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A systematic approach identifies FOXA1 as a key
factor in the loss of epithelial traits during the
epithelial-to-mesenchymal transition in lung
cancer
Haiyun Wang1,2,3*, Clifford A Meyer2, Teng Fei2,4, Gang Wang5, Fan Zhang5* and X Shirley Liu2
Abstract

Background: The epithelial-to-mesenchymal transition is an important mechanism in cancer metastasis. Although
transcription factors including SNAIL, SLUG, and TWIST1 regulate the epithelial-to-mesenchymal transition, other
unknown transcription factors could also be involved. Identification of the full complement of transcription
factors is essential for a more complete understanding of gene regulation in this process. Chromatin
immunoprecipitation-sequencing (ChIP-Seq) technologies have been used to detect genome-wide binding of
transcription factors; here, we developed a systematic approach to integrate existing ChIP-Seq and transcriptome
data. We scanned multiple transcription factors to investigate their functional impact on the epithelial-to-
mesenchymal transition in the human A549 lung adenocarcinoma cell line.

Results: Among the transcription factors tested, impact scores identified the forkhead box protein A1 (FOXA1) as
the most significant transcription factor in the epithelial-to-mesenchymal transition. FOXA1 physically associates
with the promoters of its predicted target genes. Several critical epithelial-to-mesenchymal transition effectors
involved in cellular adhesion and cellular communication were identified in the regulatory network of FOXA1,
including FOXA2, FGA, FGB, FGG, and FGL1. The implication of FOXA1 in the epithelial-to-mesenchymal transition
via its regulatory network indicates that FOXA1 may play an important role in the initiation of lung cancer
metastasis.

Conclusions: We identified FOXA1 as a potentially important transcription factor and negative regulator in the
initial stages of lung cancer metastasis. FOXA1 may modulate the epithelial-to-mesenchymal transition via its
transcriptional regulatory network. Further, this study demonstrates how ChIP-Seq and expression data could be
integrated to delineate the impact of transcription factors on a specific biological process.
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Background
The epithelial-to-mesenchymal transition (EMT) is an
important mechanism for cancer metastasis [1], the
cause of 90% of deaths from solid tumors [2]. During
EMT, epithelial cells lose epithelial characteristics and
gain a mesenchymal morphological phenotype with the
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accompanying migration and invasion characteristics [3].
Since invasion of tumor cells into the bloodstream is the
first step of metastasis, EMT enables the tumor cells to
migrate and invade [1].
EMT is induced by expression of transcription factors

(TFs), such as SNAIL [4,5], SLUG [5], ZEB1 [6,7], ZEB2
[8], E47 [5,9], TWIST1 [10], FOXC2 [11] and Goosecoid
[12]. These TFs suppress critical epithelial cell traits,
permitting the transformation to mesenchymal cells to
occur. In cancer, overexpression of TFs promotes EMT
in tumor cells. Although most tumors seem to undergo
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EMT because of overexpression of 3 particular families
of TFs (SNAIL, ZEB, and TWIST) [13], additional EMT-
regulating TFs may remain to be identified.
Because TFs are essential for the regulation of gene ex-

pression through their interactions with regulatory DNA
sequences, sites where they bind to DNA can be
detected by chromatin immunoprecipitation coupled
with sequencing (ChIP-Seq). Indeed, ChIP-Seq technique
can be used to infer gene regulatory mechanism in spe-
cific biological processes [14]. Further, the increasing
amount of TF and DNA binding information in public
databases can help inform the role of TFs in cancer and
in EMT in particular.
We systematically analyzed a large collection of ChIP-

Seq TF binding profiles in the A549 lung adenocarcin-
oma cell line. We evaluated the functional impact of TFs
during EMT by integrating ChIP-Seq data with gene ex-
pression data in A549 cells treated with TGF-beta to in-
duce EMT. We then assessed the functional impact of
these expression changes on specific biological pro-
cesses. This approach identified the forkhead box pro-
tein A1 (FOXA1) as the most significant TF during
EMT in A549 lung cancer cells. Functional analysis sug-
gests that FOXA1 is involved in the loss of cell adhesion
and cell communication during the initiation of EMT.

Results
We analysed the genome-wide binding sites of multiple
factors, including CTCF, ELF1, ETS1, FOSL2, GABPA,
REST, EP300, SIN3AK20, SIX5,SP1, TAF1, TCF12, USF1,
YY1, ZBTB33, FOXA1, ATF3, BCL33, and RNA poly-
meraseII(POL2) using ENCODE ChIP-Seq data from
human A549 cells [15]. Using mRNA microarray data
(GSE17708) from A549 cells treated with TGF-beta, we
compared these binding site profiles with gene expression
changes associated with EMT [16]. To determine which
TFs play an important role during EMT in lung cancer,
we calculated the potential Sg of each gene to be regulated
by each of the 19 TFs (see Methods). For each TF we de-
fined the gene sets M100, M200, M500 and M800 as the
100, 200, 500, or 800 genes with the highest regulatory po-
tentials. Since the regulatory potential may be sensitive to
the maximum distance between a TF binding site and the
transcription start site (TSS) that would affect transcrip-
tion, we considered different TF/DNA binding cut-off dis-
tances from 1 to 10 kb to TSS.
To identify genes that are differentially expressed dur-

ing EMT in lung cancer, we analyzed gene expression
data on human A549 cells after treatment with TGF-
beta for 0, 0.5, 1, 2, 4, 8, 16, 24, and 72 h. Array quality
control and data normalization were performed with a
linear model for microarray data, Limma [17]. Genes
with low variability across samples were removed from
the analysis. The gene expression pattern displayed
obvious differences after 16 h of TGF-beta induction.
We therefore selected 15 microarrays and grouped them
into two groups: a control group that included six sam-
ples at 0 h and 0.5 h, and a treatment group that in-
cluded nine samples at 16 h, 24 h, and 72 h. The
differentially expressed genes during EMT were deter-
mined with p values corrected with the Benjamini-
Hochberg method [18] for controlling false discovery
rate. We identified 2,188 upregulated genes and 1,948
downregulated genes (adjusted p <0.01).

The impact of transcription factors during EMT in
lung cancer
We compared the genes that had high TF regulatory po-
tential scores with genes that were differentially expressed
in EMT. Specifically, we calculated impact scores, REMT_up

and REMT_down, for each TF, to summarize the fraction of
genes with a high regulatory potential that were, respect-
ively, up- or down-expressed during EMT (see Methods).
REMT_down for FOXA1 was significantly greater than that
for other TFs in biologically replicated ChIP-Seq data for
gene sets M200. Scores were statistically higher (P <
0.001) for FOXA1, even when the regulatory distance was
varied from 1 to 10 kb (Figure 1A). We saw similar results
for gene sets M100 (Figure 1B), M500 (Figure 1C), and
M800 (Figure 1D), suggesting that FOXA1 is the most
prominent considered TF involved in EMT. FOXA1
downregulates target genes involved in EMT at loci closer
to the TSS than other TFs, since REMT_down was consist-
ently high regardless of the regulatory distance. Con-
versely, REMT_up and REMT_down of other TFs (e.g., TAF1
and SIN3AK20) gradually increased as the regulatory dis-
tance to the TSS increased (Figure 1). The closer proxim-
ity of FOXA1 to the TSS further strengthens the
likelihood of true transcriptional regulation, rather than
non-regulatory TF/DNA association.

Identification and functional analysis of TF-regulated
targets
To determine whether FOXA1 also contributes to lung
adenocarcinoma tumorigenesis by directly regulating its
transcriptional targets, we collected 1,262 upregulated
and 1,262 downregulated genes in lung adenocarcinoma
from Oncomine [19] gene expression signatures with
concept names of ‘Lung Adenocarcinoma vs. Normal -
Top 10% Over-expressed (Su Lung)’ and ‘Lung Adeno-
carcinoma vs. Normal - Top 10% Under-expressed (Su
Lung)’. Impact scores were calculated for each TF in
lung cancer tumorigenesis as Rca_up and Rca_down. For
FOXA1, REMT_down scores for different regulatory dis-
tances were significantly high, p < 0.001) but Rca_up,

Rca_down and REMT_up scores were not significantly high
(Figure 2). Our analysis indicates that FOXA1 is involved
in EMT, but may not significantly contribute to lung
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Figure 1 Transcription factor (TF) impact scores of FOXA1 during epithelial-to-mesenchymal transition (EMT) in A549 lung cancer cells.
(A) The top 200 regulated genes (M200). (B) The top 100 regulated genes M1000. (C) The top 500 regulated genes (M500). (D) The top 800
regulated genes (M8000).
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adenocarcinoma tumorigenesis through direct regulation
of target genes. We therefore focused on the regulatory
mechanism of FOXA1 during EMT.
As FOXA1 was implicated during EMT in lung cancer,

we examined which functions FOXA1 was likely to regu-
late. Both vertebrate liver and lung derive from the early
embryonic endoderm layer and thus have similar EMT
programs. Therefore, we used the consensus binding sites
generated from FOXA1 ChIP-Seq data in A549 cells and
hepatic HepG2 cells to narrow down a set of EMT-related
and potentially FOXA1-regulated genes. MACS [20] esti-
mates the false discovery rate of each binding site by q
value [21]. Using a strict threshold of q < 10-10, we identi-
fied 22,554 overlapping binding sites. Looking for motifs
in the top 5,000 overlapping binding sites using seqPos
[22], we found that all top 10 motifs (Additional file 1:
Table S1) belong to the Forkhead family, with FOXA1
motif being the most enriched (zscore = −101.69). The
motif analysis suggests that FOXA1 might regulate EMT-
related genes directly. We then applied the regulatory po-
tential (Sg) to sort FOXA1-regulated genes and selected
top 200 genes (Additional file 2: Table S2) with a regula-
tory potential greater than 1.55 as the most likely candi-
dates of FOXA1-regulated genes.
We employed GREAT [23] to find functional categories

enriched by FOXA1-regulated genes (adjusted p <0.05).
We then used the hypergeometric distribution to select
the functions also enriched by upregulated or down-
regulated genes during EMT (adjusted p <0.05). FOXA1-
regulated genes were involved in a variety of biological
processes and pathways. Downregulated, but not up-
regulated, genes were enriched in 18 GO Biological
Processes, 1 GO Cellular Component, and 41 Pathway
Commons (Table 1), suggesting that FOXA1 may be



0

0.05

0.1

0.15

0.2

0.25

M200_d1k
M200_d3k
M200_d5k
M200_d10k

Im
pa

ct
 s

co
re

*

*

Figure 2 Impact scores of FOXA1 involvement in epithelial-to-
mesenchymal transition (EMT) in A549 lung cancer cells. Impact
scores for R(ca_down), R(ca_up), R(EMT_down) and R(EMT_up) in two biological
replicates of ChIP-Seq data calculated for regulatory distances of 1, 3, 5,
or 10 kb from the transcription start site. *p < 0.001.
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repressing EMT. The EMT-related functions enriched
by downregulated genes included cell communication,
nectin adhesion pathways, focal adhesion kinase signaling,
fibrinogen complex signaling, and FOXA1 TF networks
(Table 2). The information of all enriched functions, en-
richment scores, and the enriched genes was also shown
(Additional file 3: Table S3).
Four downregulated genes that enriched cell commu-

nication, nectin adhesion, and focal adhesion kinase and
fibrinogen complex signaling are related to the loss of
epithelial traits in metastasis initiation. FGA, FGB and
FGL1 were involved in multiple EMT-related functions
(Table 2), and FGG was also identified with a less strin-
gent q value threshold. FGA/FGB/FGG encode the
alpha/beta/gamma components of fibrinogen, a blood-
borne glycoprotein comprised of three pairs of non-
identical polypeptide chains. Fibrinogen is cleaved by
thrombin following vascular injury to form fibrin, the
most abundant component of blood clots [24]. In
addition, fibrinogen induces endothelial cell adhesion and
spreading via the release of endogenous matrix proteins
Table 1 The number of functions enriched by FOXA1-regulate

Functional category Regulated genes

GO Biological process 117

GO Cellular component 1

GO Molecular function 1

MSigDB pathway 8

Pathway commons 73

Functions with p < 0.05 are included.
and the recruitment of more than one integrin receptor
[25]. FGL1 also encodes a member of the fibrinogen fam-
ily. FGA, FGB, FGG and FGL1 were downregulated during
EMT of lung cancer (Figure 3) and were mapped to the
GO term ‘Fibrinogen complex’. ChIP-Seq data from A549
cells showed that FOXA1 was strongly bound to TSS of
these genes (Figure 4A-B). No binding sites were found at
the TSS of these genes in the human breast adenocarcin-
oma cell line MCF7 or in the human prostate adenocarcin-
oma cell line LNCaP (Figure 5), suggesting that the
regulatory role of FOXA1 in breast and prostate cancer
might differ from that of lung and liver cancer. Thus, FGA,
FGB, FGG and FGL1 could be important direct target
genes of FOXA1 that are involved in EMT of lung and liver
cancer specifically.
FOXA2 was involved in the functions including

FOXA1 transcription factor network and cell communi-
cation, and FOXA2 was downregulated during EMT of
lung cancer (Table 2). ChIP-Seq data showed that
FOXA1 was bound to TSS of FOXA2 (Figure 4C).

Experimental validation of predicted FOXA1-regulated
targets
RNA interference and reverse transcription quantitative
PCR (RT-qPCR) were used to check whether FOXA1
regulates its predicted target genes in A549 cells. We in-
vestigated FOXA1’s effect on FGA, FGB, FGG and FGL1
genes by knocking down FOXA1 followed by RT-qPCR.
Expression of FGB and FGG showed the significant de-
crease after FOXA1 was knocked down with two inde-
pendent siRNAs targeting FOXA1, while expression of
FGA and FGL1 was significantly decreased after trans-
fection with one of the siRNAs (Figure 6).

Discussion
EMT is a physiological process originally described in
embryonic development [26]. FOXA family proteins are
critical for epithelial differentiation in many endoderm-
derived organs, including pancreas [27], lung [28] and
liver [29]. Crawford et al. identified the role of FOXA1
during EMT in pancreatic ductal adenocarcinoma [30];
they found that FOXA1 and FOXA2 are important antag-
onists of EMT through positive regulation of E-cadherin
and maintenance of the epithelial phenotype. Song et al.
d genes during EMT

Upregulated genes Downregulated genes

0 18

0 1

0 0

0 0

0 41



Table 2 EMT-related functions

Ontology Description Downregulated genes p value

Pathway
Commons

Nectin adhesion pathway CP(↓),DUSP1,DUSP6,EFNA1,FGA(↓),FGB(↓),FOS(↓),GDF15(↓),HES1,IKBKG,NEDD4L(↓),ODC1,PIK3CA,
SERPINE1,SMAD3,TGIF1,VTN

0.0207

Pathway
Commons

Signaling events mediated by
focal adhesion kinase

CP(↓),DUSP1,DUSP6,EFNA1,FGA(↓),FGB(↓),FOS(↓),GDF15(↓),HES1,IKBKG,NEDD4L(↓),ODC1,PIK3CA,
SERPINE1,SMAD3,TGIF1,VTN

0.0207

Pathway
Commons

FOXA1 transcription factor
network

FOS(↓),FOXA2(↓),NR2F2(↓),TFF1,VTN 0.0319

GO Cellular
Component

Fibrinogen complex FGA(↓),FGB(↓),FGL1(↓) 0.0207

GO Biological
Process

Cell communication ANG(↓),DHCR24(↓),DUSP1,DUSP6,ECT2(↓),EFNA1,ELK3,F2RL1,FGA(↓),FGB(↓),FGL1(↓),FOS(↓),
FOXA2(↓),FRAT1(↓),FRAT2,GDF15(↓),GLRX2,GPR126,GPRC5A(↓),GUCA1B,HES1,HNF1A,HNF1B,
IKBKG,KLF9,MCU(↓),NAB2,NFE2L2(↓),NR1D1,NR2F2(↓),PDK4(↓),PIK3CA,PLA2G1B,PLCD3,PPAP2B,
RAPGEF3,RARB,SARM1,SMAD3,UBB,UBC,

0.0006
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also reported that FOXA2 suppresses tumor metastasis by
inhibiting EMT in human lung cancer [31].
Here, we identified FOXA1 as an important TF involved

in EMT during lung cancer progression. Genes regulated
by FOXA1 are down-expressed and enriched in the func-
tions including cell communication, nectin adhesion path-
ways, focal adhesion kinase signalling and fibrinogen
complex signalling, so FOXA1 may be directly involved in
metastasis initiation, namely the loss of cellular adhesion
and cellular communication. Several EMT effectors, in-
cluding FGA, FGB, FGG, and FGL1, were indicated as po-
tential regulatory targets of FOXA1. Expression of FGB
and FGG showed significant decrease after FOXA1 was
knocked down. Therefore, our analysis combining expres-
sion and TF regulatory data suggests that FOXA1 could
be the potential negative regulator of EMT and could play
pivotal roles in the initial steps of lung cancer metastasis.
In pancreas cancer FOXA1/2 factors are suppressed by
EMT-inducing signals, such as TGFb and DNA methyla-
tion. Methylation-mediated suppression of FOXA2 leads
to downregulation of EMT-related gene E-cadherin and
induces EMT [30]. Stoffel et al. [32] reported that in em-
bryonic stem cells expression of FOXA1 is reduced in the
0

2

4

6

8

10

12

14

FGA FGB FGL1 FGG

control

EMTm
R

N
A

 le
ve

l

Figure 3 Microarray data depicts mRNA expression levels.
FGA, FGB, FGG, and FGL1 mRNA expression levels in controls and
epithelial-to-mesenchymal (EMT) groups.
absence of FOXA2, and FOXA1 mRNA is undetectable in
FOXA2 null embryoid bodies, implying that FOXA2 is es-
sential for FOXA1 expression. Therefore, in lung cancer
FOXA1 activity may be regulated by other regulators such
as FOXA2 whose activities could be directly modulated
through epigenetic mechanisms. Interestingly, our study
also found a strong binding site of FOXA1 at the pro-
moter of FOXA2 (Figure 4C), suggesting the potential
regulation of FOXA1 on FOXA2 in A549 cells. More de-
tailed functional and mechanistic studies are required to
fully unveil the significance of FOXA1 during EMT and
lung cancer progression.
Our study further demonstrates how published ChIP-

Seq and gene expression data could be integrated to
understand the impact of TFs in a specific biological
process. ChIP-Seq data of A549 cells were generated with-
out TGF-beta stimulation, so our approach might only
fish out negative regulators and might miss factors which
positively regulate EMT. Despite this limitation, our ap-
proach is expected to identify potential positive factors if
ChIP-Seq data from TGFb-stimulated cells are available.
Conclusions
A systematic computational analysis based on multiple
ChIP-Seq and gene expression datasets suggests that
FOXA1 is a potentially important negative regulator in
the EMT of lung adenocarcinoma. FOXA1 may regulate
a series of critical EMT effector genes relevant to cellu-
lar adhesion and cellular communication to maintain
epithelial traits downregulated in EMT. This approach
can also be transplanted into other biological systems to
infer regulators of transcriptional mechanisms, especially
as more ChIP-Seq and expression data accumulate.
Methods
Datasets
Multiple ChIP-Seq and transcriptome datasets for human
lung adenocarcinoma are available from ENCODE, GEO
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identified in A549 cells by analysis of ChIP-Seq data. The boxed sites indicate the TSS of genes.
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and Oncomine databases. We collected ChIP-Seq data of
18 TFs and RNA polymeraseII in human A549 cells gen-
erated by ENCODE project. ChIP-Seq data in A549 cells
was generated after the treatment of 0.02% Ethanol for
1 hour. We used the GSE17708 mRNA microarray dataset
from A549 cells treated with 5 ng/mL TGF-beta for 0, 0.5,
1, 2, 4, 8, 16, 24, and 72 h to induce EMT. Each ChIP-Seq
experiment had two replicates; the microarray data was
in triplicate. A differentially expressed gene set in lung
adenocarcinoma tumorigenesis based on gene signatures
from the Oncomine database was used as a control. This
array (U133A) included 1,262 of the top 10% upregulated



Figure 5 FOXA1 binding sites in the upstream regions of FGA, FGB and FGG. ChIP-Seq identified binding sites in four different cell lines are
depicted: MCF7 cells, LNCaP cells, A549 cells, and HepG2 cells. The boxed sites indicate the TSS of genes.

Wang et al. BMC Genomics 2013, 14:680 Page 7 of 9
http://www.biomedcentral.com/1471-2164/14/680
genes and 1,262 of the top 10% downregulated genes in
lung adenocarcinoma compared with normal samples. In
addition, FOXA1 binding site data from hepatic hepG2
cells were used.

Regulatory gene analysis
We first used each TF’s binding sites to define their regu-
latory genes with a previously described algorithm [33].
The sum of the nearby binding sites weighted by the dis-
tance from each site to the TSS of a given gene was used
to calculate the regulatory potential Sg for each gene:

Sg ¼
Xk

i¼1
e− 0:5þ4Δið Þ;

Where k is the number of binding sites within the regu-
latory distance of gene g and Δi is the distance between
site i and the TSS of gene g. For regulatory genes
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Figure 6 Expression of FGA, FGB, FGG and FGL1 were
downregulated by FOXA1 knockdown in A549 cells. RT-qPCR
analysis of expression of FOXA1, FGA, FGB, FGG and FGL1 in A549
cells after transfection with FOXA1-specific siRNA (#1 and #2). * p <
0.05, ** p < 0.005 (as compared with control).
prediction, we respectively considered genes with at least
one binding site within 1 kb, 3 kb, 5 kb and 10 kb from its
TSS. By combing differentially expressed genes in lung
cancer EMT from transcriptome data, we gave each TF an
impact score based on the regulated genes’ involvement in
EMT. We assumed that genes regulated by one TF were
differentially expressed if that TF was involved in EMT.
With this assumption, we first overlapped TF-regulated
genes and upregulated or downregulated genes and then
used the ratio of overlapping genes to total numbers of
regulated genes as a measure of TF impact:

R ¼ ne=nt ;

where R is TF impact score, ne is the number of overlap-
ping genes , and nt is the number of total target genes. Im-
pact score is large when TFs play a role in EMT.
We used the hypergeometric distribution to assess the

statistical significance of R, where the basic definition of
the hypergeometric distribution of a random variable
X is:

p X ¼ xjN;M;nð Þ ¼
M
x

� �
N−M
n−x

� �

N
n

� � ;

where N is the number of all genes, M is the number of
TF regulated genes, n is the number of upregulated or
downregulated genes in EMT, and x is the number of
upregulated or downregulated genes in the top M.
Whether the p value of the random variable X is greater
than a specific value x can be calculated by:
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p X≥xjN;M;nð Þ ¼ 1−∑
x−1

i¼0

M
i

N−M
n−i

N
n

� � ;

For the TF with the highest R value, we further
employed other ChIP-Seq data to winnow binding sites
and determine the most likely regulatory genes.

Functional analysis
Function annotation frames GO, MSigDB pathway, and
Pathway Commons were used to select the significant
functions enriched by TF regulatory genes with cis-
regulatory regions function analysis tool GREAT. A
hypergeometric distribution was used for each of the
enriched functions to assess whether the TF-enriched
functions were also enriched by differentially expressed
genes during EMT. If they were, these functions were as-
sumed to be EMT-related. The p value was calculated as:

p X≥xjN;M;nð Þ ¼ 1−∑x‐1

i¼0

M
i

� �
N‐M
n‐i

� �

N
n

� � ;

where N is the number of all genes, M is the number of TF
regulatory genes mapped in one functional category, n is
the number of upregulated or downregulated genes during
EMT, and x is the number of upregulated or downregulated
genes in one functional category.

RNA interference and Quantitative real-time PCR:
siRNA targeting FOXA1 was purchased from Ribobio.
The sequence of siRNA #1 is: 5’- CCGGUCAGCAAC
AUGAACU dTdT -3’ and 5’-AGUUCAUGUUGCUGA
CCGGdTdT-3’; the sequence of siRNA #2 is 5’-ACGAA
CAGGCACUGCAAUA dTdT -3’ and 5’UAUUGCAGU
GCCUGUUCGUdTdT-3’. Gene specific and scramble
(control) siRNA were transfected into A549 cells using
lipofectamine 2000 according to manufacturer’s instruc-
tion (Invitrogen).
Total RNA of the cells was extracted using RNAprep

Pure Cell/Bacteria kit (Tiangen). 5ug of total RNA was re-
verse transcribed with RevertAid strand cDNA synthesis kit
according to the manufacturer’s instruction (Thermo Scien-
tific). Real time PCR was run on Applied Biosystem 7500
with GREAT Real Time SYBR PCR kit (Biovisual Lab). Ex-
pression level of each gene was normalized to GAPDH ex-
pression, and further normalized to control group. All PCR
experiments were done in triplicates within each experi-
ment. The primer sequences for FOXA1 were 5’ –GCA
ATACTCGCCTTACGGCT-3’ and 5’- TACACACCTTG
GTAGTACGCC-3’, for GAPDH were 5’-GAGTCAACG
GATTTGGTCGT-3’ and 5’-TTGATTTTGGAGGGATCT
CG-3’, for FGA were 5’-AGACATCAATCTGCCTGCAA-
3’ and 5’-TCAATCAACCCTTTCATCCTG-3’, for FGB
were 5’-CCCAGACCTCCTCTTCTTCC-3’ and 5’-TGGT
GCTTTTCCAGTTCTGA-3’, for FGG were 5’-GGAAG
ACTGGAATGGCAGAA-3’ and 5’-ATCATCGCCAAAAT
CAAAGC-3’, for FGL1 were 5’-TCCTGGGAAGCAGAGT
GTCT-3’ and AAGAGCGGTGGTAACAAGGA-3’.

Additional files

Additional file 1: Table S1. The motifs in the top 5,000 binding sites
analysed with motif algorithm ‘seqPos’. The top ten motifs are showed in
the table.

Additional file 2: Table S2. FOXA1 regulatory potential score as well as
gene expression in TGF-beta stimulated cells of 0 h and 0.5 h time points
(control) against 16-72 h (EMT) for all genes. ‘NA’ means there is no
expression data for that gene. Top 200 genes are selected as the
predicted FOXA1 target genes.

Additional file 3: Table S3. The information of all enriched functions,
enrichment scores, and the enriched genes.
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