moderate to high level of noise but strong drug
and siRNA effects. The fold-change method, on the
other hand, is only suitable for data with few or no
replicates, where hypothesis testing cannot apply.
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Hits from shRNA/siRNA screening

After normalization, the SI method was initially applied
to identify gene hits, as this method had recently been
proposed and published as an approach to account for
RNAi-drug interaction. The SI score was calculated for
each of the shRNAs and siRNAs. Genes were then
ranked according to the SI score, and the top hits for
each cell line were selected for further analysis. After the
simulation study described above was completed, we sub-
sequently applied the t-test, fold-change, and LM meth-
ods to the same data. The top hits selected by SI also
ranked very high on the list generated by LM, though a
small number of mismatches were observed (for example,
SP1 was identified as a top hit only in the MDA-MB-468
cell line with the SI method, but ranked high in both cell
lines with the LM method). This is expected because the
data has strong drug and RNAi effects; also we only vali-
dated top hits with the strongest combined effect.

FRAP1 (mTOR) was a hit in both cell lines, as antici-
pated. This gene is a known target for enhancing paclitaxel
sensitivity and was used as a positive control in each plate
of our screen to allow for cross-plate comparisons of drug
sensitivity [5]. EGFR was a top hit in MDA-MB-468 cells,
a breast cancer cell line that overexpresses EGFR and that
is resistant to erlotinib (an EGFR inhibitor); erlotinib pre-
viously has been shown to enhance paclitaxel sensitivity
[15,16]. Centromere protein F, CENPF, a hit in both cell
lines, is associated with the centromere-kinetochore com-
plex and may play a role in chromosome segregation dur-
ing cell mitosis. CENPF is a target of farnesyltransferase
inhibitors (FTIs), known to act synergistically to inhibit
cell growth in combination with agents that prevent
microtubule depolymerization, such as paclitaxel [17].

PPM1D, SP1, and TGF-B1 were hits of particular
interest, as these genes encode proteins with known
chemical inhibitors, which could be tested in combina-
tion with paclitaxel for biological effect. When the che-
mical inhibitors CCT007093 (PPM1D inhibitor) and
mithramycin (SP1-binding inhibitor) were used in com-
bination with paclitaxel, we observed synergistic growth
inhibition of breast cancer cell cultures. We observed
similar results with the transforming growth factor beta
receptor inhibitor, LY2109761, which targets the TGE-
B1 signaling pathway; LY2109761 plus paclitaxel syner-
gistically inhbited growth of breast cancer cell lines in
3D culture. These examples provide strong evidence
that validate our identified druggable gene targets that
modulate paclitaxel sensitivity.

Discussion

It is typical that high-throughput RNAi screening stu-
dies attempt to test hundreds or thousands of siRNAs
with a relatively small number of replicates for each. It
has been brought to our attention that popular
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statistical approaches for analyzing such data, although
commonly applied, appear to have drawbacks in terms
of efficiency and accuracy. Using simulated datasets for
different scenarios, we evaluated and compared these
approaches to the linear model we conducted for esti-
mating both the influence of siRNA-induced gene
knockdown on drug sensitivity and the individual effects
of the drug and siRNA on cell viability. Overall, the LM
method outperforms other evaluated methods mainly
because it not only takes the variation among replicate
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Figure 8 Scenario 8. Low noise, high drug effect, moderate RNA
effect.

measurements but also focuses on estimating the com-
bined effect of drug and RNAi by incorporating an
interaction term in the model.

Because a relatively small number of true hits (10 to
60) in our study were simulated among 900 siRNAs, the
numbers of both false-negatives and true-positives are
small relative to the total number of siRNAs, making
the FNR very sensitive to the total number of true-posi-
tives. On the other hand, the number of true-negatives
is large relative to the number of false-positives; there-
fore FPRs are, in general, very low (< 5%).

The ¢ test and the LM method we applied require a
normality assumption for the residuals, which may not
hold in real data analysis. Therefore we have also consid-
ered non-parametric tests such as the Wilcoxon rank-
sum test. Nevertheless, because non-parametric tests
trade-off power for increased robustness and wider
applicability, the sample size for most RNAi screening
studies will be too small to enable conclusions from non-
parametric tests with the same degree of confidence as
from parametric tests. Intuitively, a mixed effect model
can be used to take possible correlation between controls
and siRNAs on the same plate into consideration. With
the very small sample size typical of RNAIi screening stu-
dies, however, a mixed effects model would lack suffi-
cient power because of the degrees of freedom added to
the model due to a nested factor. A practical solution is
to apply normalization techniques prior to the statistical
analysis to minimize between-plate variation.

As previously mentioned, in practice, low drug effect
usually results from low drug concentration. Interest-
ingly, recent studies have identified targets that sensitize
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cancer cells to chemotherapy drugs of a much lower
concentration than otherwise required, such as pacli-
taxel for non-small-cell lung cancer cells [18]. In such
studies, analysis based on the LM can be much more
powerful and more accurate than the other methods dis-
cussed, especially the ratio-based approaches.

Conclusions

RNAI screening can identify genes that mediate sensitiv-
ity or resistance to certain chemotherapeutic drugs and
novel drug combinations that can sensitize cancer cells
to a chemotherapeutic drug. However, applying an inap-
propriate statistical method or model to RNAIi screening
data will result in decreased power to detect true hits,
increase the false-positive and false-negative rates, and
consequently lead to incorrect conclusions. Based on
the results of our simulation study, the authors have
made recommendations to enable objective selection of
statistical analysis methods for high-throughput RNAi
screening data.
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