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Abstract

Background: Chinese cabbage (Brassica rapa ssp. pekinensis) is a member of one of the most important leaf
vegetables grown worldwide, which has experienced thousands of years in cultivation and artificial selection. The
entire Chinese cabbage genome sequence, and more than forty thousand proteins have been obtained to date.
The genome has undergone triplication events since its divergence from Arabidopsis thaliana (13 to 17 Mya),
however a high degree of sequence similarity and conserved genome structure remain between the two species.
Arabidopsis is therefore a viable reference species for comparative genomics studies. Variation in the number of
members in gene families due to genome triplication may contribute to the broad range of phenotypic plasticity,
and increased tolerance to environmental extremes observed in Brassica species. Transcription factors are important
regulators involved in plant developmental and physiological processes. The AP2/ERF proteins, one of the most
important families of transcriptional regulators, play a crucial role in plant growth, and in response to biotic and
abiotic stressors. Our analysis will provide resources for understanding the tolerance mechanisms in Brassica rapa
ssp. pekinensis.

Results: In the present study, 291 putative AP2/ERF transcription factor proteins were identified from the Chinese
cabbage genome database, and compared with proteins from 15 additional species. The Chinese cabbage AP2/ERF
superfamily was classified into four families, including AP2, ERF, RAV, and Soloist. The ERF family was further divided
into DREB and ERF subfamilies. The AP2/ERF superfamily was subsequently divided into 15 groups. The
identification, classification, phylogenetic reconstruction, conserved motifs, chromosome distribution, functional
annotation, expression patterns, and interaction networks of the AP2/ERF transcription factor superfamily were
predicted and analyzed. Distribution mapping results showed AP2/ERF superfamily genes were localized on the 10
Chinese cabbage chromosomes. AP2/ERF transcription factor expression levels exhibited differences among six
tissue types based on expressed sequence tags (ESTs). In the AP2/ERF superfamily, 214 orthologous genes were
identified between Chinese cabbage and Arabidopsis. Orthologous gene interaction networks were constructed,
and included seven CBF and four AP2 genes, primarily involved in cold regulatory pathways and ovule
development, respectively.

Conclusions: The evolution of the AP2/ERF transcription factor superfamily in Chinese cabbage resulted from
genome triplication and tandem duplications. A comprehensive analysis of the physiological functions and
biological roles of AP2/ERF superfamily genes in Chinese cabbage is required to fully elucidate AP2/ERF, which
provides us with rich resources and opportunities to understand crop stress tolerance mechanisms.
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Background

The AP2/ERF transcription factors superfamily is one of
the largest groups of transcription factors in plants,
which includes at least one APETALA2 (AP2) domain.
According to the number of AP2 domains, and the pres-
ence of other DNA binding domains, AP2/ERF can be
divided into the ERF, AP2, RAV and Soloist families. The
ERF family encodes proteins with a single AP2 domain,
while the AP2 gene family codes for transcription factors
with two AP2 domains [1-3]. With the exception of a
single AP2 domain, however, there is one additional B3
domain in the RAV gene family. The B3 domain is a
DNA-binding domain conserved in other plant specific
transcription factors [4].

To date, two major schemes have been applied to de-
fine the ERF family nomenclature. According to DNA
binding domain protein sequences, the ERF family was
divided into two major subfamilies, the ERF and DREB
subfamilies. ERF and DREB were divided into six groups
in Arabidopsis [5]. Alternatively, based on AP2/ERF do-
main amino acid sequences, Arabidopsis and rice ERF
families were divided into 12 and 15 respective groups
[2]. Similarly, 10 groups were identified in the grape and
cucumber ERF family [1,4].

Despite high sequence conservation in the AP2/ERF
domain, each family exhibits different DNA elements.
Generally, the ERF subfamily binds to an AGCCGCC se-
quence, i.e. the GCC box [6], while the DREB subfamily
typically interacts with a CCGAC core sequence [7]. The
AP?2 family, even with the presence of two AP2 domains,
does not bind to the CCGA/CC sequence as in DREB/
ERF subfamilies, but binds to the GCAC(A/G)N(A/T)
TCCC(A/G)ANG(C/T) element [8,9]. AP2 family genes
are regulated by microRNA (miR172), and can be di-
vided into AP2 and ANT groups [10,11]. RAV family
binds to the CAACA and CACCTG sequence. Such as
pepper CARAV1 can recognize and bind to these motifs,
and activate the yeast reporter gene [12].

A variety of AP2/ERF transcription factors have been
successfully identified and investigated in some plants, in-
cluding Arabidopsis, rice [2,13], grape [1], poplar (Populus
tricocarpa) [14], wheat (Triticum aestivum) [15], cucum-
bers [4], barley (Hordeum vulgare) [16], and soybean
(Glycine max) [17]. The AP2/ERF transcription factors
regulate diverse biological processes in plant function and
development, such as hormones, reproduction, cell prolif-
eration, abiotic and biotic stress responses [18,19].

Commonly, the DREB subfamily is used as viable can-
didate to enhance crop abiotic stress tolerance. The
DREB subfamily exhibits different response patterns
under environmental stress, including low-temperature
(AtCBFI) [20], heat (ZmDREB2A, AtDREBIA) [21,22],
osmotic (CkDREB) ([23], drought (OsDREBI) [24,25],
and water-deficit and high-salt stress (CaDREBLPI) [26].
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The DREB transcription factors activate multiple dehy-
dration/cold-regulated genes by interacting with DRE/
CRT elements (A/GCCGAC), which are present in the
RD/COR gene promoters [1]. In addition, several DREB
subfamily genes are reportedly positive and negative me-
diators of ABA and sugar responses, primarily during
germination and early seedling stages [27].

ERF transcription factors are also involved in signal
pathways during environmental stress or pathogen and
disease-related stimuli. ERF transcription factors directly
regulate pathogenesis-related (PR) gene expression by
binding DNA with the GCC-box (GCCGCC), such as
PR1 to PR5 [6,28,29]. ERF transcription factors play an
important role in plant development, as well as tolerance
to biotic and abiotic stress. ERF transcription factor
overexpression has been reported in rice [30,31], tomato,
and tobacco [32,33], leading to drought and salt tolerant
improvements in transgenic plants. Signal molecules,
including JA, salicylic acid (SA), ethylene (ET), and
abscisic acid (ABA) regulate several important defense-
signaling pathways. ERF transcription factors potentially
play a role in abiotic and biotic stress in plants, such as
drought (SHN1, SHN2 and SHN3), salt (AP37), freezing
(TaERFI) [34-36], hypoxic stress (SNORKELI, SNOR-
KEL2, RAP2.2, AtERF73 and HREI) [1,37,38], cell dediffer-
entiation (WINDI) [39], metabolite biosynthesis (LeERF-1,
Nud), and trait development (ORCI, ERN and EFD)
[40-44]. Most of these ERF transcription factors improve
abiotic tolerance in crops without causing undesirable
growth phenotypes [18]. However CRLS5, an AP2 subfam-
ily in rice, promoted crown root initiation in response to
ABA [45]. Moreover, CRLS affected sepal abscission
(BnAP2), plant height (NsAP2), and leaf shape in Brassica
napus, water lily, and maize [46-48]. The RAV family was
shown to mediate plant defense during abiotic and biotic
stress. CaRAV1 overexpression increased tolerance to high
salinity and osmotic stress in Arabidopsis, and the B.
napus RAV-1-HY1S5 gene was induced by cold, NaCl, and
PEG treatments [49,50]. These observations emphasize
the importance of identifying all AP2/ERF superfamily
genes to interpret the mechanisms underlying stress
signal transmission, and ultimately manipulate AP2/
ERF protein regulation to improve crop stress resist-
ance. ERF-mediated plant defense responses can be bet-
ter understood by elucidating the signaling pathways
involved in defense response regulation.

Chinese cabbage, a member of the genus Brassica, is
an important leaf vegetable crop grown worldwide. The
Chinese cabbage genome (Chiifu-401-42) was recently
sequenced and assembled. Data indicated B. rapa ssp.
pekinensis exhibits a close relationship with A. thaliana,
and experienced a whole genome triplication since its di-
vergence from Arabidopsis 13 to 17 Mya [51,52]. The re-
lease of the entire Chinese cabbage genome sequence, as
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well as others, including Arabidopsis, potato, and tomato,
provided us an opportunity for comparative genome re-
search on AP2/ERF transcription factors. Characterization
of AP2/ERF superfamily genes in B. rapa ssp. pekinensis
can serve to clarify the molecular mechanisms responsible
for abiotic and biotic stress responses, such as cold, heat,
salt, or disease resistance. Subsequently, Brassica varieties
with increased tolerance to many adverse environments
can be developed using transgenic technology. A recent
study reported 62 AP2/ERF superfamily genes using
expressed sequence tags (ESTs) in Chinese cabbage [53].
In this study, we systematically and comprehensively de-
scribe the AP2/ERF transcription factors in B. rapa
ssp. pekinensis through a comparative genome analysis.
The objectives of our study were as follows: (i) identify
and characterize the AP2/ERF transcription factors in
the B. rapa ssp. pekinensis genome; (ii) analyze AP2/
ERF transcription factor phylogenetic relationships and
orthologous genes between the B. rapa ssp. pekinensis
and A. thaliana genome; and (iii) construct AP2/ERF
transcription factor interaction networks, and analyze
AP2/ERF transcription factor expression patterns through
comparative genomics. ESTs were applied in AP2/ERF
transcription factor expression analyses.

Results

Identification of the AP2/ERF family transcription factors
in Chinese cabbage

Our extensive search for AP2-domain containing pro-
teins identified 291 distinct AP2/ERF putative transcrip-
tion factors (Additional file 1: Table S1). A total of 248
genes with a single AP2/ERF domain were assigned
to the ERF family. Twenty-nine genes were grouped into
the AP2 family, twenty of which were identified due to
the tandem repeated double AP2/ERF motif. The re-
maining nine genes (Br002, Br004, Br015, Br030, Br048,
Br077, Br155, Br178 and Bri86) contained only one AP2
domain, however these genes exhibited high similarity
with the Arabidopsis AP2 family. In fact, the single AP2
domain was similarly reported in Arabidopsis, e.g. At078,
At062, and At159. Fourteen genes, with a single AP2/ERF
DNA binding domain and a B3 domain, were assigned to
the RAV family. The Br265 gene was not only divergent
from the ERF family, but was homologous to Arabidopsis
Soloist (At4g13040). A similar gene was identified in P.
trichocarpa and named Soloist.

We subdivided the Chinese cabbage AP2/ERF genes
into 15 groups, based on conserved domain similarities
to Arabidopsis AP2/ERF transcription factors. Cumula-
tively, the number of AP2/ERF transcription factors in
Chinese cabbage exceeded that in Poplar (202), rice
(196), and potato (227). Chinese cabbage AP2/ERF tran-
scription factors were nearly two times that detected in
grape (149), tomato (167), and Arabidopsis (167). The
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RAYV family number in Chinese cabbage (14) was larger
than in other plant groups, including Arabidopsis (6),
rice (4), tomato (3) and potato (2). The AP2 family do-
main number was equal in Chinese cabbage (49) and po-
tato, but rice showed more (61), and Arabidopsis (42),
and tomato (42) fewer, among other species. The Soloist
protein, coded by a single-copy gene and characterized
by low conservation at the ERF DNA-binding domain,
was detected in all higher plant genomes examined. The
number of DREB, ERF, and RAV transcription factors in
Chinese cabbage exceeded that in each species analyzed.
All five AP2/ERF families existed in the higher plants ex-
amined, with the exception of Pinus taeda and Picea
sitchensis, where the RAV family was absent. In some
lower plants, only the AP2 family and ERF subfamily
were identified. AP2/ERF transcription factors were not
identified in lichens, fungi, and other lower plants in our
analyses (Figure 1).

Phylogenetic analysis of AP2/ERF transcription factors
family

The evolutionary relationship between Chinese cabbage
and Arabidopsis based on AP2/ERF transcription factors
was assessed by phylogenetic reconstruction using the
conserved AP2/ERF transcription factor domain. The
resulting phylogenetic tree (Figure 2) resolved 15 clades,
containing the ERF, AP2, RAV and Soloist families, con-
gruent with previous studies [2,5]. Groups I to VI repre-
sent the ERF subfamily, and VII to XII the DREB
subfamily. Groups XIII, XIV and XV respectively indi-
cate the AP2, RAV and Soloist families. Although the
Soloist transcription factor contained a single AP2 do-
main in Chinese cabbage, it clustered with the RAV fam-
ily, while the Soloist transcription factor grouped with
the AP2 family in grape [1]. We conducted a more in
depth phylogenetic analysis of the AP2 family by
selecting the AP2 family proteins, which contain two
AP2 domains. Chinese cabbage and Arabidopsis were
divided into two groups, which we named AP2-R1 and
AP2-R2. A third group of AP2 transcription factors
were formed when a phylogenetic tree was constructed
using the AP2 family proteins of all species analyzed
(Additional file 2: Figure S1, Figure S2).

The conservative motifs among AP2/ERF proteins in
plants were clarified by performing multiple alignment
analyses using amino acid sequences of the AP2/ERF do-
main. For each AP2/ERF family, several genes were se-
lected in one of each species to identify the motifs.
Sequence alignment showed the motif length in the
RAV family was longest, and contained 50 amino acids,
followed by DREB and Soloist (41 amino acids). How-
ever, in the AP2 family, 29 amino acids were detected in
the motif. The AP2 family contained two groups (AP2-
R1, AP2-R2), which might be responsible for the



Song et al. BMIC Genomics 2013, 14:573
http://www.biomedcentral.com/1471-2164/14/573

Page 4 of 15

® APz

@ DREB
ERF

® RAV

Brassica

Number of domains
Species

APZ DREB ERF RAV Soloist

M 4 Brassica rapa 49 109 139
Capuclia idopsis thaliana a2 74

Soloist 0 Lyoopersion w 58
None Mognoophyta 4‘%‘: & Solanum lycopersicum a2 a4 100
Soanum @ Solanum tuberosum a9 58 136
Spermatophyte M:nnmmeaunaae & Onyzasatva o 5 "
inus
Lt & Picea sitchensis 3 10 16
Higher plant Plrkdophyia

Bryophyta

- i m i 25 23

patens 22 76

w Y
Flantag Chiorophycese @ volvox carteri 17 0
'_‘—{7 G i 18
Chiorophyta Chlorella vulgaris ]

Lower plant I
Rhodophyta

) Ostreococcus tauri

Lichenes

G i merolae

Fungi

Cetraria islandica

oo oo
oo o ooo

coc o wo o & 2R

c o0 o000 O NWOORNW R
O c o0 000 ONWL - 2w 22y

a domain.

Figure 1 AP2/ERF transcription factor comparisons among different species. Different colors represent each family domain in the AP2/ERF
superfamily. The colored sections represent the number of transcription factor domains identified in a species. Gray represents the absence of

J

reduced motif length. On the one hand, the divergence
between two groups might affect the AP2 family motif
length. Generally, the higher the divergence, the shorter
the motif. The same explanation might be used for the
ERF subfamily (27 amino acids), which contained six
groups, and also exhibited a shorter conserved motif. Al-
though six groups were identified in the DREB and ERF
subfamilies, the conserved motif was much longer than
in the ERF subfamily (Additional file 2: Figure S3). The

differences within the AP2/ERF family were further an-
alyzed by examining the DREB, ERF and AP2 con-
served motifs using the MEME program. The results
showed five of six ERF groups had a 50 amino acid con-
served motif, with the exception of the ERFB3 group,
which contained 27 amino acids in the conserved motif
(Additional file 2: Figure S4). Therefore, if the ERF sub-
family motif length was dependent on the ERFB3
group, it might be responsible for the overall shorter

Figure 2 Phylogenetic tree constructed from the neighbor-joining method using AP2/ERF transcription factor domains in Chinese
cabbage and Arabidopsis. The tree was divided into 15 groups, which contained ERF (DREB and ERF subfamily), AP2, RAV and Soloist family.
The pentagram represents paralogous genes of Chinese cabbage. Circles represent orthologous genes from Chinese cabbage (blue) and
Arabidopsis (red). The phylogenetic tree was constructed using MEGAS. The numbers are bootstrap values based on 1000 iterations. Only

bootstrap values larger than 50% support are indicated.
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ERF subfamily motif. In the DREB subfamily, a shorter
conserved motif was observed in DREBA1 compared to
the remaining DREB group (50 amino acids), and it
showed increased similarity to DREBA3 to DREBA6
groups (Additional file 2: Figure S5). The AP2-R2
group contained 41 amino acids in the conserved motif,
and 29 amino acids were identified in the AP2-R1
group conserved motif (Additional file 2: Figure S6).

Sequence alignment of all AP2/ERF families indicated
that LG, AA, and YD elements were highly conserved
(Additional file 2: Figure S7). The WLG element in
DREB, ERF, and RAV was more highly conserved than
in AP2 and Soloist (Additional file 2: Figure S3). In the
AP2 family, some WLG elements converted into YLG el-
ements, however in the Soloist family, WLG converted
into HLG elements. The AYD element was conserved in
the AP2/ERF superfamily, with the exception of DREB
and Soloist, where it was converted into the AHD elem-
ent in the DREBA1 and DREBA4 groups. In the Soloist
family, the LYD element replaced AYD (Additional file 2:
Figure S5, Figure S6).

Orthologous AP2/ERF genes between Chinese cabbage
and Arabidopsis

Comparative genome analysis confirmed Chinese cab-
bage underwent genome triplication since its divergence
from A. thaliana. Therefore, many collinear blocks were
observed between the Chinese cabbage and Arabidopsis
genomes. Interestingly, gene number in the Chinese cab-
bage genome was notably less than three times the
Arabidopsis gene number. These results indicated gene
loss during polyploid speciation in many eukaryotes
[52]. Comparative analysis was applied to identify
orthologous AP2/ERF transcription factors to assess
AP2/ERF gene triplication between Chinese cabbage and
Arabidopsis; and orthologous genes were shown using
the Circos program. Using Blast, we compared AP2/ERF
transcription factors, and resolved 214 genes in Chinese
cabbage, which exhibited a higher sequence similarity
(amino acid identity > 75%) with 128 Arabidopsis genes.
These results demonstrated that in Chinese cabbage,
the AP2/ERF transcription factor duplication accom-
panied genome triplication (Additional file 2: Figure S8,
Additional file 1: Table S2). Results indicated three of
the 214 genes anchored in the scaffolds (Br270-ERF-BI,
Br288-DREB-AS5 and Br290-DREB-A6). The accession
numbers are respectively Bra036016, Bra040309, and
Bra040381 in the Chinese cabbage databank. An inter-
action network was constructed associated with AP2/
ERF Arabidopsis orthologs using AP2/ERF genes from
Chinese cabbage. Pearson correlation coefficient of
seventy-seven gene pairs was greater than zero, and
twenty-five gene pairs was less than zero (Figure 3). Fur-
thermore, we investigated the Chinese cabbage paralogous
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AP2/ERF transcription factors. One hundred sixty nine
AP2/ERF transcription factors showed high homology
(> 80%) to the AP2/ERF proteins (Additional file 2:
Figure S9, Additional file 1: Table S3). The orthologous
and paralogous genes were indicated in the phylogen-
etic tree (Figure 2).

Duplication events have been studied in grape, and 17
proteins with high similarity sequences were reported
[1]. We identified 15 duplicated genes in the Chinese
cabbage genome, with a 95% sequence similarity. Among
the 15 duplicated genes, 11 were classified as ERF sub-
family, and the remaining were determined DREB sub-
family genes (Table 1).

Chromosome distribution of the AP2/ERF family
transcription factors

Among all AP2/ERF family transcription factors re-
solved in the Chinese cabbage genome, 137 genes be-
long to the ERF subfamily, followed by DREB (107
genes), AP2 (29 genes), RAV (14 genes) and Soloist (1
gene) transcription factors (Table 2). The 288 total
AP2/ERF transcription factors were distributed on the
10 Chinese cabbage chromosomes (Figure 4), and three
genes could not be assigned to any specific chromo-
some. Chromosomes 3 and 9 had the highest number
of AP2/ERF transcription factors, with 41 and 40 genes,
respectively; and the lowest AP2/ERF transcription fac-
tor number was found on chromosomes 4 (15 genes)
and 10 (18 genes). The high AP2/ERF sequence number
on these two chromosomes was primarily due to the in-
creased number of DREB (16 and 18 genes) and ERF
(20 and 18 genes) subfamilies. The subfamilies were re-
sponsible for 87.8% and 90% of the total AP2/ERF
superfamily on chromosomes 3 and 9, respectively.
Interestingly, results identified conserved sequences
and physical proximity of repetitive transcription fac-
tors, which belong to the same group, and were located
on the same chromosomal regions, as follows: Bri81 to
Bri85 (ERFB3 group), and Br286 to Br287 (ERFB3)
were located on chromosome 1; Br233 to Br235
(ERFB1), and Bri08 to Bri09 (ERFB3) were located on
chromosome 7; Br074 to Br076 (DREBA1), and Bri58
to Bri60 (ERFB3) were located on chromosome 8;
Br207 to Br208 (ERFB1), and Br254 to Br256 (ERFB1),
and Br274 to Br275 (ERFB6), and Br216 to Br218
(DREBA4) were located on chromosome 9. Similar pat-
terns were also found in the Arabidopsis [5], grape, and
poplar genomes [1,14], which were suggested to repre-
sent paralogous segments resulting from ancestral
polyploidization events. The highest RAV transcription
factor number was found on chromosome 6 (six genes),
followed by chromosomes 2, 5, 8, and 9 (two genes on
each chromosome), while RAV transcription factors
were not detected on chromosomes 1, 3, 4, 7, and 10.
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AP2/ERF superfamily transcription factor expression
patterns in Chinese cabbage

AP2/ERF transcription factors were integral in plant
growth. Therefore, we constructed AP2/ERF transcrip-
tion factor functional pathways for comprehensive re-
search. The pathway diagrams showed that 65, 54, and
25 AP2/ERF proteins were involved in metabolic and
regulatory pathways, and secondary metabolic biosyn-
thesis, respectively (Additional file 2: Figure S10, Figure
S11, Figure S12). AP2/ERF protein function in Chinese
cabbage was examined by predicting tissue function and
expression using ESTs. To date, 168,703 total ESTs,
more than 30,000 unique genes, and a corresponding
expression profile of Chinese cabbage have been pub-
lished. These data provided us with rich resources for
gene discovery, genome annotation, and studies of gene
expression patterns. A total of 174 AP2/ERF transcrip-
tion factors were obtained by expression profile tags

(Additional file 1: Table S4), which contained 96
(55.2%) ERF, 58 (33.3%) DREB, 12 (6.9%) AP2, 7 (4.0%)
RAV, and 1 (0.6%) Soloist genes (Table 3, Additional file 2:
Figure S13). The expression patterns of these AP2/
ERF transcription factors in various tissues, and ana-
lysis of the overall similarities and differences among
transcriptomes of different tissues or organs were
obtained by performing coordinated gene expression
analyses of Chinese cabbage ESTs derived from differ-
ent tissue types. The AP2/ERF transcription factors
were detected in six tissues, including buds, flowers,
leaves, roots, seeds, and siliques. AP2/ERF transcrip-
tion factor transcripts were most abundant in roots
42,027 (31.95%), followed by seeds 30,120 (22.90%),
leaves 26,384 (20.06%), and flowers 17,288 (13.14%). Few
AP2/ERF superfamily genes were detected in siliques
8,051 (6.12%) and buds 7,677 (5.84%) (Additional file 2:
Figure S14).
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Table 1 The gene duplication of AP2/ERF superfamily in
Chinese cabbage

Transcription factor Transcription factor Identity(%) E-value
name (B. rapa ssp. name (B. rapa ssp.

pekinensis) pekinensis)

Br183-ERF-B3 Br182-ERF-B3 100 2.00E-123
Br183-ERF-B3 Br181-ERF-B3 100 2.00E-123
Br132-ERF-B3 Br213-ERF-B3 100 0
Br261-ERF-B6 Br260-ERF-B6 100 5.00E-53
Br014-DREB-A5 Br154-DREB-A5 97.65 9.00E-60
Br158-ERF-B3 Br159-ERF-B3 100 2.00E-102
Br260-ERF-B6 Br261-ERF-B6 100 9.00E-55
Br181-ERF-B3 Br182-ERF-B3 100 2.00E-123
Br181-ERF-B3 Br183-ERF-B3 100 2.00E-123
Br217-DREB-A4 Br216-DREB-A4 100 8.00E-105
Br217-DREB-A4 Br218-DREB-A4 99.2 1.00E-104
Br111-ERF-B3 Br250-ERF-B3 95.6 1.00E-37
Br159-ERF-B3 Br158-ERF-B3 100 5.00E-102
Br250-ERF-B3 Br111-ERF-B3 95.19 2.00E-46
Br216-DREB-A4 Br217-DREB-A4 100 8.00E-105
Br216-DREB-A4 Br218-DREB-A4 99.2 1.00E-104
Br213-ERF-B3 Br132-ERF-B3 100 0
Br182-ERF-B3 Br181-ERF-B3 100 2.00E-123
Br182-ERF-B3 Br183-ERF-B3 100 2.00E-123
Br218-DREB-A4 Br216-DREB-A4 99.2 8.00E-105
Br218-DREB-A4 Br217-DREB-A4 99.2 8.00E-105

The 174 AP2/ERF transcription factors were detected in
some tissues but not others (Figure 5). The highest num-
ber of transcription factors was found in coexisting in
leaves, roots and seeds (23 genes, 13.22%), followed by
genes coexisting in flowers, leaves, roots and seeds (17
genes, 9.77%), and in roots (13 genes, 7.47%) (Additional
file 1: Table S5). Furthermore, 11 (6.32%) genes were iden-
tified in all six tissues, which contained eight ERF genes,

Table 2 Chromosomal distribution of AP2/ERF
superfamily in Chinese cabbage

Chromosome DREB ERF AP2 RAV Soloist Total
AO1 9 16 3 0 0 28
AO02 10 16 5 2 0 33
A03 16 20 5 0 0 41
A04 9 6 0 0 0 15
AO5 7 9 3 2 0 21
AO6 6 11 3 6 0 26
AO7 15 15 4 0 0 34
AO8 12 15 2 2 1 32
A09 18 18 2 2 0 40
A10 5 11 2 0 0 18
Total 107 137 29 14 1 288
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and three DREB genes. In which, the Br163-ERF-B2 and
Br240-ERF-B2 showed the higher expression in flower
than other genes. Gene number in buds, flowers, leaves,
roots and seeds was respectively 9, 2, 6, 13 and 4, however
gene expression was not detected in siliques. AP2/ERF
gene expression in the six tissues varied; expression peaks
were detected for the Bri12-ERF-B3 gene in the roots.
The DREB subfamily exhibited the highest expression in
siliques for the BrOOI-DREB-A3 gene, while it was not
detected in leaves and seeds. The BrOO8-ERF-BI showed
the highest expression level in leaves and seeds compared
to the other genes. Surprisingly, the Br201-ERF-B6 gene
showed the highest expression levels in buds compared to
other genes and tissues. Especially, it was not expressed in
other five tissues. Results showed high expression in seeds
for the RAV family, which demonstrated RAV transcrip-
tion factors were primarily related to fruit development.
Expression levels of AP2 transcription factors were lower
than most other AP2/ERF genes, and mainly expressed in
flowers, buds, seeds, and roots. Detailed expression
values and clusters of each AP2/ERF transcription fac-
tor were analyzed using cluster analysis based on EST
tags from each tissue type (Figure 6, Additional file 2:
Figures $S15-5S18).

AP2/ERF protein annotations and interactions among
specific proteins

The predicted Chinese cabbage AP2/ERF superfamily
proteins were annotated based on alignment to TrEMBL,
Iprscan, SwissProt, GO and KEGG databases using
BLASTP at an E value of 1x 10~°. Each AP2/ERF protein
annotation from the five protein databases was integrated,
and results provided in a supplemental file (Additional
file 1: Table S6). Most AP2/ERF proteins belong to the ERF
and DREB subfamily. It is interesting we identified seven
CBF-like proteins according to the Arabidopsis functional
information, which might be related to freezing tolerance in
Chinese cabbage. Six of the seven genes were identified as
the DREBA1 group, and one protein was classified with
the DREBA4 group. Subsequently, Chinese cabbage and
Arabidopsis protein interactions, including functional and
physical interactions were examined used STRING software
and the corresponding database to retrieve the among pro-
tein interactions. Five proteins, which exhibited increased
sequence similarity with CBFI (Br074, Br075, Br076 and
Br171) and CBF2 (Br147) were involved in one interaction
network. The Br222 gene, which showed high homology
with CBF4 was involved in another network with the VRN1
protein (Figure 7). The former network largely participated
in cold regulatory pathways, as most factors affected cold
stress, including PIF7, LOS4, CBFI, CBF2, and ADA2A
[54-57]. Former research suggests the VRNI and CBF4
network might be involved in vernalization, flowering time,
or drought adaptation [58,59]. We also found four proteins
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chromosome. Scale is in megabases (Mb).

(Br002, Br030, Br200 and Br266) in the AP2 family associ-
ated with ovule development; and Br266 interacted with
ASNI, BZO2H3 and DIN4 (Figure 8).

Discussion

Chinese cabbage is a member of the Brassica genus, and
B. rapa crops are widely used as vegetables, oilseed, con-
diments, and fodder. Given the important economic

value of the species, and its close relationship to A.
thaliana, the Chinese cabbage genome has been recently
sequenced and assembled. Arabidopsis, a dicotyledonous
species, was the first taxon with its whole genome se-
quenced and released. Subsequently, the entire genomes
of more and more taxa were sequenced, such as the
dicot species Chinese cabbage, potato and tomato, and
the monocot species rice, among many other plant taxa.
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Table 3 The expressed number of AP2/ERF genes in six tissues

Type Bud Flower Leaf Root Seed Silique Type-num Percentage (%)
AP2 6 8 4 8 3 2 12 6.9

DREB 12 17 35 41 27 13 58 333

ERF 31 38 70 75 64 22 96 552

RAV 0 5 6 7 7 7 7 4.0

Soloist 1 0 0 0 0 0 1 0.6

Total 50 68 115 131 101 44 174 100

These data provided us with rich resources for compara-
tive genomic analyses. Furthermore, with the rapid de-
velopment in bioinformatics analyses, the information
stored in various plant genomes could be explored to
elucidate the mechanisms regulating plant growth and
development. Plant genome analysis could also facilitate
genome and gene evolution studies.

Recent research in structural and functional genomics in
higher plant model species e.g. Arabidopsis and rice [2]
have shown thousands of transcription factors are involved
in stress response and plant development. The AP2/ERF
genes are viable candidates to improve abiotic and biotic
stress in plants, including cold, heat, drought, salt, fungal,
and bacterial pathogens. For example, some ERF proteins
exhibit resistance to a wide range of pathogens. Further-
more, the AP2/ERF transcription regulators are involved in
plant metabolite biosynthesis and trait development, e.g.
flowers and roots [18]. However, the AP2/ERF gene charac-
ters in Chinese cabbage remain unknown. Therefore, it is
essential to identify and annotate the new AP2/ERF genes
in Chinese cabbage. In the present study, we identified all
AP2/ERF transcription factors in the whole Chinese cab-
bage genome, and characterized the transcription factors
expression patterns in six different tissues.

A comparison of species homologs, including sequenced
genomes and expression profiles, might aid in understand-
ing the role of these transcription factors in Chinese
cabbage. We assume transcription regulators within the
same taxonomic group exhibit recent common evolution-
ary origins, and specific conserved motifs related to
molecular functions. We use this assumption as an effective
and practical means to predict unknown protein functions,
derived from structural relationships in Arabidopsis [2].
Due to the close relationship between Chinese cabbage
and Arabidopsis, the highly homologous genes were
identified and used to predict functions in Chinese cab-
bage. Finally, we identified five AP2/ERF genes, which
showed high similarity (> 90%) with corresponding genes
in Arabidopsis (Additional file 1: Table S2). Following
the homologous gene annotations in Arabidopsis, we
determined the five AP2/ERF gene functional roles in
Chinese cabbage. For example, the Br270-ERF-B1 tran-
scription factor, which exhibited high sequence similarity
with the A£3g15210 gene, likely act as a negative regulator
of JA-responsive defense gene expression, and antagonizes
JA inhibition of root elongation [60]. The annotation of
Br214-ERF-B3 (homology with At1g04370 and At5¢43410
genes) showed it is a disease resistance gene [61], and
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Figure 5 Venn diagram depicting the distribution of shared expression AP2/ERF genes among six Chinese cabbage tissues, i.e. leaves,
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Figure 6 Expression profile cluster analysis of the Chinese
cabbage ERF subfamily proteins. The expression values of each ERF
subfamily gene identified in the study was measured by EST tags from
six tissues, i.e. leaves, roots, buds, flowers, siliques, and seeds.

Br012-ERF-BI (homology with At5g13910 genes) was a
positive regulator of gibberellic acid-induced germination
[62], while BrO08-ERF-BI (homology with At5g44210
gene) is a negative regulator of transcription [63]. The
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Br047-AP2 (homology with At3g54320 gene) is involved
in storage compound biosynthesis control, and the
mutants had a wrinkled seed phenotype [64].

In the present study, we analyzed the AP2/ERF
transcription factor superfamily in Chinese cabbage and
15 other species, representing red and green algae, non-
vascular and vascular plants, lichens, and fungi. In higher
plants, most AP2/ERF genes have been assigned to the
AP2 and ERF families. The ERF subfamily gene number
exceeded DREB and AP2 genes. However in lower plants,
the number of AP2 family genes was more than other
transcription factors (i.e. ERF, DREB, RAV, and Soloist).
For the 16 species we examined, AP2/ERF transcription
factors were not detected in fungi, lichens, and two
algal species (i.e. Chorella vulgaris and Cyanidioschyzon
merolae).

We conducted a comprehensive search for AP2/ERF
transcription factors throughout the Chinese cabbage
genome, and identified 291 genes. A previous study
reported 62 AP2/ERF transcription factors using ESTs
[53]. Compared to the species considered in this study,
the Chinese cabbage genome supports large ERF and
DREB subfamilies. The greatest number of AP2 tran-
scription factors has been identified in rice (61) relative
to other species, however the number was similar among
Chinese cabbage (49), Arabidopsis (42), tomato (42) and
potato (49). RAV family genes have been determined
highly conserved among dicot species, which generally
contain six members [1]. However, we identified 14 RAV
family genes in Chinese cabbage, and three and two
genes assigned to the RAV family in tomato and potato,
respectively. Comparative and phylogenetic analyses of
AP2/ERF transcription regulators in Chinese cabbage
and other species served as a first step in comprehensive
functional characterization of AP2/ERF transcription
factors by reverse genetic approaches and molecular
genetics research.

Conclusions

In the present study we identified 291 AP2/ERF tran-
scription factors in the Chinese cabbage genome.
Isolation and identification of these functional and
transcription factor genes are likely to assist in clarifying
the molecular genetics basis for Chinese cabbage genetic
improvement, and also provide the functional gene
resources for transgenic research. These data also
constructed the gene network that portrays the control
of Chinese cabbage development. To date, few genes
representing this transcription factor superfamily have
been characterized in detail from Chinese cabbage.
Therefore, this is the first comprehensive and system-
atic research in Chinese cabbage AP2/ERF transcription
factors. In silico analyses may assist in elucidating AP2/
ERF family gene function in protein interactions,
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signaling pathway regulations, and defense responses
under different stress conditions. Furthermore, it also
might provide new opportunities to discover Chinese
cabbage tolerance mechanisms under stress conditions.
The AP2/ERF superfamily bioinformatics analysis re-
sults provided basic resources to examine the molecular
regulation of Chinese cabbage development and stress
resistance. In addition, the comparative study between
Chinese cabbage and other species generated valuable
information to study AP2/ERF transcription factor
function for economic, agronomic, and ecological bene-
fit in Chinese cabbage.

Methods

AP2/ERF superfamily transcription factor identification
Whole genome proteins of several species were down-
loaded, including Chinese cabbage (http://brassicadb.org/
brad/index.php), Arabidopsis (http://www.arabidopsis.org/),
rice (http://rice.genomics.org.cn), tomato (http://solgenomics.
net/organism/Solanum_lycopersicum/genome), and po-
tato (http://potatogenomics.plantbiology.msu.edu/index.html).
The following strategy was used to isolate each AP2/
ERF superfamily gene from the whole genome of each
species. First, the domain types of all proteins were
identified using the Pfam program (http://pfam.sanger.
ac.uk/) [65]. The AP2/ERF proteins were subsequently
selected, and the e-value was set at 1x10™* using the
perl program. Third, as a final quality check, we con-
firmed the presence of the AP2 domain in every AP2/
ERF superfamily transcription factor using the SMART
database (http://smart.embl-heidelberg.de/) [66]. The
sequences of all AP2/ERF superfamily members in the
genome of other species assessed were downloaded from
the plant TFDB database (http://planttfdb.cbi.edu.cn/)
[67]. The Arabidopsis AP2 domain for each group defined
by Nakano [2] was used as a query to search the
AP2/ERF gene domains in Chinese cabbage and other
species in the genome database using BLAST. We sub-
sequently obtained the AP2/ERF genes for each species.
Each subfamily motif was identified using the MEME
program (http://meme.sdsc.edu/meme/intro.html) [68].
The physical distribution of AP2/ERF genes on chro-
mosomes was drawn by perl scripts based on gene pos-
ition in the genome.

Phylogenetic tree construction

Phylogenetic and molecular evolutionary analyses were
conducted using MEGAS5 (http://www.megasoftware.net/)
[69]. The retrieved conserved domains of AP2/ERF pro-
teins were used to construct phylogenetic trees. The
neighbor-joining method was applied to construct differ-
ent AP2/ERF transcription factor domain trees, using the
pair-wise deletion option. Tree reliability was assessed
using 1000 bootstrap replicates. The numbers indicated

Page 12 of 15

for each clade represent bootstrap support values given
as percentages.

AP2/ERF superfamily transcription factor expression
patterns in Chinese cabbage

Chinese cabbage unigenes and tissue expression level
data were downloaded from NCBI (ftp://ftp.ncbi.nih.gov/
repository/UniGene/Brassica_rapa/). The AP2/ERF super-
family CDS (coding domain sequence) was extracted from
Chinese cabbage, which was used to search against the
Chinese cabbage EST database using the BLAST tool. The
eligible hits (E-value <le-5, Identity >90%) were selected
for each Chinese cabbage AP2/ERF superfamily transcrip-
tion factor. Finally, expression levels were calculated in
each tissue type (ie. leaves, roots, buds, flowers, seeds,
and siliques) for the AP2/ERF proteins in Chinese cabbage
based on the number of eligible hits. The AP2/ERF
protein expression cluster from each tissue was analyzed
via the Cluster program (http://bonsai.hgc.jp/~mdehoon/
software/cluster/software.htm), and results were shown
using Tree View software (http://jtreeview.sourceforge.
net/).

Identification of orthologous AP2/ERF genes in Chinese
cabbage and Arabidopsis

AP2/ERF genes in Chinese cabbage and Arabidopsis were
compared to identify orthologous genes. Chinese cabbage
AP2/ERF genes were used as a query to search against a
database built using Arabidopsis AP2/ERF genes. The
e-value was set at le-10, and the identity exceeded 75%.
The orthologous AP2/ERF genes between Chinese cabbage
and Arabidopsis were identified using the Circos program
[70]. The AP2/ERF genes in Chinese cabbage were
searched for duplication events (e-value < le-10, identity >
80%).

AP2/ERF protein annotations and interaction networks
AP2/ERF protein annotations in B. rapa ssp. pekinensis were
predicted using the protein database TTEMBL (http://www.
ebi.ac.uk/uniprot/TrEMBLstats/), Iprscan (http://www.ebi.
ac.uk/Tools/pfa/iprscan/), UniProtKB (http://www.ebi.ac.uk/
uniprot/), GO (http://www.geneontology.org/), and KEGG
(http://www.genome.jp/kegg/); the BLASTP E-value was set
as 1x107°. AP2/ERF protein annotations in five pro-
tein databases were integrated using the perl script.
Specific protein interactions were constructed applying
STRING software (Search Tool for the Retrieval of
Interacting Genes/Proteins, http://string-db.org/) [71].
The functional pathways involving AP2/ERF superfamily
were constructed by iPath2.0 software (http://pathways.
embl.de/) [72]. The interaction network associated with
AP2/ERF Arabidopsis orthologs of AP2/ERF genes in
Chinese cabbage was constructed using the Arabidopsis
interaction viewer and cytoscape software [73].
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Additional files

Additional file 1: Table S1. Complete list of ERF/AP2 transcription
factors identified in the Chinese cabbage genome. Table S2. The
orthologue genes of AP2/ERF superfamily between Chinese cabbage and
Arabidopsis. Table S3. The paralogue genes of AP2/ERF superfamily in
Chinese cabbage. Table S4. Tissue specific expression of the Chinese
cabbage AP2/ERF superfamily genes. The expression profile suggested by
analysis of EST counts. Table S5. Summary of the Chinese cabbage AP2/
ERF superfamily genes expression among the different tissues. Table S6.
The annotations of all the AP2/ERF proteins of Chinese cabbage in four
protein database.

Additional file 2: Figure S1. Phylogenetic tree constructed from the
neighbor-joining method using AP2 family transcription factor domains
in Chinese cabbage and Arabidopsis. The numbers are bootstrap values
based on 1000 iterations. Only bootstrap values larger than 50 are
indicated. Figure S2. Phylogenetic tree constructed from the neighbor-
joining method using AP2 family transcription factor domains in all 16
species analyzed. Figure S3. AP2/ERF protein motifs from each of the
species examined. Figure S4. The ERF subfamily protein motifs derived
from each species examined. Figure S5. The DREB subfamily protein
motifs derived from each species. Figure S6. The RAV, AP2 and Soloist
family protein motifs derived from each species examined. Figure S7.
The AP2/ERF superfamily protein motifs derived from each species
examined. Figure S8. Comparative analysis of synteny and expansion of
AP2/ERF genes. Ten Chinese cabbage and five Arabidopsis chromosome
maps were based on the orthologue pair positions, and demonstrate
highly conserved synteny. Figure S9. Comparative analysis of synteny
and expansion of AP2/ERF genes. Ten Chinese cabbage chromosome
maps were based on the paralogue pair positions; and demonstrate
highly conserved synteny. Figure S10. The secondary metabolic
biosynthesis pathways of the AP2/ERF proteins. Figure S11. The
regulatory pathways of the AP2/ERF proteins. Figure S12. The metabolic
pathways of the AP2/ERF proteins. Figure S13. AP2/ERF transcription
factors classification in Chinese cabbage. The size of each section is
proportional to the relative abundance of the AP2/ERF genes assigned to
the specific family. Figure S14. Distribution of AP2/ERF transcription factors
in various Chinese cabbage tissues. Figure S15. Expression profile cluster
analyses from Chinese cabbage DREB subfamily genes. Figure S16.
Expression profile cluster analyses from Chinese cabbage RAV family genes.
Figure S17. Expression profile cluster analyses from Chinese cabbage AP2
family genes. Figure $18. Chinese cabbage AP2/ERF superfamily gene
expression in six tissue types.
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