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Abstract

Background: Mitochondrial genomic (mitogenomic) reorganizations are rarely found in closely-related animals, yet
drastic reorganizations have been found in the Ranoides frogs. The phylogenetic relationships of the three major
ranoid taxa (Natatanura, Microhylidae, and Afrobatrachia) have been problematic, and mitogenomic information for
afrobatrachians has not been available. Several molecular models for mitochondrial (mt) gene rearrangements have
been proposed, but observational evidence has been insufficient to evaluate them. Furthermore, evolutionary
trends in rearranged mt genes have not been well understood. To gain molecular and phylogenetic insights into
these issues, we analyzed the mt genomes of four afrobatrachian species (Breviceps adspersus, Hemisus marmoratus,
Hyperolius marmoratus, and Trichobatrachus robustus) and performed molecular phylogenetic analyses. Furthermore
we searched for two evolutionary patterns expected in the rearranged mt genes of ranoids.

Results: Extensively reorganized mt genomes having many duplicated and rearranged genes were found in three
of the four afrobatrachians analyzed. In fact, Breviceps has the largest known mt genome among vertebrates.
Although the kinds of duplicated and rearranged genes differed among these species, a remarkable gene
rearrangement pattern of non-tandemly copied genes situated within tandemly-copied regions was commonly
found. Furthermore, the existence of concerted evolution was observed between non-neighboring copies of
triplicated 12S and 16S ribosomal RNA regions.

Conclusions: Phylogenetic analyses based on mitogenomic data support a close relationship between
Afrobatrachia and Microhylidae, with their estimated divergence 100 million years ago consistent with present-day
endemism of afrobatrachians on the African continent. The afrobatrachian mt data supported the first tandem and
second non-tandem duplication model for mt gene rearrangements and the recombination-based model for
concerted evolution of duplicated mt regions. We also showed that specific nucleotide substitution and
compositional patterns expected in duplicated and rearranged mt genes did not occur, suggesting no
disadvantage in employing these genes for phylogenetic inference.
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Background
Animal mitochondrial (mt) genomes typically consist of
a closed circular molecule 16–17 kilo base pairs (kbp) in
size, with multiple copies existing in every cell [1]. Most
animal mt genomes contain the same 37 genes: 12S and
16S ribosomal RNA genes (12S and 16S rrns), 22 transfer
RNA genes (trns), and 13 protein-coding genes (ATPase
subunits 6 and 8: atp6 and 8; cytochrome oxidase subunits
I, II and III: co1–3; cytochrome b apoenzyme: cytb; and
nicotinamide adenine dinucleotide dehydrogenase sub-
units 1–6 and 4 L: nd1–6 and 4 L) [2,3]. Of these 37 genes,
28 are encoded on the heavier guanine-rich DNA strand
(H-strand), while nine are encoded on the cytosine-rich
light strand (L-strand). Vertebrate mt genomes also con-
tain a long non-coding region (approximately 0.5–9 kb;
[4]) called the control region (CR, or the D-loop region),
which includes the signals for regulating mtDNA tran-
scription and the replication origin of the H-strand (OH)
(e.g., [5,6]). A short non-coding replication origin for the
L-strand (OL) has also been identified in the mt genomes
of most vertebrates, excluding birds [2,5,7].
Nucleotide substitution rates within mt genes are widely

accepted to be much faster than in the nuclear genome,
and the 37 mt genes generally have different substitution
rates from one another [8-10]. Because of their high copy
numbers and fast and/or multiple nucleotide substitution
rates, mitogenomic sequences have been widely used in
genetic and evolutionary studies (e.g., [11]). Nearly 70% of
molecular phylogenetic studies on animal taxa have used
mt gene data [12].
Mitochondrial gene arrangements tend to be con-

served within vertebrates, with all 37 genes and the CR
organized in relatively the same order in taxa from tele-
ost fishes to eutherian mammals (e.g., [2]). However,
rearranged mt genomes have been found in some taxa of
all major vertebrate groups (fishes, amphibians, reptile,
birds, and mammals (e.g., [2,13])). Because the animal mt
genome has no introns and very few intergenic spacers
and is assumed to lack recombination (e.g., [1,14]),
rearrangements of its genes have usually been interpreted
to be the result of tandem duplication caused by replica-
tion errors, e.g., the tandem duplication and random loss
(TDRL) model [15,16]. However, recent evidence for
recombination in the animal mt genome compels the re-
consideration of several other hypothesized duplications
and gene rearrangements [11,17-22]. Consequently several
gene rearrangement modes mediated by recombination
have been proposed [4,23-26].
Two alternative concerted evolution models, based on

duplication and recombination mechanisms, have also
been proposed to explain nearly-identical nucleotide
sequences occasionally found between duplicated CRs
[27]. However, observational evidence to validate these
models is still insufficient because of the rarity of mt
genomes having intermediate conditions in the gene re-
arrangement process (but see [4,13,26,28,29]). Further-
more, different nucleotide substitution trends, such as
the relaxation of purifying pressure and accompanying
substitution rate acceleration, have been suspected for
(nuclear) duplicated genes (e.g., [30,31]). Also a region-
specific nucleotide compositional bias possibly affecting
the rearranged genes has been reported from vertebrate
mt genomes (e.g., [32-34]).
Substitution-rate and nucleotide-compositional het-

erogeneities among lineages are well known to cause
phylogenetic artifacts (e.g., [35-37]). Therefore, many
phylogeneticists are particularly interested in knowing
how marker genes evolve [38]. Unfortunately, the evolu-
tionary trends of duplicated and rearranged mt genes in
animals have not been well investigated because of their
low numbers and, especially, because very few examples
exist of rearranged and non-rearranged mt genomes
within closely-related taxa. Thus, an understanding of
the patterns and mechanisms of mitogenomic duplica-
tions and rearrangements and the evolutionary trends
of the resulting genes could be fostered by analyzing an
animal group with (1) differential frequencies of genome
rearrangements among lineages and (2) intermediate
states of the genomic rearrangement process. Among
vertebrates, anurans (especially Ranoides; see below) are
good candidates to meet these conditions.
Generally two major anuran groups, Archaeobatrachia

and Neobatrachia, are recognized. The former is regarded
as a paraphyletic assemblage of basal anurans (e.g., [39]).
The latter is a monophyletic taxon of modern anurans and
contains over 95% of extant frogs [40-42]. The mt gene ar-
rangements of almost all archaeobatrachians so far reported
(excluding the Leiopelma archeyi mt genome [43]) are
identical to the typical vertebrate-type arrangement (e.g.,
[9] and Figure 1]). However, neobatrachians commonly
have a slightly modified gene arrangement (neobatrachian-
type arrangement) having four trns translocations relative
to the vertebrate-type arrangement (e.g., [44,45]), and
Figure 1]. In addition, further gene rearrangements have
been reported in some lineages of Ranoides, which com-
prises three major groups: Microhylidae, Natatanura, and
Afrobatrachia (see Figure 2). Microhylidae (= narrow-
mouth toads) mt genomes have neobatrachian-type
arrangements [45,46], but large mitogenomic reorgani-
zations involving duplications and rearrangements of
protein-coding genes and CRs have been found from
three distinct lineages of Natatanura (= Ranidae, sensu
lato), including all members of Rhacophoroidea, part of
Ranidae, and part of Dicroglossidae ([4,47-49]; and
Figure 2]). Mitogenomic information has not been avail-
able for the remaining taxon, Afrobatrachia.
Afrobatrachia, endemic to Africa, consists of four

families: Arthroleptidae, Hyperoliidae, Hemisotidae, and
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Figure 1 Mitochondrial genomic organizations of afrobatrachians and other anurans. The mitochondrial (mt) genomic organizations of
four afrobatrachians are illustrated. Vertebrate- and neobatrachian-type mt gene arrangements and an example of the modified arrangement
found in ranoids are also shown. Genes, pseudogenes, control regions (CRs), major non–coding regions, and light-strand replication origins are
shown in boxes. The H- and L-strand encoded genes are denoted above and below each gene box, respectively. The sizes of the boxes do not
reflect the actual lengths of the genes and non–coding regions. Transfer RNA genes (trns) are designated by single-letter amino acid codes. L1,
L2, S1, and S2 indicate trns for Leu(UUR), Leu(CUN), Ser(AGY), and Ser(UCN), respectively. “ψ” indicates a pseudogene. The heavy- and light-strand
replication origins are abbreviated OH and OL, respectively. Other gene abbreviations are: 12S and 16S, 12S and 16S ribosomal RNAs; CO1–3,
cytochrome c oxidase subunits 1–3; Cytb, cytochrome b; ND1–6 and 4 L, NADH dehydrogenase subunits 1–6 and 4 L. Colored boxes represent
genes, pseudogenes, OL, and CR with duplications and/or rearrangements in afrobatrachians. Copies 1–3 show duplicated and/or rearranged
genomic regions, and copy 1 indicates the putative original copy. Brief explanations of duplication events are denoted in the open boxes. The
transcriptional direction of H-strand encoded genes and the directions of heavy-strand (from OH) and light-strand (from OL) replications are
shown by an open arrow and open arrowhead, respectively. Closed arrows indicate the rearranged genes and the inferred evolutionary directions
of the rearrangements.

Kurabayashi and Sumida BMC Genomics 2013, 14:633 Page 3 of 17
http://www.biomedcentral.com/1471-2164/14/633
Brevicipitidae. Historically, the phylogenetic position of
Hemisotidae has been problematic, and all breviciptid
species were long regarded as members of Microhylidae
(e.g., [40,50]). Although recent molecular phylogenetic
analyses support afrobatrachian monophyly (e.g., [51,52]),
clear synapomorphic characters have not been found for
this group [40]. Furthermore, the phylogenetic relation-
ships among the three major ranoid taxa have been some-
what problematic (see Results and Discussion section) and
should be verified using sufficient molecular data.
In this study, we analyzed afrobatrachian mt genomes

to explore the occurrence of novel mitogenomic reorga-
nizations and to gain new insights into the mechanisms
of this process. We also reviewed the phylogenetic rela-
tionships of afrobatrachians using the largest molecular
dataset yet applied to this group. Finally, we tested sev-
eral evolutionary trends expected in rearranged mt ge-
nomes and in duplicated and rearranged genes using
afrobatrachian and other available ranoid mitogenomic
information.

Methods
Specimens used
To sequence whole mt genomes of afrobatrachians, we
used four species representing all four afrobatrachian
families: Breviceps adspersus (Brevicipitidae), Hemisus
marmoratus (Hemisotidae), Hyperolius marmoratus
(Hyperoliidae), and Trichobatrachus robustus (Arthro-
leptidae). Five natatanuran species (Babina holsti and
Lithobates catesbeianus, Ranidae; Buergeria buergeri,



II

III

IV

V

I

VI

VII

VIII

IX

X

ND5 L2

P
FTCytb CR

ND5 L2

P
FTCytb

L2

P
FTCytb

CR
ND5

H
S2

E

ND5Cytb I M L2 12S 16S
P

F V L1 T ND1 M
Q

M

ND5 L2

P
FTCytb

CR
ND5

CR

ND5 L2

P
FTCytb

CR

ND5 L2 12S I16S
P

F V L1T ND1
Q

M ND2H S2

ND6 E
Cytb

CR

12S I16S
P

F V L1 ND1
Q

M ND2Cytb H S2 W
N

L
212S

P
FT

12ST FP
16S16S11 1 OL

P

12S 16SF V LCytb T L2 IND1
Q

M ND2
ND2 MP

1

ND5H S2
ND5

ND6 E
Cytb L2

P

F
T

TL2
P

H S
2F

NC
0.4k

I
II

III
IV
V

VI
VII

VIII
IX
X

XI

XII
XIII

XIV

XV
XVI

XI
XII

XIII
XIV
XV

XVI

215.5 Ma  (183.6-247.8)
144.2 Ma  (120.5-168.9)
137.0 Ma  (114.3-160.8)
131.3 Ma  (109.1-154.7)
103.9 Ma    (85.3-123.7)
100.1 Ma    (82.1-119.4)
  91.1 Ma    (74.2-109.3)
  76.3 Ma     (61.6-92.4)
  74.3 Ma     (59.7-90.3)
  82.0 Ma     (66.6-98.8)
  77.0 Ma     (62.3-93.1)
  72.8 Ma     (58.8-88.3)
  60.0 Ma     (47.9-73.7)
  35.6 Ma     (27.2-45.4)
  65.4 Ma     (52.4-79.9)
  44.8 Ma     (35.0-55.9)

Figure 2 Phylogenetic relationships of anurans, estimated divergence ages, and major mitochondrial genomic rearrangements in
ranoid lineages. The maximum likelihood (ML) tree of the anurans from the complete mitochondrial (mt) genome and nine nuclear genes (the
Nuc–dataset) is shown. Numbers on the nodes indicate ML bootstrap values / Bayesian posterior probabilities for, respectively, the Nuc-dataset
and an AA-dataset, in which the coding genes were transcribed. The estimated ages and 95% confidential intervals of 16 nodes (I–XVI) are shown
in the upper left box. Circled numbers (1–6) and blue branches on the tree indicate lineages with major mitogenomic rearrangements. Details of
the rearrangements in each lineage are shown in the box at lower right.
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Rhacophoridae; Hoplobatrachus tigerinus and Limnonectes
fujianensis, Dicroglossidae) were used to analyze their
nuclear gene sequences.
Since about 2006, classifications of many frog taxa

have been in a rapid state of transition. To avoid need-
less confusion, in this study we have basically followed
the nomenclature and circumscriptions of Frost et al.
[40] and Frost [41].
DNA sequencing was performed using previously

extracted total DNAs [47-49,53]. Consequently, no ani-
mals were used in this study.

DNA sequencing
Whole mt genomes of the four afrobatrachians were
PCR-amplified and sequenced. PCR reactions and primers
have been described previously [53]. The primer-walking
method was employed for sequencing using an ABI
3130xl automated DNA sequencer (Applied Biosystems,
Foster City, CA, USA) with the BigDye Terminator Cycle
Sequencing Kit (ABI). PCR fragments containing CR
DNA with long tandem repeats and/or mononucleotide
tracts that could not be sequenced by primer walking were
subcloned into E. coli vector pCR-2.1 or pCR-XL using
the TOPO TA Cloning Kit (Invitrogen, Carlsbad, CA,
USA). To precisely sequence the long tandem repeats, a
series of deleted subclones was made from the resultant
subclones using the Exonuclease III deletion method [54].
The resulting mt gene sequences were identified by com-
parison with corresponding gene sequences from other
vertebrates. To identify CRs, we looked for conserved
sequence blocks 1, 2 and/or 3 (CSB I–III), characteristic
elements of vertebrate CRs that are considered to be to
be essential for the synthesis of D-loop DNA and for H-
strand replication (e.g., [55]). We also found many
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possible pseudogenes. We identified them based on
their > 40 bp lengths and > 50% sequence similarity to
their corresponding functional paralogs.
We also amplified and sequenced 1–5 of seven nu-

clear genes (bdnf, histone -3a, pomc, rag1, rho, slc8a1,
and slc8a3) from each of the four afrobatrachians and
five natatanurans. The PCR strategy and primers used
for these genes were basically the same as in Irisarri
et al. [38], but we made a primer set for slc8a3
(NCX3_FowN: GARGTCATAACWTCACARGARCG;
NCX3_RevN: AAGATATCATCATCRATAATYCC) and
a reverse primer for histon-3a (H3NR_mod: ATRTC
CTTRGGCATRATTGTKAC). The newly determined
mt (AB777216– AB777219) and nuclear (AB777220–
AB777233) sequences were deposited in the DDBJ/
EMBL/NCBI DNA databases.

Preparation of sequence datasets for evolutionary
analyses
To perform phylogenetic and dating analyses, we used
our whole-mitogenomic dataset and the sequences of
nine nuclear protein-coding genes (bdnf, cxcr4, histon-3a,
pomc, rag1, rag2, rho, slc8a1, and slc8a3). The taxon-
sampling strategy basically followed that of the recent
comprehensive anuran mitogenomic study by Irisarri et al.
[38], but several ranoid taxa with rearranged mt genomes
(e.g., Buergeria, Babina, and Hoplobatrachus) were added
to analyze the mode of evolution of the duplicated and
rearranged mt genes. Because our phylogenetic analyses
focused mainly on the family level, and to maximize the
completeness of our nuclear gene data, sequences from
congeneric species were merged (see Additional file 1) to
form a few operational taxonomic units (OTUs) in a simi-
lar way to some previous studies (e.g., [38,56-58]). We
used 36 and 45 OTUs for phylogenetic and time tree
reconstructions, respectively. The 36-OTU dataset com-
prised only frogs, with Ascaphus and Leiopelma, which
occupy the most basal positions among extant anurans
(e.g., [58]), used as outgroups. The 45-OTU dataset also
included nine non-frog taxa, i.e., three salamanders, three
caecilians, a lizard, a bird, and a mammal, to allow more
time calibration points. The details of the taxa and genes
used in this study are shown in Additional file 1. Sequence
data used in this study are available in Additional file 2.
Mitochondrial and nuclear gene sequences of the 45

OTUs were aligned. For each protein-coding gene, the
deduced amino acids were aligned using MAFFT [59]
implemented in TranslatorX [60] with the L-INS-i op-
tion and default settings. Ambiguously-aligned sites were
removed using Gblocks v.0.19b [61] (also implemented
in TranslatorX) with default settings. Finally, trimmed
protein alignments were used to guide a codon-based
alignment of nucleotide sequences. Sequences of mt rrns
were aligned using MAFFT with the Q-INS-i option, in
which secondary structure information was considered
[62]. The mt trns were aligned manually based on their
putative secondary structures. Ambiguously-aligned po-
sitions in both mt trn and rrn gene alignments were
excluded using Gblocks as described above. The result-
ant alignments for each gene were used to compare
substitution rates and nucleotide compositions among
rearranged and non-rearranged genes (12S and 16S rrns,
nd2, and nd5; see below). The individual nucleotide
alignments were concatenated into a single dataset (the
Nuc-dataset; 15,233 nucleotide sites in total) and the in-
dividual amino acid alignments of the mt and nuclear
protein-coding genes were concatenated with the rrn
(1,921 bp) and trn sequences (1,424 bp) into one data
matrix (the AA-dataset; 5,944 amino acid and 3,345 nu-
cleotide sites). Previous studies have suggested that
long-branch attraction may mislead phylogenetic recon-
structions of anuran trees because of the high evolution-
ary rates of neobatrachian genes (e.g., [63,64]). To
minimize such artifacts, third codon positions in the nu-
cleotide dataset were a priori excluded from the phylo-
genetic reconstruction and dating analyses.
The best partitioning schemes for Nuc- and AA-

datasets were estimated under the Akaike information
criterion (AIC) [65] using PartitionFinder v1.0.1 and
PartitionFinderProtein v1.0.1, respectively [66]. For the
Nuc-dataset, a seven-partition scheme was optimal: (1)
first codon positions of all mt protein genes, (2) second
codon positions of all mt proteins, (3) first codon positions
of all nuclear protein genes, (4) second codon positions of
all nuclear proteins, (5) 12S rrn, (6) 16S rrn, and (7) trns.
For the AA-dataset, a scheme with 19 partitions was sug-
gested: eight mt protein sequence partitions (5 single mt
protein partitions and atp6/cytb/nd1/nd4L, co2/co3, and
nd2/nd4 partitions), eight nuclear protein partitions (7
single protein partitions and cxcr4/rag1 partition), plus
three mt rrn partitions (= partitions 5, 6, and 7 above).
Heterogeneity in nucleotide composition among line-

ages negatively affects the accuracy of phylogenetic in-
ference (e.g., [37,67]). To avoid this effect, we checked
the nucleotide composition homogeneity of all seven
Nuc-dataset partitions using Pearson’s chi-squared (χ2)
test implemented in phylogears ver. 2–2.0 [68]. Al-
though homogeneity was not rejected (P > 0.05) in six of
seven partitions, it was rejected for the partition of the
mt first codon positions (P = 1 × 10−26). For this parti-
tion, we applied the AC-coding (=RY-coding) method
[67,69,70] to eliminate the nucleotide composition bias
(P = 0.99 after AC-coding). The AC-coded partition was
used for phylogenetic tree reconstruction but not in the
dating analysis.
Nuc- and AA-datasets and detailed information on

gene partitions and substitution models are available in
Additional file 3.
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Phylogenetic analyses
Both the Nuc and AA anuran datasets (36 OTUs) were an-
alyzed by maximum likelihood (ML) using RAxML v.7.0.3
[71] and by Bayesian inference (BI) using MrBayes5D [72],
a modified version of MrBayes 3.1 [73]. The best substitu-
tion models for the nucleotide and amino-acid partitions
were estimated using Kakusan4 and Aminosan, respect-
ively [74]. To select the substitution models, we used the
AIC for ML analyses and the Bayesian information criter-
ion (BIC) for BI analyses.
The rapid hill-climbing algorithm [75] starting from 100

randomized maximum-parsimony trees was used for ML
searches in RAxML, which independently optimized all
substitution model parameters in all partitions. For BI, we
ran 20 million generations of four simultaneous Markov
chains and sampled every 1000 generations. Convergence
was checked a posteriori using Tracer v.1.5 [76]. The first
10% of generations were discarded as burn-in to prevent
sampling before the Markov chains reached stationarity.
Support for internal branches was evaluated using boot-
strap percentages (BP) from 1000 non-parametric repli-
cates for ML and using posterior probabilities (BPP) for BI.

Molecular dating analysis
To estimate divergence times of afrobatrachians and
other anurans, we used MCMCTree as implemented in
PAML 4.6 [77]. This program implements a Bayesian
dating method, with a soft-bound approach for age con-
straints and Cauchy distribution for lower-bound con-
straints. For this analysis, we used the full Nuc-dataset
(46 OTUs) with seven data partitions (see above) and the
tree topology from our phylogenetic analysis (Figure 2).
The dataset and other setting files used are available in
Additional file 4. Independent GTR + Γ models were ap-
plied to each of the partitions. We applied seven calibra-
tion points suggested from fossil records as priors for
divergence time estimations (lower bounds) according to
Irissari et al. [38] as follows: 1) > 312 million years ago
(Ma) for the Sauropsida-Synapsida split, 2) > 260 Ma for
the Archosauromorpha-Lepidosauromorpha split, 3) >
146 Ma for the Cryptobranchidae-Hynobiidae split, 4) >
249 Ma for the Anura-Caudata split, 5) > 161 Ma for
branching of Discoglossoidea, 6) > 146 Ma for branching
of Pipoidea, and 7) > 53 Ma for the Calyptocephalella-
Lechriodus split. Cauchy distributions were used with
default parameters (p = 0.1, c = 1). The Markov chain
was run for 11 million generations with sampling every
100 generations, the first 1 million of which were
discarded as burn-in. Chain convergence and adequate
effective sample sizes (> 200) of all parameters were
checked with Tracer [76].
The MCMCTree implemented two different molecular

clock models (independent and correlated). To test which
model was most suitable for our data, we performed a
cross-validation analysis of the standard errors (SEs) of
the posterior ages of the seven calibration nodes. Briefly,
we ran the program as described above but eliminated
one of the seven calibration points; the posterior SE of
that node was calculated under both the independent and
correlated clock models. The SE calculations were re-
peated for all calibration points. The sums of the SEs of all
calibration points were compared between the two
models. The total SE from the correlated clock model
(0.00434) was smaller than that of the independent clock
model (0.00449), so we adopted the former for our data.

Relative-rate tests
To compare substitution rates of mt genes among
neobatrachian lineages, relative-rate tests (RRTs [78])
were performed using the program RRTree [79]. This
program extends the method of Li and Bousquet [80]
and compares mean rates between lineages relative to
the outgroups while accounting for phylogenetic rela-
tionships using topological weighting [81]. Nucleotide
genetic distances were estimated with the Kimura two-
parameter substitution model [82]. We compared substi-
tution rates of all mt genes, all mt protein-coding genes,
and/or rearranged or duplicated genes (nd2, nd5, 12S,
and 16S rrns) among several distinct lineages. Those lin-
eages and the outgroup used for each comparison are
shown in Tables of RRTs.

Detecting changes in selective pressure on mt protein-
coding genes in neobatrachians
Several studies of various lineages have shown that non-
synonymous/synonymous substitution ratios (dN/dS
ratio = ω) can successfully be used to identify changes in
selective pressure, including in highly-divergent taxa
[38,83,84]). We compared many so-called “branch”
models [see 83] with different assumptions about selec-
tion coefficient ratios to determine in which frog
lineages changes in selective pressure on the mt protein-
coding genes had occurred and to understand whether
accelerated evolutionary rates (especially for duplicated
and rearranged genes) in neobatrachians were due to
changes in selective pressure. The codeml program
implemented PAML 4.6 [77] was used to estimate the
likelihood of the tree (having the Figure 2 topology but
including only 22 neobatrachian taxa) and the ω values
of the branches under the given models for the dataset
of all mt protein-coding genes and for single-gene
alignments of nd2 and nd5, which are duplicated or
rearranged in some neobatrachian lineages. Branch
lengths were first optimized for each dataset assuming a
single ω for the whole tree, and they were fixed while
the other parameters were estimated. The null model
had a single ω value for all branches, while the alterna-
tive models allowed unique ω values on one or more
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designated branches. The alternative models were com-
pared against the null model using the likelihood ratio
test (LRT), and all models were compared simultan-
eously using the AIC [65].

Results and discussion
Phylogeny of anurans and divergence ages of
afrobatrachians
We first reconstructed a phylogenetic tree for anurans.
Figure 2 shows the ML tree (−lnL = 134944.28) derived
from the Nuc-dataset. The BI tree generated from the
same dataset and the ML and BI trees from the AA-
dataset recovered the same topology, so we assumed that
this was the best phylogenetic hypothesis and used it in
subsequent dating and other evolutionary analyses.
Our phylogenetic hypothesis was basically congruent

with those of recent phylogenetic studies (e.g., [38,40,
51,52]) and confirmed the following relationships for
higher anuran taxa. (i) Neobatrachia is monophyletic. (ii)
“Archaeobatrachia” is paraphyletic with respect to
Neobatrachia. (iii) Heleophryne is most basal among
neobatrachians. (ix) Ranoides and Hyloides (sensu Frost
et al. [40]; excluding family Sooglossidae) are both
monophyletic within Neobatrachia. (v) The three major
clades of Ranoides are Afrobatrachia, Microhylidae, and
Natatanura. All of our trees recovered a sister relation-
ship between Ranoides and Sooglossidae (BPPs = 99/94%
in Nuc/AA-datasets, respectively), but with low BP sup-
ports as in many previous studies [38,51].
Although many alternative hypotheses for the afro-

batrachian families exist (see [41]), afrobatrachian mono-
phyly has been suggested by several recent comprehensive
studies (e.g., [41,51,52]). Likewise, our results strongly
supported afrobatrachian monophyly (BP = 100/98%,
BPP = 100/100% in the Nuc/AA-datasets, respectively).
We also discovered a synapomorphic mitogenomic struc-
ture (a rearranged “WNACY” trn cluster shared by all four
afrobatrachian families; Figure 1 and see below), although
no morphological synapomorphy for afrobatrachians has
yet been found [41].
The phylogenetic relationships of the three major ranoid

groups (Afrobatrachia, Microhylidae, and Natatanura) have
been very problematic. Morphological studies suggested a
close affinity of Afrobatrachia and Natatanura [85-87]. In
contrast, rag1 data indicated a sister relationship between
Natatanura and Microhylidae [50]. Although recent mo-
lecular studies have tended to prefer an Afrobatrachia +
Microhylidae grouping [51,52,88], statistical support for
this clade was generally low. Furthermore, our recent ana-
lyses recovered both the Afrobatrachia +Microhylidae and
Afrobatrachia + Natatanura clades, depending on the
dataset used [89]. The data used here, the longest
molecular datasets so far applied to afrobatrachian
phylogeny, support the Afrobatrachia +Microhylidae
hypothesis. Although BP support for this node from the
AA-dataset was rather low (61%), the Nuc-dataset gave
a relatively high BP (76%), and the Nuc- and AA-
datasets had 100 and 99% BPPs, respectively.
A time tree of anurans was reconstructed using the

best tree topology and the Nuc-dataset (excluding the
AC-coded partition of the mt 1st codons). The resultant
ages of major anuran groups are shown in Figure 2 (nodes
I–XVI). The divergence time between Afrobatrachia and
Microhylidae (VI) was estimated as 100 Ma with a 95%
confidence interval (CI) of 82–119 Ma, while the last
common ancestor of the extant afrobatrachians existed
91 Ma (CI, 74–109 Ma). These ages were slightly younger
than in previous studies, although the previously sug-
gested ages (117–143 Ma and 102–107 Ma, respectively
[38,51,89-92]) were within the 95% CI ranges. The
estimated split of Afrobatrachia from other ranoids
(Microhylidae) at 100 Ma corresponds to the continental
separation of Africa and South Africa (e.g., [93]), the last
stage of the break-up of the Gondwana supercontinent,
which may explain why the distribution of afrobatrachians
is limited to Africa.

Extensively rearranged mt genomes in afrobatrachians
In this study, we sequenced the whole mt genomes of four
afrobatrachians representing all afrobatrachian families as
follows: Breviceps adspersus (Brevicipitidae; genome size =
28,757 bp), Hemisus marmoratus (Hemisotidae; 20,093 bp),
Hyperolius marmoratus (Hyperoliidae; 22,595 bp), and
Trichobatrachus robustus (Arthroleptidae; 21,418 bp). The
mitogenomic organizations of these afrobatrachians and
other anurans are shown in Figure 1. Almost all basal an-
urans (= archaeobatrachians, excluding Leiopelma with nd6
and trnP translocations [43]) have the vertebrate-type mt
gene arrangement. A slight rearrangement of this order,
with translocations of three trns yielding the LTPF trn clus-
ter, is shared by most neobatrachians (neobatrachian-type
arrangement). This gene arrangement was likely present in
the common ancestor of neobatrachians [38]. Within
neobatrachians, extensive gene rearrangements, with dupli-
cations and/or rearrangements of nd5, trns, and CR, have
been reported in three distinct natatanuran lineages: the
families Rhacophoridae +Mantellidae (= Rhacophoroidea;
Figure 2 and see [4]), a part of Ranidae [47,49], and a
part of Dicroglossidae (e.g., [48]). We also discovered
extensively-rearranged mt genomes in afrobatrachians.
Among the afrobatrachians analyzed, the gene order of

the Hemisus mt genome was very similar to the
neobatrachian-type arrangement, except that trnP in the
typical LTPF trn cluster was translocated (PLTF in
Hemisus) and trnN–OL and trnA in the typical WAN–OL–
CY trn cluster were exchanged (WN–OL–ACY in Hemisus)
(Figure 1). In contrast, the other three afrobatrachians
showed extensive mt gene rearrangements. Their mt
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genomes were characterized by many duplicated genes and
CRs and by pseudogenes (remnants of duplicated
genes). Mainly because of these duplicated segments,
the afrobatrachian mt genomes were larger than those
of other vertebrates (generally 16–17 kbp (e.g., [1])). In
particular, Breviceps has the largest known vertebrate
mt genome; the second largest being 25,972 bp, with a
9 kbp duplication including CR + 12S and 16S rrns, in
a parthenogenetic strain of the gecko Heteronotia
binoei [94].
In the Breviceps mt genome, the region consisting of

LTPF trns–12S rrn–trnV–16S rrn was tandemly tripli-
cated. The trnHS2 segment was translocated from its
original position (between nd4 and nd5) into the tripli-
cated region (between copies 2 and 3; Figure 1). Fur-
thermore, the trnWN–OL segment was duplicated, and
an additional CR occurred between these two copies.
Many of the duplicate genes became pseudogenes (one
pseudo-12S rrn, two pseudo-16S rrns, one pseudo-trnF,
two pseudo-trnP, two pseudo-trnVs, and one pseudo-
trnT) or were deleted from the genome (possibly two
trnL2s and one trnT). However, both copies of 12S rrn
and trnF appear to have retained their functions, be-
cause each copy has the same or quite similar nucleo-
tide sequences (99.3% similarity for the 12S rrns; 100%
for the trnFs).
In the Hyperolius mt genome, the typical LTPF trn

cluster was rearranged to PTL2F, and relatively large
noncoding regions were found between trnP and trnT
(1.3 kbp) and between trnL2 and trnF (0.4 kbp). Further-
more, the trnM–nd2 segment was duplicated, with an
additional CR inserted between the two copies. One
copy of each gene was converted into a pseudogene
(Figure 1). Similarly, in the Trichobatrachus mt genome,
the trnHS2–nd5 segment was duplicated, with an add-
itional CR–LTPF trns segment occurring between the
copies and conversion of duplicated genes to pseudogenes
(Figure 1).
The duplicated genes and rearrangement patterns

differed among the afrobatrachian taxa. Thus, these exten-
sive mitogenomic reorganizations clearly occurred inde-
pendently in at least three distinct afrobatrachian lineages
(i.e., breviciptids, hyperoliids, and arthroleptids; Figure 2).
However, the WN–OL–ACY trn cluster, modified from
the typical neobatrachian arrangement, was shared by all
four afrobatrachian families and has not been found in
any other vertebrate mt genome ([28], see also the
Mitozoa database [95]). This gene order can only be
explained by a complex rearrangement process (at least
two duplication events, or one duplication and one inser-
tion event; Additional file 5). Thus, the data strongly sug-
gested that this arrangement occurred in the common
ancestral lineage of afrobatrachians and can be regarded
as a novel molecular synapomorphy for this taxon.
Mechanisms of gene rearrangement and concerted
evolution in afrobatrachian mt genomes
Mechanism of mt gene rearrangements
Mitochondrial genomes of bilateral animals (including
vertebrates) generally contain only one set of genes, a
single CR, and no introns or long intergenic spacers
(e.g., [1,2]). In such genomes, unregulated gene rearrange-
ment would destroy an essential single-copy gene. Thus,
rearrangements in animal mt genomes are generally
explained by the “duplication and deletion model” (e.g.,
[16,28]): first, a multi-gene (and CR) portion of the gen-
ome is duplicated, and then one duplicate gene copy
becomes nonfunctional (a pseudogene) and is subse-
quently excised from the genome. The afrobatrachian mt
genomes analyzed here had many duplicated genes, CRs,
and pseudogenes, clearly indicating the occurrence of
duplication-and-deletion type genomic rearrangements.
Duplications in animal mt genomes are hypothesized

to mainly occur by replication errors, such as slipped-
strand mispairing or asynchrony in the points of initi-
ation and termination (e.g., [26,28]). Such replication er-
rors only generate tandem duplications [26]; thus, the
TDRL model can explain the tandemly-duplicated gene
segments in afrobatrachian mt genomes. However,
several non-tandemly duplicated genes and CRs in the
afrobatrachian mt genomes (Figure 1) cannot be easily
explained by this model. In particular, an additional copy
of non-tandemly duplicated segments was sometimes
positioned between other tandemly-copied segments.
For example, in the Breviceps mt genome, an additional
copy of the trnHS2 segments occurred between the
tandemly triplicated LTPF trns–12S rrn–trnV–16S rrn
segments. Also, additional CRs occurred in the Breviceps
and Hyperolius mt genomes between the tandemly-
duplicated trnWN–OL and trnM–nd2 segments, re-
spectively. Finally, in the Trichobatrachus mt genome,
an additional CR–LTPF trns segment existed between
tandemly-duplicated trnHS2–nd5 segments.
Previously, we proposed a model (the first tandem and

second non-tandem duplication model) to explain non-
tandem duplications in animal mt genomes [4]. In this
model, a tandem duplication initially introduces redun-
dant genes or CRs into a mt genome (one copy is non-
essential and can be destroyed), then a non-tandem
duplication (via several recombination related processes;
see [4]) makes additional gene and CR copies some-
where in the tandemly-copied regions. The non-tandem
copies located within tandemly-copied regions in the
afrobatrachian genomes demonstrate the validity of this
model.

Mechanism of concerted evolution
Duplications of CRs are often observed in animal mt ge-
nomes, and in most cases the copied CRs are highly
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similar to one another (e.g., [4,27,96]). Likewise, the
copied CRs in afrobatrachian mt genomes had very simi-
lar sequences [99.0% across 3,148 comparable bp in
Breviceps, 99.6%/1,857 bp in Hyperolius, and 99.7%/
1,390 bp in Trichobatrachus]. The strong nucleotide
similarities of these multiple CRs may be maintained by
sequence homogenization mechanisms, i.e., concerted
evolution ([27]; also see below). In addition to the CRs,
two trnPF–12S rrn–trnV–16S rrn segments (copies 1 and
3, Figure 1) seem to have experienced homogenization in
the Breviceps mt genome. These non-neighboring copies
of the tandemly triplicated segments have very high nu-
cleotide similarity (98.5%/1,197 bp). In contrast, their
neighboring regions were quite divergent (65%/1,148 bp
between copies 1 and 2; 65%/1,134 bp between copies 2
and 3).
Two distinct concerted evolution mechanisms have

been suggested: (1) homologous recombination and (2)
illicit DNA replication accompanied by nascent strand
slippage and a loop out of an extra-copied region [27].
Homologous recombination seems to cause the concerted
evolution in afrobatrachian mt genomes (at least in copies
1 and 3 of the triplicated segments in Breviceps), because
the illicit replication process cannot easily homogenize
non-neighboring copies [4,29].

Substitution rates and changes in selective pressure
Nucleotide substitution in neobatrachian mt genomes
occurs more rapidly than in archaeobatrachians (e.g.,
[63]). Irisarri et al. [38] concluded that the accelerated
substitution rates in protein-coding genes were caused
by a relaxation of purifying selection in the ancestral
lineage of neobatrachians. To check the occurrences of
further changes in substitution rates and selective pres-
sures within neobatrachians, we first compared the
substitution rates of mt genes within five alignment cat-
egories (all mt genes, all mt protein-coding genes, 12S
rrn, 16S rrn, and all trns) of four neobatrachian lineages
(non-ranoid neobatrachians and three major ranoid line-
ages: Afrobatrachia, Natatanura, and Microhylidae; Table 1)
using the relative rate test. First, we compared the mt
genes of ranoids and non-ranoids. The substitution rates of
most ranoid mt genes (excluding trns) were significantly
faster than those of non-ranoids (Nos. 1–5 in Table 1: P ≤
1 × 10−7 in all mt genes and all mt protein-coding genes
[No. 1, 2]; P = 0.014 and 0.049 in 12Srrn and 16Srrn [No. 3,
4]; P = 0.518 in trns [No. 5]), in congruence with a previous
study [38]. Separate comparisons showed that there was
no significant substitution rate heterogeneity among the
microhylid and non-ranoid neobatrachian mt genes (Nos.
6–9, P > 0.05), with the exception of trns (No. 10, P =
0.005), yet almost all mt genes of natatanurans and
afrobatrachians had significantly faster substitution rates
than those of non-ranoids (Nos. 11–20, P = 0.008 to P ≤
1 × 10−7, excluding 16S rrn [No. 14, P = 0.119] and trns
[No. 15, P = 0.256] of natatanurans).
Among three major ranoid lineages, the substitution

rates of all afrobatrachian mt genes were faster than those
of microhylids (Nos. 21–25, P = 0.014 to P ≤ 1 × 10−7;
Table 1). Similarly, the substitution rates of natatanurans
tended to be faster than those of microhylids (Nos. 26–30,
P = 1 × 10−5 to P ≤ 1 × 10−7 excluding 12S and 16S rrns
[Nos. 28 and 29, P = 0.019 and 0.211, respectively]. For
Nos. 21–35, we used 0.0167 [= 0.005/3] as the significance
level due to multiple testing; see [79] and Table 1). The
substitution rate of all natatanuran protein-coding genes
was significantly faster than that of afrobatrachians (No.
32), although other mt genes had no significant differences
in substitution rates between these taxa (Nos. 31, 33–35).
Overall, the relative substitution rates of the neobatrachian
mt genes can be summarized as Natatanurans ≥Afro-
batrachians >Microhylidae ≈ non-ranoid neobatrachians.
To check whether the substitution rate differences of

the mt protein-coding genes were caused by relaxed se-
lective pressure and also to specify in which lineages the
selective pressure had changed, we compared 19 branch
models having distinct dN/dS ratios (ω) on designated
branches of the best neobatrachian topology (Table 2).
All 19 models produced significantly higher tree lnL
values compared to the null model having a single ω for
all branches (ω = 0.0543, –lnL = 150123.54, AIC =
300333.08). The best model, with the highest lnL and
the lowest AIC (−lnL = 150076.11 and AIC = 300246.22:
No. 15 in Table 2), had four distinct ω values and one
background ω (0.054). According to this model, the mt
protein genes are under strong purifying selection (ω > 0) in
all anuran lineages. Selection was relaxed in three ancestral
lineages of (1) Ranoides (ω = 0.093), (2) Afrobatrachia (ω =
0.107), and (3) Natatanura (ω = 0.090), yet the selection
increased in all microhylid lineages (0.042). The pattern
of selective pressure changes in different linages agreed
rather well with the substitution rate trends among
neobatrachians (Natatanurans ≥Afrobatrachians >Mi-
crohylidae ≈ non-ranoid neobatrachians), suggesting
that relaxed purifying selection was a cause of substitu-
tion rate acceleration in neobatrachian mt genomes.
The tendency of highly rearranged mt genomes to

have high nucleotide substitution rates has been ob-
served in some animal taxa (e.g., mollusks [96-98]; ascid-
ians [99]; lampshells [100]), and a positive correlation
between substitution rate and genomic rearrangement
has been demonstrated in arthropods [101,102]. Shao
et al. [101] proposed that accelerated nucleotide
changes lead to many illicit substitutions at the initi-
ation and termination points of mt genome replication;
such illicit initiation and termination points cause fre-
quent tandem duplications, resulting in frequent gene
rearrangements. In accordance with previous studies,



Table 1 Substitution rate comparisons of neobatrachian mitochondrial genes

No Compared genes Outgroups Compared lineage 1 Compared lineage 2 Substitution rate Probability Significance

Lineage 1 Lineage 2

Ranoides vs.
non–ranoides

* P < 0.05

1 All mt genes Archaeobatrachians Non–ranoid neobatrachians All ranoides 0.3712 0.3934 ≤ 1.00 × 10–7 *

2 All protein–coding genes Archaeobatrachians Non–ranoid neobatrachians All ranoides 0.4190 0.4440 ≤ 1.00× 10–7 *

3 12S rrn Archaeobatrachians Non–ranoid neobatrachians All ranoides 0.2121 0.2406 0.0141 *

4 16S rrn Archaeobatrachians Non–ranoid neobatrachians All ranoides 0.2076 0.2232 0.0485 *

5 All
trns

Archaeobatrachians Non–ranoid neobatrachians All ranoides 0.2786 0.2848 0.5180

Three major ranoid
groups vs. non–
ranoides (separate
comparisons)

* P < 0.05

6 All mt genes Archaeobatrachians Non–ranoid neobatrachians Microhylids 0.3712 0.3656 0.2006

7 All protein–coding genes Archaeobatrachians Non–ranoid neobatrachians Microhylids 0.4190 0.4147 0.4263

8 12S rrn Archaeobatrachians Non–ranoid neobatrachians Microhylids 0.2121 0.2188 0.6312

9 16S rrn Archaeobatrachians Non–ranoid neobatrachians Microhylids 0.2076 0.2110 0.7253

10 All trns Archaeobatrachians Non–ranoid neobatrachians Microhylids 0.2786 0.2451 0.0053 *

11 All mt genes Archaeobatrachians Non–ranoid neobatrachians Natatanurans 0.3712 0.4051 ≤ 1.00 × 10–7 *

12 All protein–coding genes Archaeobatrachians Non–ranoid neobatrachians Natatanurans 0.4190 0.4592 ≤ 1.00 × 10–7 *

13 12S rrn Archaeobatrachians Non–ranoid neobatrachians Natatanurans 0.2121 0.2469 0.0084 *

14 16S rrn Archaeobatrachians Non–ranoid neobatrachians Natatanurans 0.2076 0.2214 0.1198

15 All trns Archaeobatrachians Non–ranoid neobatrachians Natatanurans 0.2786 0.2911 0.2562

16 All mt genes Archaeobatrachians Non–ranoid neobatrachians Afrobatrachians 0.3712 0.3977 ≤ 1.00 × 10–7 *

17 All protein–coding genes Archaeobatrachians Non–ranoid neobatrachians Afrobatrachians 0.4190 0.4429 4.00 × 10–7 *

18 12S rrn Archaeobatrachians Non–ranoid neobatrachians Afrobatrachians 0.2121 0.2499 0.0046 *

19 16S rrn Archaeobatrachians Non–ranoid neobatrachians Afrobatrachians 0.2076 0.2389 5.46 × 10–5 *

20 All trns Archaeobatrachians Non–ranoid neobatrachians Afrobatrachians 0.2786 0.3119 0.0032 *

Comparisons among
three major ranoid
lineages

* P < 0.0167

21 All mt genes Archaeobatrachians Afrobatrachians Microhylids 0.3977 0.3656 ≤ 1.00 × 10–7 *

22 All protein–coding genes Archaeobatrachians Afrobatrachians Microhylids 0.4429 0.4147 ≤ 1.00 × 10–7 *

23 12S rrn Archaeobatrachians Afrobatrachians Microhylids 0.2499 0.2188 0.0147 *
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Table 1 Substitution rate comparisons of neobatrachian mitochondrial genes (Continued)

24 16S rrn Archaeobatrachians Afrobatrachians Microhylids 0.2389 0.2110 1.89 × 10–3 *

25 All trns Archaeobatrachians Afrobatrachians Microhylids 0.3119 0.2451 ≤ 1.00 × 10–7 *

26 All mt genes Archaeobatrachians Natatanurans Microhylids 0.4051 0.3656 ≤ 1.00 × 10–7 *

27 All protein–coding genes Archaeobatrachians Natatanurans Microhylids 0.4592 0.4147 ≤ 1.00 × 10–7 *

28 12S rrn Archaeobatrachians Natatanurans Microhylids 0.2469 0.2188 0.0192

29 16S rrn Archaeobatrachians Natatanurans Microhylids 0.2214 0.2110 0.2260

30 All trns Archaeobatrachians Natatanurans Microhylids 0.2911 0.2451 3.00 × 10–5 *

31 All mt genes Archaeobatrachians Natatanurans Afrobatrachians 0.4051 0.3977 0.0275

32 All protein–coding genes Archaeobatrachians Natatanurans Afrobatrachians 0.4592 0.4429 5.44 × 10–5 *

33 12S rrn Archaeobatrachians Natatanurans Afrobatrachians 0.2469 0.2499 0.7990

34 16S rrn Archaeobatrachians Natatanurans Afrobatrachians 0.2214 0.2389 0.0233

35 All trns Archaeobatrachians Natatanurans Afrobatrachians 0.2911 0.3119 0.0525

Substitution rate is the mean weighted substitution rate of each lineage relative to the outgroups calculated by RRTree [81]. If the estimated P-value is less than 1 × 10–7, RRTree returns 1.00 × 10–7. These values are
shown as ≤ 1.00 × 10–7. In each comparison, the faster rate is in bold. To correct for multiple testing, P < 0.05/3 (=0.0167) was used as the significance level in the comparisons among major ranoid lineages.
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Table 2 Comparison of branch models and branch specific changes in the selection coefficient (ω) among neobatrachian mitochondrial protein-coding genes

No of models Background ω Models (designated branches having distinct ω) and estimated ω –lnL P of Likelihood ratio
test (vs. null model)

AIC

Ranoides Natatanura Afrobatrachia Microhylidae

Ancestral branch All branches Ancestor All Ancestor All Ancestor All

Null 0.0543 (single ω for all neobatrachian branches) 150123.5378 – 300333.08

1 0.0538 0.0962 – – – – – – – 150106.2460 3.09 × 10–8 300300.49

2 0.0518 – 0.0555 – – – – – – 150118.9262 0.0099 300325.85

3 0.0502 – 0.0569 (excluding microhylids) – – – – – – 150107.2616 8.54 × 10–8 300302.52

4 0.0515 – – – 0.0555 – 0.0575 – – 150114.3513 1.02 × 10–4 300318.70

5 0.0537 – – 0.0918 – 0.1034 – – – 150107.1658 7.76 × 10–8 300304.33

6 0.0530 – – 0.0921 0.0573 – – – – 150107.0380 6.83 × 10–8 300304.08

7 0.0537 – – – 0.0548 0.1030 – – – 150118.9788 0.0105 300327.96

8 0.0537 0.0962 – – – – – 0.0596 – 150105.5203 1.50 × 10–8 300301.04

9 0.0546 0.0957 – – – – – – 0.0426 150091.4881 1.21 × 10–14 300272.98

10 0.0498 – 0.0569 – – – – 0.0595 – 150105.2662 1.16 × 10–8 300300.53

11 0.0517 – 0.0569 – – – – – 0.0425 150099.0388 2.29 × 10–11 300288.08

12 0.0532 0.0935 – 0.0887 – 0.0989 – 0.0572 – 150091.0091 2.50 × 10–13 300276.02

13 0.0522 0.0947 – 0.0891 – – 0.0575 0.0586 – 150087.6890 9.94 × 10–15 300269.38

14 0.0532 0.0942 – 0.0901 – – 0.0576 – 0.0423 150076.2887 1.46 × 10–19 300246.58

15 0.0541 0.0931 – 0.0899 – 0.1068 – – 0.0419 150076.1116 1.22 × 10–19 300246.22

16 0.0523 0.0962 – – 0.0554 0.1000 – 0.0582 – 150098.5309 3.59 × 10–10 300291.06

17 0.0537 0.0954 – – 0.0554 0.0537 – – 0.0422 150086.0065 1.93 × 10–15 300266.01

18 0.0497 0.0981 – – 0.0554 – 0.0575 0.0598 – 150090.0150 9.53 × 10–14 300274.03

19 0.0517 0.0971 – – 0.0554 – 0.0576 – 0.0426 150084.0983 3.01 × 10–16 300262.20

Background ω =ω of non–designated branches. All protein–coding gene data of all 22 neobatrachians was used in this comparison. The best model is shown in bold.
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most large mitogenomic rearrangements in anurans
were observed in natatanurans and afrobatrachians
belonging to the fast-substitution lineages. However,
when we performed RRT between non-rearranged
(Hemisus, Limnonectes, Lithobates, and two Microhyla)
and rearranged ranoids, significant substitution rate dif-
ferences were not observed in any of the five alignment
categories compared here [P = 0.07 (all mt genes) to P =
0.8 (12S rrn)]. Given these results, we concluded that
the fast nucleotide substitution rate increased the pro-
pensity of mitogenomic rearrangements but were not an
absolute requirement.
Tests of evolutionary hypotheses related to the
duplicated and rearranged genes
The evolutionary trends of duplicated and rearranged
genes in animal mt genomes have not been well
researched because of the relative rarity of such gen-
omic reorganizations and the lack of information on
lineages with duplication and rearrangement events.
Both rearranged and non-rearranged mt genomes were
observed within ranoids with relatively recent diver-
gences (< 104 Ma), and the lineages with duplications
Table 3 Substitution rates of duplicated and rearranged mito

No Compared
genes

Outgroups Compared lineage 1 Compar

Non–rearranged taxa Rearran

1 12S rrn Non–ranoid
neobatrachians

Non– Breviceps ranoids Breviceps

2 16S rrn Non–ranoid
neobatrachians

Non– Breviceps ranoids Breviceps

3 nd5 Non–ranoid
neobatrachians

Ranoides without nd5
rearrangement

Part of ra
(Babina)

4 nd5 Non–ranoid
neobatrachians

Ranoides without nd5
rearrangement

Trichobat

5 nd5 Non–ranoid
neobatrachians

Non–Trichobatrachus
afrobatrachians

Trichobat

6 nd5 Non–ranoid
neobatrachians

Ranoides without nd5
rearrangement

Rhacoph

7 nd5 Non–ranoid
neobatrachians

Ranoides without nd5
rearrangement

Part of d
(Fejervary
Hoplobat

8 nd2 Non–ranoid
neobatrachians

Non– Hyperolius ranoids Hyperoliu

9 All mt genes Non–ranoid
neobatrachians

Ranoides without nd5
rearrangement

Rhacoph

10 All mt genes Non–ranoid
neobatrachians

Ranoides without nd5
rearrangement

Part of d
(Fejervary
Hoplobat

11 All mt genes Non–ranoid
neobatrachians

Non– Hyperolius ranoids Hyperoliu

Substitution rates is the mean weighted substitution rate of each lineage relative to
1 × 10–7, RRTree returns 1.00 × 10–7. These values are shown as ≤ 1.00 × 10–7. In each
and rearrangements were well specified in this taxon.
We consequently tested two evolutionary trends expected
in duplicated and rearranged genes using the ranoid
mitogenomic data.
Substitution rates of duplicated and rearranged mt genes
During the evolution of duplicated genes, purifying se-
lection is thought to be relaxed on one copy because of
its redundant function; this relaxation should lead to an
increased nucleotide substitution rate in one duplicate
(e.g., [30-32]). To test this hypothesis, we compared the
substitution rates of duplicated and rearranged genes,
i.e., the triplicated 12S and 16S rrns in the Breviceps
lineage, the duplicated nd2 in the Hyperolius lineage, the
duplicated nd5 in the Trichobatrachus lineage, and the
rearranged nd5 within a part of Ranidae (Babina), a part
of Dicroglossidae (Fejervarya and Hoplobatrachus), and
Rhacophoroidea (Figure 2) to those of the non-rearranged
ranoid lineages (Table 3). The duplicated and rearranged
genes did not always have faster nucleotide substitution
rates. In particular, there was no significant substitution
rate heterogeneity between the triplicated 12S and 16S rrns
in Breviceps and those of their non-duplicated counterparts
chondrial genes compared to non–rearranged genes

ed lineage 2 Substitution rates Probability Significance

ged taxa Lineage 1 Lineage 2 *

0.2364 0.2306 0.6882

0.2187 0.2352 0.1495

nids 0.4832 0.5118 0.1025

rachus 0.4832 0.4303 0.0011 *

rachus 0.4668 0.4599 0.6581

oroidea 0.4832 0.5296 5.40 × 10–4 *

icroglossids
a and
rachus)

0.4832 0.6403 ≤ 1.00 × 10–7 *

s 0.5064 0.6555 4.38 × 10–7 *

oroidea 0.3769 0.3874 0.0024 *

icroglossids
a and
rachus)

0.3769 0.4045 ≤ 1.00 × 10–7 *

s 0.3741 0.4048 ≤ 1.00 × 10–7 *

the outgroups calculated by RRTree [81]. If the estimated P-value is less than
comparison, the faster rate is shown in bold.
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in other ranoids (Nos. 1 and 2 in Table 3, P = 0.688 and
0.149). Also, the rearranged nd5 in the Babina lineage
showed no significant substitution rate difference com-
pared with the non-rearranged ranoid lineages (No. 3, P =
0.102). The duplicated nd5 in Trichobatrachus had a
significantly slow substitution rate compared to the non-
duplicated ranoid lineages (No. 4, P = 0.001), but no signifi-
cant rate difference was found in the intra-afrobatrachian
comparison No. 5, P = 0.658). Thus, faster substitution
rates than in the non-rearranged lineages were only
found in the rearranged nd5 in Rhacophoroidea (No. 6,
P = 5 × 10−4) and part of Dicroglossidae (No. 7, P ≤ 1 ×
10−7) and in the duplicated nd2 in Hyperolius (No. 8,
P = 4 × 10−7).
Branch model analysis indicated that the assumed ω

values of nd2 and nd5 on the fast substitution lineages were
not substantially different from background values (nd2:
background ω = 0.0285, Hyperolius branch ω = 0.0286, LRT
P = 0.96; nd5: background ω = 0.0442, Rhacophoroidea ω =
0.0486, Dicroglossidae branch ω = 0.0450, P = 0.96; ω values
were calculated under four assumed branches [= best
model] + fast-evolving branches for each gene). These re-
sults indicate that gene duplication does not lead to relaxed
purifying pressure on duplicated genes and to fast substitu-
tion rates in the mt genomes. Instead, the fast substitution
rates of nd2 in the Hyperolius lineage and of nd5 in the
Rhacophoroidea and Dicroglossidae lineages seem to sim-
ply reflect the substitution rates of the entire mt genomes.
In these lineages, all of the mt genes had significantly faster
substitution rates than in the non-rearranged lineages (Nos.
9–11), not just the duplicated and rearranged genes. At
present, the causes of the higher substitution rates in these
rearranged lineages is not obvious. The high A +T nucleo-
tide content in the Hyperolius mt genome (64.8% across all
genes, compared with an average of 57.8% in other ranoid
mt genomes; χ2 P = 2 × 10−16) may be a consequence of the
high substitution rates in this genome, or vice versa.

Spatial nucleotide composition bias
Clinal heterogeneity in the G + T nucleotide composition
is known to occur in vertebrate mt genes (e.g., [33,34]).
In particular, H-strand encoded genes near the OL have
high G + T content, while those positioned further from
the OL have low G + T content. This clinal variation
based on distance from the OL can be explained by
strand-asymmetric replication, which is unique to ani-
mal mt genomes. In this replication system, the synthesis
of a nascent H-strand starts at the H-strand replication
origin in the CR (from right to left in Figure 1), and the
synthesis of the nascent L-strand starts in the OL (from
left to right in Figure 1) when the nascent H-strand syn-
thesis reaches the OL [5]. In this process, the template
(old) H-strand results in single-stranded DNA during
the L-strand synthesis. The single-stranded DNA is
more prone to deamination mutations, leading to C→T
(U) and A→ hypoxanthine (pairing with C)→G substi-
tutions [103,104]. Consequently, the H-strand encoding
genes near the OL (e.g., co1) have higher G + T contents
(because of the low frequency of deamination of the
template H-strand due to their shorter exposure times
as single-strand DNA) than more remote ones.
In Ranoides, all rearranged nd5 genes were more re-

mote from the OL compared with their original positions
(Figure 1). Also, the duplicated genes in afrobatrachians
were further removed from the OL than their original
copies. However, in almost all cases, the G + T contents
of these rearranged/duplicated genes did not statistically
differ from those of their non-rearranged counterparts. The
average G +T contents of rearranged and non-rearranged
nd5 were 44.3 and 45.2%, respectively (χ2 P = 0.24), those of
nd2 were 44.5 and 41.4% (P = 0.07), and those of 12S rrn
were 42.3 and 43.9% (P = 0.48). Only the G +T contents of
16S rrn differed significantly between rearranged and non-
rearranged taxa, but contrary to expectation, the rearranged
16S rrn (in Breviceps) had low G+T content (40.7 and
43.9%; P = 0.04).
Broughton and Reneau [34] reported an increase in

non-synonymous nucleotide changes (and ω) in proportion
to distance from OL in fish and mammal mt genomes, and
they argued that this phenomenon was caused by long-
term exposure of the single-stranded H-strand DNA during
strand-asymmetric replication. However, as mentioned
above, the estimated ω of the rearranged genes in the
rearranged lineages did not differ from those in the non-
rearranged lineages. Consequently, changes in G +T con-
tents and non-synonymous substitution rates were not ob-
served in the rearranged genes in anuran mt genomes. This
result does not mean that strand-asymmetric replication
and its accompanying deamination mutations do not occur
in ranoid mt genomes. Deamination on the single H-strand
is considered the cause of strand-specific nucleotide com-
position bias generally found in vertebrate mt genomes (C-
rich L-strand, G-rich H-strand [103,104]), and this nucleo-
tide composition heterogeneity was observed between the
L- and H-strands of ranoid mt genomes (average G content
of all H-strand coding genes was 28.3% on the H-strand
and 13.5% on the L-strand). Rather, a relatively short time
since the gene rearrangements (possibly for the lineages of
Babina, Breviceps, Hyperolius, and Trichobatrachus), con-
certed evolution between duplicated genes, and/or strong
functional constraints on these mt genes (suggested by very
small ω on anuran mt genes) could have reduced the effects
of replication on biased nucleotide substitutions via de-
amination in duplicated and rearranged mt genes.
If a specific evolutionary trend exists in the duplicated

and/or rearranged genes, the data from these genes
could negatively affect phylogenetic reconstruction,
for instance, through long-branch attraction and/or
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nucleotide composition heterogeneity. This study found
no unique evolutionary trends in these mt genes, how-
ever, supporting the use of duplicated and rearranged mt
genes for phylogenetic inference.

Conclusions
In this study, we discovered and described highly-
rearranged mt genomes in afrobatrachian frogs. These
genomes strongly supported the “first tandem and sec-
ond non-tandem duplication model” for mitogenomic
rearrangements and the “recombination-based model”
for concerted evolution of duplicated mitogenomic re-
gions. Our tests also suggested that the rearranged and
duplicated mt genes did not evolve differently, sug-
gesting no disadvantage to employing these genes for
phylogenetic inference.
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