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Abstract

Background: Though most of the transcripts are long non-coding RNAs (lncRNAs), little is known about their
functions. lncRNAs usually function through interactions with proteins, which implies the importance of identifying
the binding proteins of lncRNAs in understanding the molecular mechanisms underlying the functions of lncRNAs.
Only a few approaches are available for predicting interactions between lncRNAs and proteins. In this study, we
introduce a new method lncPro.

Results: By encoding RNA and protein sequences into numeric vectors, we used matrix multiplication to score
each RNA–protein pair. This score can be used to measure the interactions between an RNA–protein pair. This
method effectively discriminates interacting and non-interacting RNA–protein pairs and predicts RNA–protein
interactions within a given complex. Applying this method on all human proteins, we found that the long non-
coding RNAs we collected tend to interact with nuclear proteins and RNA-binding proteins.

Conclusions: Compared with the existing approaches, our method shortens the time for training matrix and
obtains optimal results based on the model being used. The ability of predicting the associations between lncRNAs
and proteins has also been enhanced. Our method provides an idea on how to integrate different information into
the prediction process.
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Background
Recent studies show that only a small part of the human
transcriptome is involved in the protein-coding process
[1]. Long non-coding RNAs (lncRNAs) comprise the
majority of transcripts; however, little is known about
the function of lncRNAs [2]. The GENCODE project
discovered more than 14,000 lncRNA transcripts from
approximately 9,000 gene loci [3]. The lncRNA database
collected a few hundred of high-confidence, experimen-
tally validated lncRNAs [4]. For example, the Xist RNA
of humans is a large RNA sequence (19 kb) that has
remained untranslated [5]. Xist RNA has been proven to
have an important function in regulating X-inactivation
[6,7]. Although an increasing list of evidence demon-
strates that lncRNAs may be involved in multiple
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biological processes, including epigenetic regulation,
chromatin remodeling, and cell proliferation and differ-
entiation, the molecular mechanisms underlying the
functions of lncRNAs still remain largely elusive.
In general, lncRNAs function with their binding

proteins. Thus, in order to understand the molecular
mechanisms underlying the functions of lncRNAs, the
binding proteins of lncRNAs need to be identified. Several
experimental approaches such as RNA immunoprecipita-
tion followed by mass spectrometry analysis have been
developed to identify the lncRNA binding proteins.
Recently, Bellucci et al. [8] developed a computational
method CatRAPID for predicting RNA–protein interac-
tions. They further used the method on the predictions of
protein interactions in the Xist network [9]. The method
involves encoding protein-RNA pairs into feature vectors,
identifying a matrix, and calculating the interaction score
through matrix computation. Their results showed that
the method is powerful and may be used to predict RNA–
protein interactions from sequences.
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Table 1 Complexes used in the training set

Organism Complex ID (PDB database)

Haloarcula marismortui 1FFK, 1JJ2

Thermus thermophiles 1GIY, 3HUW, 3I8I

Deinococcus radiodurans 1J5A, 2ZJP

Escherichia coli 1P85, 2GYA

Bos Taurus 2FTC

Mus musculus 2R8S

Neurospora crassa 2RKJ

Canis lupus familiaris 2ZKQ, 2ZKR

Spinacia oleracea 3BBN, 3BBO

Homo sapiens 3CW1

Thermomyces lanuginosus 3JYV
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This study aims to explore a new method, lncPro, for
predicting lncRNA–protein interactions. lncPro yields a
score using amino acid and nucleotide sequences. This
score can be used to measure the interaction between a
pair of lncRNA and protein. Fisher’s linear discriminant
method was used to compute the matrix directly. Based
on the mathematical model being used, the result was
found to be theoretically optimal in the sense of discrim-
inant. Applying lncPro on all human proteins, we found
that the long non-coding RNAs we collected tend to
interact with nuclear proteins and RNA-binding pro-
teins. A convenient online server (http://cmbi.bjmu.edu.
cn/lncpro) has been developed for lncPro.

Methods
Data sorting
A training set containing many pairs of proteins and
RNAs is needed. Information on the interactivity of each
pair is also required.
Complexes were downloaded from the Protein Data

Bank (PDB) database (http://www.pdb.org). RNA–protein
pairs were extracted from these complexes. Although
the number of pairs is large, many sequences from
the same complex are identical according to PDB.
These repeated pairs were deleted. Take complex 2FTC
as an example. 2FTC has 18 chains, but chain E and
chain F are identical. Thus, we included 17 chains (one
RNA sequence and 16 protein sequences) in the training
set. Following this procedure, a training set containing
1761 pairs was obtained from 44 complexes (Additional
file 1: Table S1). Among the RNAs in the training set,
some sequences are noticeably shorter than the long
non-coding RNAs (more than 200 bp) we wish to study.
When deleting all the sequences shorter than 200 bp,
this led to a small training set, therefore sequences longer
than 100 bp were kept in the training set. This selection
was an approximation and not all the RNA sequences
contained in our training set are long non-coding RNAs.
Following the procedure above, a training set containing
726 pairs was obtained. These remaining pairs came from
18 complexes (Additional file 2: Table S2). The corre-
sponding complexes and organisms are listed in Table 1.
After collecting RNA–protein pairs, a criterion is

needed to determine whether a pair is interactive or
non-interactive. The “least atom distance” was used as
the criterion [10]: assume that R is an RNA molecule
and P is a protein molecule. If there exists an atom r of
R and an atom p of P such that the distance between r
and p is less than 5 Å, the pair (R and P) is considered
to be interactive. Otherwise, the pair is non-interactive.
The distance cutoff 5 Å was borrowed from the PRIDB
database [10]. RNA–protein pairs in the training set can
now be classified based on interactivity. Each pair in the
training set was checked, yielding 355 interactive pairs
and 371 non-interactive pairs. Since some sequences in
this dataset are similar, this set will be called the redun-
dant training set in the following sections. If these highly
similar sequences were assigned to the training set and
test set respectively, the evaluation of the performance
would be biased. The CD-HIT tool (http://weizhong-lab.
ucsd.edu/cdhit_suite/cgi-bin) was used to compute se-
quence similarity for both protein and RNA sequences.
Pairs that share both the protein sequence and the RNA
sequence are considered to be similar, and thus removed
from the training set. The similarity cutoff was set at
90% for both protein and RNA. After redundancy re-
moval, a training set containing 649 protein-RNA pairs,
including 322 interactive pairs and 327 non-interactive
pairs, was obtained. This set will be called the non-
redundant training set.

Feature vector encoding
This section will focus on encoding sequences into nu-
merical feature vectors. Information from the secondary
structure, the hydrogen-bonding propensities, and the
Van der Waals’ propensities was used. The encoding
procedure is presented in Figure 1. Details for each vec-
tor are described below.

Secondary structure propensities
RNAsubopt from the Vienna Package [11] was used to
predict the secondary structure of RNAs. RNAsubopt
provides n possible forms of secondary structure with
the lowest free energy. Different selections of n may lead
to differences in performance. The Discriminative Power
(Details of discriminative power can be found in the “Meas-
uring the performance of the method” section) is used as
an indicator of the performance. The Discriminative Power
does not change significantly when n is set at values of 5, 6,
7, or 8 (4-fold cross validation gave discriminative power
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Figure 1 Procedure of encoding the RNA sequences and the amino acid sequences into feature vectors. a) Procedure of encoding the
RNA sequences into feature vectors. For the secondary structure, RNAsubopt was used to obtain the top six possible secondary structures with
the lowest free energy. The dots and brackets were then replaced by 0 s and 1 s, respectively. The six vectors were added, and the secondary
structure feature vector was obtained. For Van der Waal’s interaction and hydrogen bonding, each base was replaced by numbers representing
the propensities. Finally, all three feature vectors were transformed by the Fourier series, and the first 10 terms of Fourier series were used as the
new feature vector. b) Procedure of encoding the amino acid sequences into feature vectors. For the feature vector of the secondary structure,
the corresponding Chou-Fasman propensities were used to encode each amino acid according to the secondary structure predicted by Predator.
For the feature vectors of hydrogen bonding, each amino acid was replaced by Grantham’s and Zimmerman’s scores, respectively. Kyte-Doolittle
and Bull-Breese scores were used for Van der Waals’ interaction, respectively. For all five feature vectors, the first 10 terms of the Fourier series
were used as new feature vectors.
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values of 90.5, 90.3, 91.2, and 91.6, respectively). Since a
larger n value brings more computation, n was set at six.
When an RNA sequence was given, six results were
obtained in the form of dots and brackets. Each bracket
was replaced with “1”, and each dot was replaced with “0”.
Thereafter, six binary sequences were added to obtain a
new feature vector with integers between zero and six.
Predator [12] software was used to predict the second-

ary structure of proteins. Chou-Fasman propensities
were used to encode each amino acid [13]. By replacing
each amino acid in the sequence with the corresponding
Chou-Fasman propensity, the sequence was transformed
into a numerical feature vector.
Hydrogen-bonding propensities and Van der Waals’
propensities
Purine and pyrimidine contact information from a set of
41 RNA–protein complexes [14] was used to encode the
RNA numerical feature vectors for hydrogen bonding
and Van der Waals’ interaction. The RNA feature vectors
showed the propensities of the atoms to form hydrogen
bonds and Van der Waals’ interaction. The performance
evaluation may be biased if the set of 41 RNA–protein
complexes for purine and pyrimidine contact information
have significant overlaps with our training set. Among
these 41 complexes, only one complex (1JJ2) is shared
with our training set and 12 RNA-protein pairs are
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involved. We further used the CD-HIT tool to check
whether there are significant similarities for the other se-
quences. When the cutoff was set at 0.9 for both RNA and
protein, only three RNA-protein pairs are shared between
our training set and those 41 complexes. Therefore, these
41 RNA–protein complexes for purine and pyrimidine
contact information do not have significant overlap with
the training set.
For the proteins, hydrogen bonding feature vectors

were encoded using Grantham’s propensities [15] and
Zimmerman’s propensities [16]. Feature vectors of Van
der Waals’ interaction were encoded using Kyte-Doolittle
[17] and Bull-Breese propensities [18]. Together with the
secondary structure feature vector, each protein sequence
was encoded into five numerical feature vectors.

Transformation of the dimension
Each protein sequence and each RNA sequence were
transformed into five and three numerical feature vec-
tors, respectively. However, these vectors cannot be used
for direct computations because the dimension of each
vector depends on the length of the corresponding RNA
or protein sequence, which makes it impossible to find a
fixed matrix M to conduct the computation. Therefore,
the vectors need to be transformed in order to unify the
dimension.
The Fourier series was used to solve the problem. The

formula is presented as follows:

X
0
k ¼

ffiffiffi
2
L

r XL
n¼0

Xncos
π

L
nþ 1

2

� �
k þ 1

2

� �� �
; k

¼ 0; 1;…; 9 ð1Þ

Where L is the length of the original feature vector.
Here, the first 10 terms of the Fourier series were used

as the new numerical feature vector. Dimension 10 was
selected because the results did not improve significantly
with a higher dimension and the computation is faster
when the dimension is set lower. When the dimension
was set at 10, 15, and 20, we acquired Discriminative
Power (Details of discriminative power can be found in
the “Measuring the performance of the method” sec-
tion) values 90.3%, 89.8%, and 91.9% respectively. After
transforming each RNA–protein pair into eight 10-
dimensional numerical feature vectors (three for RNA
and five for protein), the feature vector encoding
process was completed.

Finding the matrix
For each pair of feature vectors r and p (representing
the RNA feature vector and the protein feature vector,
respectively), we want to train a matrix M and use the
score < p|M|r > to measure the interaction between r
and p. M will be a 100-D matrix because the dimension
of vectors was set at 10. If we unsystematically search
the matrix in the 100-D Euclidean space, the efficiency
and accuracy would be low. The efficiency and accuracy
will be further degraded when a higher dimension is
used.
Let us analyze the expansion of < p|M|r>. Without

loss of generality, the situation of dimension two is used
to clarify the idea:
Assuming that p = (p1, p2), r = (r1, r2)

T,

M ¼ M1 M2

M3 M4

� �
, then

< p Mj jr >¼ p1 p2ð Þ M1 M2

M3 M4

� �
r1
r2

� �

¼ p1M1r1 þ p1M2r2 þ p2M3r1
þp2M4r2 ð2Þ

Equivalently, we can write < p|M|r > as follows:

< p Mj jr > ¼ M1p1r1 þM2p1r2 þM3p2r1
þM4p2r2 ¼ kx

ð3Þ
Here, k = (M1, M2, M3, M4), x = (p1r1, p1r2, p2r1, p2r2)

T.
When given p and r, then x will be fixed. Therefore,

the idea of finding the matrix M is equivalent to finding
the vector k. The score < p|M|r > is actually the inner
product of vectors x and k. This inner product score is
expected to discriminate the data into two groups. Thus,
according to the theory of Fisher’s linear discriminant
method, the best vector k is actually the direction k to
optimize the Fisher criterion function:

J kð Þ ¼ m1‐m2ð Þ2
s21 þ s22

ð4Þ

Here, mi represents the mean of each category.

s2i ¼
X

x∈Ci
x‐mið Þ2 . The subscript denotes two different

classes.
In the ten-dimensional case, the whole procedure is

similar. We can obtain the following:

< p Mj jr >¼ kx ð5Þ
Where k = (M1, M2, …, M100) and x = (p1r1, p1r2, …,

p10r10)
T; both are 100-dimensional vectors. After

transforming each pair of r and p in the training set into
(p1r1, p1r2, …, p10r10)

T, Fisher’s linear discriminant
method was applied to these 100-dimensional vectors.
Subsequently, the optimal direction k was computed
directly.
Thus, the problem of finding a matrix M in the 100-

dimensional Euclidean space was transformed into an-
other equivalent problem of finding a vector k. Using
Fisher’s linear discriminant method, k was computed
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directly from known data, thereby simplifying the process.
Based on the mathematical model being used, the
obtained result was found to be theoretically optimal.

Combining the feature vectors
Information on the secondary structure, hydrogen bond-
ing propensities, and Van der Waals’ interaction has to
be integrated. We can simply add the different feature
vectors into a new vector that contains information from
different aspects, |p > = |p1 > + |p2 > + |p3 > + |p4 > +
|p5 >, |r > = |r1 > + |r2 > + |r3 >. Thereafter, the compu-
tation can be performed directly with this new feature
vector.

< p Mj jr >¼ < p1 þ < p2j jþ < p3ð jþ < p4jþ
< p5jÞM r1 > þj jr2 > þð jr3 >Þ ð6Þ

However, Equation (6) will lead to cross terms such as
< p1|M|r2 >. Assuming that p1 indicates the protein sec-
ondary structure information and that r2 indicates the
RNA hydrogen bonding information, then the computa-
tion of < p1|M|r2 > is nonsensical because combining
different kinds of information is theoretically meaning-
less. Thus, we selected another combining method. We
computed five scores using each feature vector pairs,
respectively, which included: the protein and RNA sec-
ondary structures, protein Grantham’s propensities and
RNA hydrogen bonding, protein Zimmerman’s propen-
sities and RNA hydrogen bonding, protein Kyte-Doolittle
propensities and RNA Van der Waals’ interaction, and
protein Bull-Breese propensities and RNA Van der Waals’
interaction. Here the Grantham and Zimmerman scores
are both characterizing the protein hydrogen bonds, the
Kyte-Doolittle and Bull-Breese scores are both character-
izing the protein Van der Waals’ interaction.
The five scores must be combined to generate a final

score. Given that the encoding methods of feature
vectors are different, their magnitudes are also different.
As a result, the five scores cannot be combined directly.
Thus, we transform each score into open interval
(0,100). This is realized by a 1–1 map from the real line
to (0,100):

Y ¼ 100
π

arctan
2 X‐cð Þ
c1‐c2

� �
þ 50 ð7Þ

Where X is the raw score, Y is the transformed score,
c1 = k * m1, c2 = k * m2, and c = (c1 + c2)/2 is the mean
of c1 and c2. In c1 = k * m1, and c2 = k * m2, m1 and m2

are the mean vectors of positive and negative sets, re-
spectively. c = (c1 + c2)/2 can be considered as the separ-
ate point of interactive pairs and non-interactive pairs. If
X> > c, then Y is near 100. If X < <c, then Y is near zero.
If X = c, then Y = 50. Thus, the cutoff will be decided at
50, naturally.
According to this formula, we can transform all five
scores into a scale ranging from 0 to 100. We considered
two options to combine the five scores. The first is the
arithmetic mean of the five scores. The second is to set
weights at 1/3, 1/6, 1/6, 1/6, and 1/6, respectively, con-
sidering the Grantham and Zimmerman scores are both
characterizing hydrogen bonds and the Kyte-Doolittle
and Bull-Breese scores are both characterizing the Van
der Waals’ interaction. We observed the prediction of
different cases. The former method is more accurate
than the latter. Therefore, the arithmetic mean of the
five scores was used as the final score.

Measuring the performance of the method
The definition of Discriminative Power (DP) was adopted
from the study of Bellucci et al. [8].

DP ¼
X

i

X
n
θ πi‐πnð ÞX

i

X
n
θ πi‐πnð Þ þ

X
i

X
n
θ πn‐πið Þ ð8Þ

Where πi and πn represent the scores of interactive
and non-interactive RNA–protein pairs, respectively.
The function θ is defined as follows:

θ xð Þ ¼ 1; if x ≥ 0
0; if x < 0

�
ð9Þ

After all pairs were reordered with the score provided
by our method, DP = 1 if all the interactive pairs are
ordered before the non-interactive ones. If all the non-
interactive pairs are ordered before interactive ones,
then DP = 0. Thus, DP can be used to determine
whether the method could discriminate the positive and
negative sets well.
Furthermore, each pair was given a score between 0

and 100 using the method above. The cutoff is naturally
decided as 50 according to the formula we used. Thus, a
pair is interactive if it has a score over 50; otherwise, the
pair is non-interactive. Using this cutoff, we can calcu-
late the accuracy of the prediction.
Besides the DP value defined above, Matthews correl-

ation coefficients (MCC) can also be used to measure
the quality of classification:

MCC ¼ TP � TN−FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FPð Þ TP þ FNð Þ TN þ FPð Þ TN þ FNð Þp

ð10Þ
Here, TP is the number of true positives; FP is the

number of false positives; TN is the number of true neg-
atives; FN is the number of false negatives.

Results and discussion
First, we used cross-validation to test the classification
ability of the method on the training set. Then the



Table 2 Discriminative power for each score (non-redundant set)

Sec-structure Grantham Zimmerman K-D B-B Combination

DP 88.1% 88.1% 89.1% 87.8% 65.6% 90.3%
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ncRNA–Protein Interaction (NPInter) database and sev-
eral complexes were used to test the ability of the pre-
diction. Finally, we used the method on all human
proteins.

Cross-validation on training set and comparison with
CatRAPID
Since the CD-HIT tool has been used to delete similar
sequences, a 4-fold cross-validation could be performed
on the non-redundant training set. The mean DP was
taken as the final result. Our method obtained a DP
value 90.3% on the non-redundant set. Since there are
some similar pairs in the redundant set, a higher dis-
criminative power value 94.3% was obtained on the re-
dundant set. Compared with the results of CatRAPID
(78% on the non-redundant set and 90% on the redundant
set), this method showed a better ability to discriminate
interactive and non-interactive pairs. The Matthews Cor-
relation Coefficient (MCC) was also computed. We
obtained an MCC value of 0.74 on the non-redundant set
and a higher MCC value of 0.83 on the redundant set.
This is consistent with the previous DP results.
CatRAPID used 7 Å as the cutoff between interacting

and non-interacting RNA-protein pairs and RNA se-
quences shorter than 100 bp were also kept in the train-
ing set. To compare with CatRAPID, the method was
also tested on the other set when distance cutoff was set
at 7 Å and RNA sequences shorter than 100 bp were
kept in the training set. A 4 fold cross-validation was
performed. We obtained DP values of 90.2% and 91.6%
on the non-redundant set and the redundant set, re-
spectively, which were more accurate than CatRAPID.
MCC values were 0.77 on the non-redundant set and
0.78 on the redundant set.
Next, we checked if the results were improved when

five scores were combined. If the combining results were
less accurate than the prediction using any single score,
then the combination of different information would be
meaningless. We considered the five scores separately.
The DP for each score is presented in Table 2. The DPs
of different scores were not at the same level. However,
the combining result was more accurate than the result
of each single group. This proved that our method of
combining was effective. The same process was repeated
Table 3 Discriminative power for each score (redundant set)

Sec-structure Grantham Zimme

DP 90.0% 92.0% 91.5
on the redundant set. The DP value obtained after com-
bination was still the highest (Table 3). It could be no-
ticed that the DP value is lower than the values of other
groups when considering the B-B score alone. When in-
cluding other 4 groups in the model except the B-B
score, the DP value was 89.1% on the non-redundant set
and 93.2% on the redundant set. Thus, the B-B score
was kept in the model. These results showed that the
five groups of vectors do contain different information
that is related to RNA-protein interaction. So the classi-
fication is more accurate when more groups are used to-
gether. Even though K-D and B-B scores are both using
information of Van der Waal’s propensities, Grantham
and Zimmerman scores are both using information of
hydrogen bonding, the ways these vectors were coded
are very different.
We further checked whether a strict sequence similarity

cutoff for the non-redundant training set would influence
the prediction performance dramatically. When a strict se-
quence similarity cutoff was used (0.3 for protein and 0.8
for RNA), 21 pairs were deleted from the non-redundant
training set. A DP value of 87.1% was then obtained. The
result was still more accurate than CatRAPID (78% on the
non-redundant set).

Testing on NPInter database
In the following section, we used the whole non-
redundant training set to train the method, and tested the
method’s performance on another database. The NPInter
database (http://bioinfo.ibp.ac.cn/NPInter/) contains many
ncRNA–protein pairs from different species including
Homo sapiens, Mus musculus, Escherichia coli, Dros-
ophila melanogaster and Saccharomyces cerevisiae.
These ncRNA–protein pairs can be separated into eight
groups [19].

1. ncRNA binds to the protein;
2. ncRNA regulates the mRNA;
3. ncRNA indirectly regulates a gene;
4. ncRNA is regulated by the protein;
5. ncRNA as a factor affects the protein’s function;
6. The protein as a factor affects the ncRNA’s function;
7. Genetic linkages between the ncRNA and the protein;
8. Special linkages between the ncRNA and the protein.
rman K-D B-B Combination

% 89.7% 73.6% 94.3%

http://bioinfo.ibp.ac.cn/NPInter/


Table 4 Interaction scores of MRP and RNase P

Protein MRP result MRP exp* RNase P result RNase P exp*

hPop1 60.1 + 86.7 +

hPop5 45.2 - 25.2 -

Rpp14 40.9 - 32.9 -

Rpp20 31.2 + 44.3 +

Rpp21 64.7 + 77.6 +

Rpp25 39.8 + 70.0 +

Rpp29 69.6 + 66.8 +

Rpp30 46.5 - 55.7 -

Rpp38 58.0 + 61.4 +

Rpp40 60.7 - 65.6 -

*Known experimental result: “+” indicates interactive, “-” indicates non-interactive.

Table 6 Interaction scores of LSD1/CoREST/REST complex
and HOTAIR

Protein Score

LSD1 90.4

CoREST 73.2

REST 88.8
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All pairs belong to a positive set (interactive). We con-
sidered groups 1, 5, and 6 to have direct evidence of
interaction. The rest of the groups were considered to
have indirect evidence. Since the RNAsubopt software
will only process the first 4095 nucleotides if the input
RNA is too long, sequences longer than 4095 were de-
leted. Finally, 74 pairs with direct evidence of interaction
and 41 pairs with indirect evidence were obtained. The
CD-HIT tool was used to check if there is significant
similarity between the training set and the pairs from
NPInter. When both cutoffs were set at 0.9 for protein
and RNA sequences, CD-HIT showed that there was no
overlapping. Among the 74 pairs with direct evidence,
48 pairs have scores over 50, suggesting that 65% of the
interactive pairs were predicted. Among the 41 pairs
with indirect evidence, we predicted 27 pairs, which
accounted for 66%.
Both pairs with direct and indirect evidence (115 pairs)

were used as the positive set. Then we used another 115
pairs randomly from the non-redundant negative train-
ing set as the negative set. A DP value of 91.7% was
obtained, which was higher than the result of CatRAPID
(85%). The MCC value was 0.64, which also indicates ac-
ceptable classification ability.
By shuffling pairs in the non-redundant negative train-

ing set, we built a randomized set containing 327 pairs.
The mean value of predicted interaction scores on this
Table 5 Interaction scores of PRC-2 with HOTAIR and MEG3

Protein HOTAIR MEG3

Ezh2 93.1 87.4

Eed 63.8 67.6

Suz12 89.7 69.5

RBBP4 59.9 88.8
set was 32.71 and the distribution of the predicted inter-
action scores is displayed in Additional file 3: Figure S1.
We further randomly selected 115 of them as the nega-
tive set. When this new negative set was used, a DP
value of 86.7% was obtained for the positive set, which
includes both pairs with direct and indirect evidence
(115 pairs). These results confirmed that the classifica-
tion performance of lncPro is satisfactory.
Testing on complexes
We also studied the performance of the method on sev-
eral complexes. First, we took MRP, RNase P, PRC-2,
and LSD1/CoREST/REST complex into consideration.
The RNA sequences of MRP and RNase P were obtained
from the Functional RNA Database (fRNAdb; http://www.
ncrna.org/frnadb). The sequence of HOTAIR and MEG3
were downloaded from the National Center for Biotech-
nology Information database (http://www.ncbi.nlm.nih.
gov/). The protein sequences were obtained from the
Uniprot database (http://www.uniprot.org/).
The human MRP complex contains one RNA sequence

and ten protein sequences: hPop1, hPop5, Rpp14, Rpp20,
Rpp21, Rpp25, Rpp29, Rpp30, Rpp38, and Rpp40. RNase
P is another complex inside the human body. RNase P
shares proteins with the MRP system but has a different
RNA sequence. Previous studies focused on MRP and
RNase P [20,21]. The results can be summarized as fol-
lows. hPop1, Rpp20, Rpp21, Rpp25, Rpp29, and Rpp38
have direct interactions with the corresponding RNA,
whereas hPop5, Rpp14, Rpp30, and Rpp40 have relatively
weak interactions. We applied the method on these two
complexes. The results are shown in Table 4. Considering
hPop5, Rpp14, Rpp30, and Rpp40 are non-interactive, we
then correctly predicted 70% (7 of 10) of the interactions
for the MRP and RNase P complexes.
Table 7 Interaction scores with roX1 and roX2

Protein RoX1 score RoX2 score

MSL1 75.02 90.76

MSL2 67.39 89.28

MSL3 82.50 66.56

MLE 67.71 57.05

MOF 74.83 59.33

http://www.ncrna.org/frnadb
http://www.ncrna.org/frnadb
http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/
http://www.uniprot.org/
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It is worth noting that most of the complexes (14 out
of 18) we used to train the model exist in ribosome,
which could potentially lead to a biased prediction
model. Therefore, in order to validate the method,
lncPro needs to be tested on non-ribosome complexes.
The PCR-2 complex contains four protein units: Ezh2,
Eed, Suz12, and RBBP4. Their Uniprot IDs are Q15910,
O75530, Q15022, and Q09028, respectively. All four
proteins were predicted as interactive with HOTAIR
(has a score above 50). Ezh2 was predicted to be the
main RNA-binding unit. These results are in agreement
with known experimental results [22,23]. The inter-
action scores are listed in Table 5. Besides HOTAIR, it
is known that MEG3 also interacts with PCR-2 [24].
lncPro successfully predicted these interactions as well
(Table 5). The LSD1/CoREST/REST complex contains
three protein units: LSD1, CoREST, and REST. The cor-
responding Uniprot IDs are O60341, Q9UKL0, and
Q13127. All these three proteins are predicted as inter-
active with HOTAIR (Table 6), among which LSD1 is
predicted as the main RNA-binding unit. These predic-
tions are also consistent with known experimental
results [25,26]. Therefore, the acceptable prediction per-
formance on non-ribosome complexes proved that our
model is valid.
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Figure 2 Cumulative distribution functions (CDF) of different RNAs. Th
proteins, and the red curve is the CDF of scores between this RNA and hum
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Next, lncPro was tested on non-ribosome complexes
of other species besides human. The MSL complex of
Drosophila melanogaster contains two RNA sequences
(roX1 and roX2; collected from www.noncode.org) and
five protein sequences (MSL1, MSL2, MSL3, MLE, and
MOF; collected from Uniprot database). It is known that
both roX1 and roX2 have interactions with MSL1, MSL2,
MSL3, and MLE [27,28]. The prediction scores given by
lncPro are presented in Table 7. Since all eight predicted
interaction scores between two RNAs and these four pro-
teins are above 50, both roX1 and roX2 are predicted to
be interactive with MSL1, MSL2, MSL3, and MLE. This is
in agreement with known results. The predicted inter-
action scores between roX1, roX2 and MOF are also
above 50, which suggest that MOF might also have poten-
tial interaction with roX1 and roX2.

Score distribution of nuclear proteins and RNA-binding proteins
Most well-studied lncRNAs are located in the nucleus of
cells. Recently, non-coding RNAs have been found to be
predominantly localized in the nucleus [29]. Therefore, it is
natural to obtain higher interaction scores between nuclear
proteins and non-coding RNAs. We used our method to
see whether the scores of the nuclear proteins are indeed
higher than those of other proteins.
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Protein sequences of Homo sapiens were downloaded
from the Swiss-Prot database (20224 protein sequences).
Among these 20224 protein sequences, 5575 were anno-
tated as the nuclear protein according to the Cellular
Component of Gene Ontology (GO:0005634, nucleus,
downloaded from BioMart). The ID lists of 20224 overall
proteins and 5575 nuclear proteins were presented in
Additional file 4: Table S3. For each given lncRNA, we
compared the cumulative distribution functions (CDF)
of the nuclear protein scores to that of the overall pro-
tein scores. One-tail Kolmogorov-Smirnov test was used
to test if the two distributions are the same. With regard
to the RNAs in the human MRP complex, Rnase P
complex, and HOTAIR RNA, the p-values are 1.02E-16,
2.51E-125, and 2.18E-77, respectively. CDF images of
the three lncRNAs are presented in Figure 2. We further
collected the lncRNAs of Homo sapiens from the
lncRNA database (www.lncrnadb.com), and deleted
those sequences longer than 3000 due to the low com-
putation speed of RNAsubopt software when dealing
with long RNA sequences. Finally, 72 human lncRNAs
were obtained. With the cutoff set at 0.05, 79.1% (57 out
of 72) of these lncRNAs have significant p-values
(Additional file 5: Table S4). Thus, most of these human
lncRNAs we collected have significantly higher inter-
action scores with nuclear proteins.
Following a similar procedure, we also compared the

CDF of the RNA-binding protein scores to that of the
overall protein scores for each given lncRNA. Among
the 20224 protein sequences of Homo sapiens we col-
lected, 639 were annotated as the RNA-binding proteins
according to the Cellular Component of Gene Ontology
(GO:0003723, RNA binding, downloaded from BioMart,
Additional file 4: Table S3). 56.9% (41 out of 72) sequences
have significant p-values (Additional file 6: Table S5).
Thus, more than half of these lncRNAs have significantly
higher predicted interaction scores with known RNA-
binding proteins.

Conclusions
In this study, we introduced a new method lncPro for
the prediction of protein associations with lncRNAs.
Compared with existing methods, our method shortened
the time for training matrix M. This matrix was also
found to be theoretically optimal based on the model be-
ing used. Our method is computational friendly and
does not lead to nonsensical cross terms. The compari-
son results with CatRAPID also show that our method
has enhanced abilities of predicting the associations
between lncRNAs and proteins. Specifically, we found
the human lncRNAs we collected tend to interact with
nuclear proteins and RNA-binding proteins.
However, the process of finding proteins that directly

interact with a given lncRNA is still unsatisfactory because
of the large number of proteins. Only when the complex is
provided can the prediction of interaction within the com-
plex be more accurate. Also, most RNA-protein pairs in
our training set exist in the ribosome, so the training data
might not be general enough. Though we tested the
method on some non-ribosome complexes and it
performed well. We should still be aware of the limited
range of cases being used. To conduct a more accurate pre-
diction, further work needs to be performed and more in-
formation should be considered. The use of Fisher’s linear
discriminant method provides direction on how to incorp-
orate different information into the prediction process.
Another thing is that lncPro meets some computa-

tional issues when dealing with very long non-coding
RNAs. This is limited by the computational ability of
RNA secondary structure prediction program. We will
update lncPro when new software is available. When we
study a long RNA sequence, sometimes we are only in-
terested in certain sections of this sequence. lncPro can
be applied if the particular section is not too long.

Additional files

Additional file 1: Table S1. The number of sequences contained in 44
complexes.

Additional file 2: Table S2. The number of sequences in the remaining
18 complexes.

Additional file 3: Figure S1. Distribution of Interaction Score. The
distribution of predicted interaction scores for the shuffled set. The
shuffled set was got by randomizing all pairs in the non-redundant
negative training set.

Additional file 4: Table S3. ID list of proteins.

Additional file 5: Table S4. Test result of nuclear proteins.

Additional file 6: Table S5. Test result of RNA-binding proteins.
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