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Abstract

Background: Although the study of gene regulation via the action of specific microRNAs (miRNAs) has
experienced a boom in recent years, the analysis of genome-wide interaction networks among miRNAs and
respective targeted mRNAs has lagged behind. MicroRNAs simultaneously target many transcripts and fine-tune the
expression of genes through cooperative/combinatorial targeting. Therefore, they have a large regulatory potential
that could widely impact development and progression of diseases, as well as contribute unpredicted collateral
effects due to their natural, pathophysiological, or treatment-induced modulation. We support the viewpoint that
whole mirnome-transcriptome interaction analysis is required to better understand the mechanisms and potential
consequences of miRNA regulation and/or deregulation in relevant biological models. In this study, we tested the
hypotheses that ethanol consumption induces changes in miRNA-MRNA interaction networks in the mouse frontal
cortex and that some of the changes observed in the mouse are equivalent to changes in similar brain regions
from human alcoholics.

Results: miRNA-MRNA interaction networks responding to ethanol insult were identified by differential expression
analysis and weighted gene coexpression network analysis (WGCNA). Important pathways (coexpressed modular
networks detected by WGCNA) and hub genes central to the neuronal response to ethanol are highlighted, as well
as key miRNAs that regulate these processes and therefore represent potential therapeutic targets for treating
alcohol addiction. Importantly, we discovered a conserved signature of changing miRNAs between ethanol-treated
mice and human alcoholics, which provides a valuable tool for future biomarker/diagnostic studies in humans. We
report positively correlated miRNA-mRNA expression networks that suggest an adaptive, targeted miRNA response
due to binge ethanol drinking.

Conclusions: This study provides new evidence for the role of miRNA regulation in brain homeostasis and sheds

new light on current understanding of the development of alcohol dependence. To our knowledge this is the first
report that activated expression of miRNAs correlates with activated expression of mMRNAs rather than with mRNA

downregulation in an in vivo model. We speculate that early activation of miRNAs designed to limit the effects of

alcohol-induced genes may be an essential adaptive response during disease progression.
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Background

Alcohol dependence is a brain disorder of complex eti-
ology characterized by brain-wide pathophysiological al-
terations under continuous crosstalk, with approximately
40-60% contribution from genetic factors [1]. As sug-
gested by Farris and Miles, interacting neuronal and glial
networks across distinct brain regions likely control the
variety of alcohol endophenotypes, which are ultimately
controlled by the regulation of multiple gene networks
expressed within individual neurons or glial cells [2].
Support for these statements is found in the observation
that chronic consumption of alcohol induces long-term
changes in brain gene and protein expression, which allow
brain cells to adapt through homeostatic alterations in dis-
tinct signaling pathways [3,4]. Although the complex
regulatory mechanisms governing these changes are not
fully understood, there is mounting evidence that tran-
scriptional reprogramming is brain area-specific and may
reflect both pre-existing differences in gene expression
and alterations in response to alcohol consumption [5].

MicroRNAs (miRNAs), a type of short non-coding
RNA with well characterized post-transcriptional regula-
tory functions, have been recently implicated in cellular
responses to multiple drugs of abuse including alcohol
[4,6-10]. Moreover, miRNAs have extensive regulatory
capacity given that a single miRNA can simultaneously
target multiple genes, and multiple miRNAs can co-
operatively function while targeting a single gene, there-
fore allowing for fine-tuned regulation of targeted gene
expression. We have previously shown that miRNAs,
which localize to and display neurotransmitter signaling-
related activities at neuronal synapses, are also capable
of eliciting distinct and specific activities in other cell
types and/or compartments of the cell, such as innate
immunity- and epigenetic-related functions in neuronal
and glial cells [4]. This underscores the impact that mo-
lecular efficiency, signaling crosstalk, and cellular econ-
omy play in the adaptation and evolution of cellular
systems and highlights the significance of miRNAs as ef-
ficient molecular targets for complex diseases such as
addiction.

We have previously reported that in brains of human
alcoholics, miRNAs appear mostly upregulated, with
an overrepresented number of targets among down-
regulated mRNAs. Approximately 80% of those targets
appeared to be combinatorially regulated by multiple
miRNAs [11]. Many of these upregulated miRNAs ap-
pear to be central regulators of epigenetic-, synaptic
signaling-, and neuroimmune-related processes (Nunez
and Mayfield [4]). Here we describe new findings in the
frontal cerebral cortex (FCtx) of a mouse model for high
voluntary ethanol consumption. Mouse models like
ours, implementing drinking in the dark (DID) proto-
cols that produce pharmacologically relevant levels of
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ethanol in blood, have been developed to examine binge-
like ethanol consumption [12]. Binge ethanol consumption
in humans is “a pattern of behaviour that may emerge
prior to, and contribute to the development of, ethanol de-
pendence” [12]. Our goal is to identify sets of miRNAs and
relevant regulatory networks that contribute to our under-
standing of the mechanisms related to alcohol dependence
in humans. We tested the hypotheses that alcohol induces
changes in miRNA-mRNA interaction networks in mouse
frontal cortex and that some of the changes observed in
the mouse brain are equivalent to changes occurring in
similar brain regions from human alcoholics. We report on
the integrative analysis of genome-wide miRNA-mRNA
expression profiles from mouse FCtx samples and on the
implementation of weighted gene coexpression network
analysis (WGCNA). Using WGCNA, we generated corre-
lations among coexpressed gene modules and differentially
expressed miRNAs and provided evidence for relevant
regulatory networks responsive to alcohol actions. We un-
expectedly uncovered striking positive correlation patterns
between upregulated miRNAs and upregulated predicted,
validated, and/or correlated mRNA targets.

Results

Differential expression analysis underscores a major role
for upregulation of miRNAs in FCtx of ethanol-treated
mice

In order to evaluate the impact of alcohol consumption
on miRNA and gene expression in mouse brain, we
conducted miRNA and mRNA profiling studies on 32
samples (20 ethanol-treated mice and 12 matched con-
trols) as described in Materials and Methods. Ethanol-
treated mice consumed an average of 4.92 g/kg/3 h
(range: 4.08-6.31 g/kg/3 h; stdev: 0.52). The miRNA ex-
pression analysis indicated that, as in prefrontal cortex
(PFC) of human alcoholics, miRNAs appear predominantly
upregulated in FCtx of alcohol-drinking mice, with 52
miRNA families upregulated in mouse brain (Table 1).
Importantly, we found that a highly significant number of
miRNA families that are upregulated in PFC of human
alcoholics [11] are also upregulated in the FCtx of ethanol-
treated mice (Figure 1). Fourteen out of 32 alcohol-induced
human miRNA families changed expression in the ethanol-
treated mice (P < 1 x 10™ as determined after 10,000 Monte
Carlo simulations). The fact that upregulation is predomin-
ant at the significance level chosen (FDR < 10%) among dif-
ferentially expressed miRNAs in the mouse frontal cortex is
consistent with previous results in human alcoholic PFC
[11]. The miRNA families that change expression in both
mouse and human were: let-7, miR-7, miR-15, miR-101,
miR-140, miR-152 (all validated by qPCR, P < 0.05), as well
as miR-17, miR-34, miR-135, miR-144, miR-146, miR-301,
miR-339, miR-368 (qPCR not performed). Other differen-
tially expressed miRNAs specific to the mouse model were
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Table 1 Differentially expressed miRNAs in mouse frontal cortex
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Rank Name Family ID logFC Ave.Exp. P.Value adj.P.val
1 mmu-let-7g-5p let-7 0.30 1220 2.12E-07 1.27E-04
2 mmu-let-7d-5p let-7 0.27 1153 5.98E-07 1.27E-04
4 mmu-let-7¢c-5p let-7 0.29 11.78 1.09E-06 1.49E-04
5 mmu-let-7b-5p let-7 0.25 1248 1.17E-06 1.49E-04
10 mmu-let-7a-5p let-7 0.27 1259 9.73E-06 6.88E-04
7 mmu-let-7i-5p let-7 0.24 11.17 1.08E-05 6.88E-04
22 mmu-let-7e-5p let-7 0.21 11.25 1.67E-04 4.83E-03
42 mmu-miR-125a-5p mir-10 0.22 11.79 149E-03 2.26E-02
12 mmu-miR-101b-3p mir-101 0.29 7.79 1.72E-05 9.11E-04
37 mmu-miR-101a-3p mir-101 0.24 10.12 1.17E-03 1.92E-02
50 mmu-miR-107-3p mir-103 0.22 877 3.24E-03 4.12E-02
64 mmu-miR-124-5p mir-124 0.15 6.32 7.13E-03 7.09E-02
33 mmu-miR-301a-3p mir-130 0.22 8.39 6.90E-04 1.29E-02
59 mmu-miR-130a-3p mir-130 0.16 830 5.94E-03 6.44E-02
52 mmu-miR-135b-5p mir-135 022 792 4.08E-03 4.99E-02
74 mmu-miR-136-5p mir-136 0.22 9.06 1.09E-02 9.39E-02
18 mmu-miR-138-5p mir-138 0.26 12.84 9.05E-05 3.20E-03
40 mmu-miR-140-3p mir-140 0.19 7.89 1.23E-03 1.94E-02
46 mmu-miR-144-3p mir-144 0.25 6.88 2.38E-03 3.30E-02
68 mmu-miR-145-5p mir-145 0.17 7.03 8.25E-03 7.73E-02
48 mmu-miR-146b-5p mir-146 0.16 7.50 2.60E-03 3.38E-02
25 mmu-miR-152-3p mir-148 0.19 647 2.22E-04 5.65E-03
31 mmu-miR-149-5p mir-149 0.22 7.69 4.26E-04 8.75E-03
14 mmu-miR-16-5p mir-15 0.29 10.94 2.74E-05 1.25E-03
16 mmu-miR-15a-5p mir-15 0.20 9.18 5.63E-05 2.24E-03
20 mmu-miR-195-5p mir-15 0.24 8.63 1.26E-04 4.01E-03
53 mmu-miR-15b-5p mir-15 0.15 6.85 4.15E-03 4.99E-02
44 mmu-miR-93-5p mir-17 0.16 6.98 1.73E-03 245E-02
21 mmu-miR-181d-5p mir-181 0.24 847 1.51E-04 4.59E-03
57 mmu-miR-181a-5p mir-181 0.20 9.81 5.96E-03 6.44E-02
69 mmu-miR-182-5p mir-182 062 871 8.90E-03 8.21E-02
62 mmu-miR-183-5p mir-183 0.66 838 6.90E-03 6.99E-02
49 mmu-miR-185-5p mir-185 0.19 891 2.60E-03 3.38E-02
41 mmu-miR-191-5p mir-191 0.19 9.71 1.25E-03 1.94E-02
28 mmu-miR-193-3p mir-193 0.25 6.55 3.70E-04 8.12E-03
29 mmu-miR-1952 mir-1952 0.21 9.18 3.70E-04 8.12E-03
72 mmu-miR-1961 mir-1961 0.19 6.58 1.03E-02 9.11E-02
34 mmu-miR-204-5p mir-204 031 774 6.87E-04 1.29E-02
26 mmu-miR-222-3p mir-221 023 10.22 2.37E-04 5.81E-03
35 mmu-miR-221-3p mir-221 0.25 9.09 847E-04 1.54E-02
63 mmu-miR-221-5p mir-221 0.17 561 6.79E-03 6.99E-02
38 mmu-miR-23a-3p mir-23 022 10.57 1.12E-03 1.92E-02
51 mmu-miR-23b-3p mir-23 0.27 11.85 3.70E-03 4.63E-02
13 mmu-miR-24-2-5p mir-24 0.24 713 1.89E-05 9.26E-04
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Table 1 Differentially expressed miRNAs in mouse frontal cortex (Continued)

24 mmu-miR-24-3p mir-24
58 mmu-miR-24-1-5p mir-24
3 mmu-miR-26a-5p mir-26
47 mmu-miR-26b-5p mir-26
15 mmu-miR-29a-5p mir-29
6 mmu-miR-30d-5p mir-30
39 mmu-miR-30e-5p mir-30
43 mmu-miR-30e-3p mir-30
76 mmu-miR-30b-5p mir-30
9 mmu-miR-320-3p mir-320
71 mmu-miR-330-5p mir-330
30 mmu-miR-335-5p mir-335
67 mmu-miR-339-5p mir-339
8 mmu-miR-34¢-5p mir-34
77 mmu-miR-34a-5p mir-34
45 mmu-miR-340-5p mir-340
17 mmu-miR-361-5p mir-361
19 mmu-miR-376b-3p mir-368
56 mmu-miR-376a-3p mir-368
23 mmu-miR-434-3p mir-434
27 mmu-miR-451 mir-451
66 mmu-miR-669¢-5p mir-467
55 mmu-miR-485-3p mir-485
65 mmu-miR-669n mir-669n
60 mmu-miR-674-5p mir-674
54 mmu-miR-676-3p mir-676
1" mmu-miR-7a-5p mir-7
36 mmu-miR-708-5p mir-708
70 mmu-miR-429-3p mir-8
32 mmu-miR-9-3p mir-9
61 mmu-miR-9-5p mir-9
73 mmu-miR-96-5p mir-96

0.25 11.70 1.98E-04 5.27E-03
0.17 7.72 5.92E-03 6.44E-02
0.30 1279 4.71E-07 1.27E-04
0.29 9.79 247E-03 3.35E-02
0.29 7.56 3.17E-05 1.34E-03
0.26 9.68 3.57E-06 3.79E-04
0.26 10.87 1.18E-03 1.92E-02
0.29 8.17 1.61E-03 2.38E-02
0.25 11.79 1.12E-02 9.39E-02
0.26 749 1.07E-05 6.88E-04
0.15 7.70 9.69E-03 8.70E-02
0.23 1051 4.00E-04 8.50E-03
0.20 6.80 7.92E-03 7.53E-02
0.24 6.68 9.54E-06 6.88E-04
0.17 9.54 1.17E-02 9.66E-02
0.17 8.51 1.71E-03 245E-02
0.24 7.88 7.74E-05 2.90E-03
0.26 845 1.05E-04 3.50E-03
0.19 10.21 5.63E-03 6.40E-02
0.22 10.46 1.76E-04 4.88E-03
033 10.72 2.79E-04 6.57E-03
0.17 8.84 7.68E-03 741E-02
0.19 6.75 5.52E-03 6.39E-02
0.14 7.88 7.46E-03 7.31E-02
0.17 8.64 6.08E-03 6.45E-02
0.15 6.63 4.48E-03 5.28E-02
0.24 9.17 1.37E-05 791E-04
0.17 9.38 9.09E-04 1.61E-02
061 9.27 9.53E-03 8.68E-02
0.22 12.96 6.43E-04 1.28E-02
0.24 1211 6.91E-03 6.99E-02
053 8.58 1.06E-02 9.22E-02

also validated by qPCR, including miR-195 (member of the
miR-15 family) and miR-541 family members. Moreover,
we found a significant match among differentially expressed
mouse mMiRNA families and those reported in PFC of
ethanol-treated rats [13]. Seventeen out of 33 rat miRNA
families (representing 41 differentially expressed rat
miRNAs) were matched to our mouse data, P <1 x 107>,
The miRNA families that change expression in both
mice and rats were: mir-7, mir-9, mir-10, mir-15, mir-17,
mir-26, mir-29, mir-30, mir-101, mir-130, mir-181, mir-
204, mir-339, mir-340, mir-368, mir-434, mir-467. Overall,
these results underscore the relevance of gene regulation
by miRNAs in response to alcohol consumption and

suggest conservation of alcohol-responsive miRNA regu-
latory pathways from rodent to human.

Ethanol-responsive genes in brains of mice significantly
match respective homologs differentially expressed in
brains of human alcoholics

Differential expression analysis of the Illumina micro-
array data identified 709 genes with expression changes
in response to alcohol in the FCtx of ethanol-treated mice
(Additional file 1: Table S1, FDR < 1%). A representative
group of altered genes, including Sytll, Toml, Atp2bl,
and Fermt2, were validated by qPCR (P<0.05) using
TagMan® assays as described in Materials and Methods. A
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ETOH-treated Mouse FCtx

Human Alcoholic PFC (52 miRNA families)

(32 miRNA families)

Figure 1 Upregulation of frontal cortex miRNAs in response to
alcohol is conserved from mice to humans. Venn diagram
highlights common set of 14 upregulated miRNA families in
prefrontal cortex of human alcoholics [11] and ethanol-treated mice
(current study). P value empirically assessed after 100,000 Monte
Carlo simulations. PFC: prefrontal cortex, FCtx: frontal cortex.

significant number of the differentially expressed genes
(Additional file 1: Figure S1A) also changed in PFC of hu-
man alcoholics, as reported by the Mayfield group [11,14].
Such highly statistically significant matches (P < 1 x 10 as
empirically estimated by Monte Carlo simulations) under-
score the relevance of the commonly affected genes. How-
ever, it should be noted that 79% of the common gene
changes are occurring in opposite directions when the
mouse and human models are compared (Figure 2A).
When our mouse gene expression dataset was compared
to an additional profiled cohort of human alcoholics [15],
we consistently found a highly significant match among
differentially expressed genes between the mouse and
human models (84 common differentially expressed genes,
P<1x107, (Additional file 1: Figure S1B). Moreover, we
similarly observed that a relatively large percentage (40%)
changed in opposite directions (Figure 2B). Furthermore,
comparison to the human datasets indicated that a
majority of the common differentially expressed genes
(65% on average) are upregulated in the mouse brain, while
only 34% on average are upregulated in the brain of
human alcoholics. These results suggest that brain
genes upregulated in early stages of development of
alcohol dependence (using mouse model) might undergo
downregulation in late stages of the disease (using human
alcoholic model), possibly due to homeostatic mechanisms
driven by miRNA regulation.

Integrated miRNA-mRNA networks reveal positively
correlated action of brain miRNAs and persistent
upregulation of overtargeted mRNAs in ethanol drinking
mice

In order to better understand miRNA-mRNA regulatory
relationships, we constructed respective interaction net-
works among negatively and positively correlated
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interaction groups, using the miRNA-mRNA interaction
universe generated from miRecords predicted (consensus
of at least 4 tools) and validated interactions (described in
Materials and Methods). We found that the negatively
correlated network of interactions among upregulated
miRNAs and downregulated mRNAs (average number of
neighbors: 2.95, Figure 3A) was no different from random-
ized networks generated as a control tool (average number
of neighbors: 3.03, shown in Additional file 1: Figure S2A).
On the other hand, the corresponding network containing
the miRNA-mRNA interactions that were positively corre-
lated (upregulated miRNA-upregulated mRNA network)
provided unexpected evidence that this network was twice
as interconnected (average number of neighbors: 4.97,
Figure 3B) as expected by chance (average number of
neighbors: 2.52, shown in Additional file 1: Figure S2B).

In addition when overrepresentation analyses were
conducted on the interaction networks, we found that the
majority of upregulated miRNAs (38/48 =79%) have an
overrepresented number of targets among upregulated
genes (Additional file 1: Table S2, FDR < 0.10), while only
about one quarter (10/41 =24%) had an overrepresented
number of targets among downregulated genes (Additional
file 1: Table S3, FDR < 0.10). The expected number of
miRNAs with overrepresented number of targets is 22/
45 =49%, as determined by averaging the proportions
obtained for two random networks. Therefore, the pro-
portion detected in the positively correlated (upregulated
miRNA-upregulated mRNA) network is highly signifi-
cantly enriched (79% vs. 49%, Chi-squared P <1 x 10
in miRNAs that have a higher than expected number of
targets (“overtargeting” miRNAs). On the other hand,
the proportion detected in the negatively correlated
(upregulated miRNA-downregulated mRNA) network is
significantly smaller than expected by chance (24% vs.
49%, Chi-squared P =0.0016), indicating that the nega-
tively correlated network is depleted of overtargeting
miRNAs. This is consistent with the observation that
out of 413 upregulated genes, 265 (64%) represented
putative upregulated miRNA targets, while only 119 out
of 296 downregulated genes (40%) represented putative
downregulated miRNA targets. These results suggest
that the function of the alcohol-induced miRNAs is to
target alcohol-induced genes.

WGCNA identifies brain gene modules perturbed by
ethanol

To determine the relevant alcohol-responsive pathways
regulated by miRNAs, we investigated the organization
of the transcriptome in the frontal cortex of the mouse
brain by applying weighted gene coexpression network
analysis to the 32 samples as described in Materials and
Methods. The weighted network identified groups (modules)
of genes with similar expression patterns and high
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Figure 2 (See legend on next page.)
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(See figure on previous page.)

Figure 2 Conserved differential gene expression in response to ethanol with implicit model differences in direction of change. A: Venn
diagram highlights common set of 29 differentially expressed genes in prefrontal cortex of human alcoholics (as reported by [14]) and ethanol-
treated mice (current results); B: Directionality of expression changes in common set of 29 differentially expressed genes referred to in A; C: Venn
diagram highlights common set of 84 differentially expressed genes in prefrontal cortex of human alcoholics (as reported by [15]) and ethanol-
treated mice (current study); D: Directionality of expression change in common set of 84 differentially expressed genes referred to in C. P values
empirically assessed after 10° and 10’ Monte Carlo simulations, respectively.

topological overlap. Topological overlap is a pairwise
measurement that describes the similarity of two
genes’ coexpression relationships with all other genes
in the network [16,17] and has been shown to globally
identify, for example, coexpression patterns that correlate
with validated protein interactions in the human brain
[18]. Our WGCNA identified 10 mRNA modules (Figure 4)
with highly significant coexpression patterns, which we
graphically corroborated by plotting the expression levels
for the top 10 genes with the strongest membership on
alcohol-related modules (Additional file 1: Figure S3).
All modules were further correlated using the module
eigengenes, with the phenotypic traits of interest, namely
average ethanol consumption per voluntary drinking ses-
sion and expression pattern of differentially expressed
miRNAs. Table 2 summarizes the WGCNA module detec-
tion results. We included correlation values to the ethanol
consumption trait and the associated P value of these
correlations, as well as results from a variety of enrichment
analyses. Additional details for enrichment analyses are
provided in Additional file 1: Tables S4-S7). We want to
point out that the number of modules produced by our
WGCNA strategy seems rather low and the number
of unassigned genes (grey module) rather large. One
of the reasons for this behavior is that we constrained
the minimum number of genes per module to a relatively
high number (100 genes) in an effort to generate larger
modules that improve detection of functional enrichment
after gene enrichment analysis. Moreover, we purposely
chose a low cutting height of 0.99 (default in WGCNA R
package is 0.995) while implementing the dynamic tree
cut method of the blockwiseModules function, to increase
the stringency of the module detection step. Cutting
height sets a threshold for dissimilarity between expres-
sion patterns to be considered for module detection:
the lower the threshold, the more similar the patterns
need to be for assignment into modules. Yet another
potentially influential factor is the relatively small
difference in gene expression between control and
ethanol-treated animals, which may make it more dif-
ficult to detect significantly different patterns at strin-
gent levels of statistical significance. The relatively small
changes in gene and miRNA expression observed in ro-
dent and human models of alcohol consumption are a
common phenomenon described by researchers in the
field [11,13,19].

Five modules (yellow, red, turquoise, pink, and brown)
presented significant average correlations with the
ethanol-related traits (Table 2, P <0.01; Figure 5A and
5B; P < 0.05), thus warranting further investigation. The
alcohol-responsive modules also presented highly signifi-
cant correlations between module membership (MM) and
gene significance (GS) to the ethanol-consumption trait
(Figure 5C), which strengthen the inference of biological
functions of the alcohol-significant genes by analyzing
ontology category enrichment in the respective modules.
Moreover, the five modules significantly correlated with
ethanol drinking were significantly enriched with differen-
tially expressed genes (Table 2). We also detected signifi-
cant correlations (FDR<0.1) between individual gene
expression patterns and individual differentially expressed
miRNA expression patterns (Figure 4, Additional file 1:
Table S8), which provide indirect experimental validation
for a group of predicted miRNA-mRNA interactions. By
correlating the module eigengenes with the differentially
expressed miRNA expression patterns (Figure 6) and
considering the individual significant correlations shown
in Figure 4, three modules (red and brown —positively cor-
related with ethanol drinking, and turquoise —negatively
correlated with ethanol drinking), were found to be prefer-
entially targeted by the differentially expressed miRNAs.
To assess the validity of this approach, we corroborated
the positively correlated expression levels of interacting
miRNAs and mRNAs (i.e., mmu-let-7 vs. Sytll and
mmu-let-7 vs. Tom1) by qPCR. Additional confirmation
for WGCNA-suggested interactions was obtained from
TarBase, the database for validated interactions, where
we found validated interactions between miRNAs and
mRNAs that were positively correlated in our study but
negatively correlated in previous publications: mmu-
miR-34a-5p --| ACTB, mmu-miR-200b-3p --| ZEB2,
mmu-miR-30a-5p --| TNRC6A, mmu-miR-152-3p --|
CAMK2A, mmu-miR-200c-3p --| FLT1, mmu-miR-20a
-5p --| ZBTB7A. Also, we found evidence in TarBase for
validated interactions between miRNAs and mRNAs
that were negatively correlated in our study as well as in
previous publications: mmu-miR-29b-5p --| COL4A2
and mmu-miR-30a-5p5p --| AK1. Apparent spurious
correlation was observed among some differentially
expressed miRNAs and the black module. However, this
module did not show significant correlation with the
alcohol consumption phenotype. Hence the correlations
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Figure 3 Alcohol-induced miRNA-mRNA interaction networks. A: Interaction network among upregulated miRNAs (red squares) and
downregulated mRNAs (blue circles); average number of neighbors 2.95. B: Interaction network among upregulated miRNAs (red squares) and
upregulated mRNAs (pink circles); average number of neighbors 4.97. The average number of neighbors represents the average number of links
(edges) a node has to other nodes. The size of the nodes is proportional to the number of edges (interactions, represented as lines) for

each node.

detected among the black module and differentially
expressed miRNAs are understood as pleiotropic interac-
tions, akin to off-target effects (in this case referring to the
miRNA targeting of non-alcohol-relevant transcripts).

A major theme emerging from these analyses is that
the alcohol-responsive modules are enriched in genes in-
volved in synaptic transmission and cytokine signaling
pathways (Table 2, Additional file 1: Table S5-S7). This
underscores the importance of these pathways in the
transduction of alcohol actions. These modules showed
enrichment for cell-type specific genes present in neurons,
astrocytes, and oligodendrocytes, but not in microglia-
specific genes, which highlight a major effect of alcohol on
cells of the neuronal and macroglial lineages. These lineages
share a common origin in precursor cells derived from the
embryonic germ layer known as the neuroectoderm, which
differ from the hematopoietic origin of microglia [20].

To assess potential network topology changes impinged
by ethanol consumption, we conducted an alternative net-
work analysis where we implemented WGCNA on each
animal group independently. Calculation of the overlap
between coexpressed gene modules from both networks
identified significant differences in the modular orga-
nization of the independent networks (Additional file 1:
Figure S4). Panel C in Additional file 1: Figure S4 re-
flects the reorganization of specific modules as the net-
work “evolves” from a non-treated stage (network from
control group) into an ethanol-treated stage (network
from ethanol-treated group). For example, the control
C_turquoise module diverted into two distinct modules
in the alcohol network (A_brown and A_green). In
addition, the alcohol (A_green) module included genes
that had originally segregated into three distinct modules
in the control network (C_turquoise, C greenyellow, and
C_green). Our miRNA-mRNA integrative analysis sug-
gests that such gene network reorganization events could
be mediated, at least in part, by the activation of alcohol-
responsive miRNAs.

Core of interactions in ethanol-relevant, miRNA-targeted
network modules highlights important regulators of
alcohol action (hub genes)

To gain insight into the alcohol-responsive gene mod-
ules preferentially targeted by alcohol-induced miRNAs,
we constructed gene interaction networks based on
WGCNA correlation measurements for the red, brown,
and turquoise modules. In the red module containing

alcohol-upregulated genes, synaptotagmin-11 (Sytll), a
member of the synaptotagmin gene family, which is in-
volved in vesicle trafficking and synaptic transmission, is
at the centre of the interaction network and the hub
gene with higher connectivity (Figure 7A). Several other
genes in the red module, such as sorting nexin-17
(Snx17), target of mybl (Toml), and bridging integrator
1 (Binl), are also involved in membrane trafficking and
sorting processes relevant to synaptic transmission as
well as the recycling of adaptor components involved in
signaling of Toll receptors and interleukin IL-1 receptor,
among others [21-24]. Regarding miRNA targeting of
these hub genes (Figure 7B), miR-34c-5p and let-7g-5p
are main regulatory candidates based on significant ex-
pression pattern correlations (FDR <0.10) with Sytll,
Snx-7, Tom1 (both let-7g-5p and miR-34c-5p), and Bim1
(miR-34c-5p). This suggests that miR-34c-5p and let-7g-
5p play an important role in the attempted regulation of
this module. The central role played by miR-34c-5p and
let-7g-5p while targeting additional genes in the red mod-
ule is also evident in the expression correlation network
shown in Additional file 1: Figure S4 and S5 (note the
higher connectivity of these particular miRNAs).

In the brown module, which also contains alcohol-
upregulated genes, protein phosphatase Mg(2+)/Mn
(2+)-dependent 1A (Ppmla) and heat shock 70kDa pro-
tein 8 (Hspa8) are the main hub genes. In addition, an-
other heat shock protein (Hsp90ab1l), GDP dissociation
inhibitor 1 (Gdil), and the glycine receptor beta (Glrb)
(Additional file 1: Figure S5A) were among the highly
interconnected genes in the module. The MAPK signal-
ing pathway was the most significantly enriched pathway
in this module (including genes Hspa8, Ppm1la, Ppp3ca,
Ppp5c, Fgf13, Rasgrfl, Akt3, Mapkl, Mapk9; FDR = 1.2 x
10 Additional file 1: Table S6). MicroRNA miR-34c-5p
appeared again as a main modulator of hub genes in this
module, namely Ppm1la and Hsp90abl, as detected by sig-
nificant correlation among respective miRNA and mRNA
expression profiles. The central role of miR-34c-5p while
targeting additional genes in the brown module is again
evident in the expression correlation network shown in
Additional file 1: Figure S5B (note the higher connectivity
of this particular miRNA).

In the turquoise module (Additional file 1: Figure S6A)
containing alcohol-downregulated genes, we detected a
larger core of hub genes known to be enriched in synap-
tic transmission, endocytosis, and cytokine signaling
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Figure 4 Gene dendrogram, module assignment, and correlation to individual traits of interest. The network was created from the
weighted correlation matrix generated by WGCNA, by first calculating the adjacency matrix and then calculating topological overlap (TO) to
hierarchically cluster genes into coexpression modules (see Materials and Methods). Final module assignments were made based on module
membership. (Upper) Cluster dendrogram groups genes into distinct modules. The y-axis represents a dissimilarity distance (1 — TO). Dynamic tree
cutting was used to determine modules, by dividing the dendrogram at significant branch points. (Lower) Correlation between individual genes
and traits of interest (ethanol consumption and mMiRNA expression) with FDR < 0.10 are shown as color coded lines: red line indicates positive
correlation and blue line indicates negative correlation). Red and turquoise modules (encased by rectangles) appear preferentially targeted by
differentially expressed miRNAs.
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Gene module Module

P value of

Differentially

Module P value of

Functional category

Cell type-specific

correlation  correlation to expressed (DE)  size enrichment in enrichment enrichment
to EtOH consumption genes in module DE genes
consumption
Red 0.63 1.08E-04 74 307 5.02E-16 Vesicle-mediated transport, Oligodendrocytes
Endocytosis
Brown 0.55 1.23E-03 88 846 6.72E-02 Transport, Synaptic Neurons, Astrocytes
transmission, Toll-like
receptor & chemokine
signaling
Pink 0.47 6.28E-03 30 150 1.89E-05 Cellular component -
organization or biogenesis,
endosomal transport
Blue 0.35 4.77E-02 104 936 9.16E-03 Synaptic transmission, Neurons, Astrocytes,
Neurotransmitter secretion Oligodendrocytes
Black 0.13 047 1 306 1 Regulation of developmental  Astrocytes, Neurons,
process, Neurogenesis Oligodendrocytes
Grey 0.04 0.85 15 3339 1 - Neurons,
Oligodendrocytes
Magenta —-0.08 0.65 0 130 1 Blood vessel development, Astrocytes, Microglia
Angiogenesis, BMP signaling
Green -040 2.44E-02 10 445 1 Oxidative phosphorylation, Astrocytes
Ribosome biogenesis
Turquoise -0.63 1.08E-04 224 1125 9.85E-36 Synaptic transmission, Neurons, Astrocytes
Chemokine signaling, Toll-
like receptor signaling
Yellow -0.74 1.35E-06 196 719 1.90E-52 Electron transport chain, -

Translation, Ribosome
biogenesis

Enrichment for differentially expressed genes, functional categories, and cell type-specific markers in coexpressed gene modules detected by WGCNA. Relevant

modules are highlighted in bold fonts.

(Additional file 1: Table S7). The CXCR4-mediated sig-
naling pathway appeared as one of the most enriched.
Concordantly, the CXCR4 gene was previously reported
as one of the genes more significantly overtargeted by
miRNAs in PFC of human alcoholics [11]. Regarding
miRNA regulation of this module, the central role of
miR-34c-5p and let-7g-5p is yet again evident in the ex-
pression correlation network shown in Additional file 1:
Figure S6B (note the higher connectivity of these par-
ticular miRNASs).

Discussion
The goal of this study was to gain insights into the
molecular mechanisms that are induced by alcohol
consumption and governed by miRNA regulation in
an early stage of development of dependence. This
would allow for better understanding of how molecu-
lar progression of the disease occurs. Using a well-
characterized mouse model developed in our lab [25,26],
we evaluated whole transcriptome profiles of miRNA and
mRNA expression from the same samples (“paired
profiles”).

We found that a significant number of miRNAs that
are upregulated in the FCtx of ethanol-treated mice are

also upregulated in the PFC of human alcoholics [4,11].
Similarly, we found that many genes are differentially
expressed in the FCtx of the treated animals, and a sig-
nificant number of these are also differentially expressed
in PFC of human alcoholics [14,15]. Interestingly, about
40-80% of the common differentially expressed genes
change in opposite directions when the human and
mouse models are compared, with a majority of differen-
tially expressed genes being upregulated in the ethanol-
treated mouse brains but downregulated in the brains of
alcoholics. Our results demonstrate first, a high degree
of conservation of alcohol-relevant genes and pathways
from mouse to human and second, unique differences in
the direction of gene expression changes between the
two models. Such distinctions may be a consequence of
the duration of ethanol exposure, which lasted for most
of the adult life in the case of the human alcoholics (long
term adaptations), but only 20 days during early adult-
hood in the case of our treated mice (early stages of
adaptation). These differences suggest a dynamic gene
regulatory network that changes as subjects advance to-
wards alcohol dependence. We acknowledge that there
may be undetermined effects that influence our com-
parison of results across the two species: 1) our
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Figure 5 Identifying alcohol-relevant modules by average gene significance and module membership. A: Bar plot of the average gene
significance for each detected module, equivalent to the average correlation among module genes and the ethanol consumption trait; B: Bar
plot of the average -log P value of the gene significance; C: Plot of correlations between gene significance (GS) and module membership (MM)
for representative alcohol-related modules. Color-coding is equivalent to module names. * Five modules (yellow, red, turquoise, pink, and brown)

have an average P < 0.05 [-Ig(P value) > 1.3].

expression analysis in mice represents a snapshot at 24
hours after the drinking protocol was completed; there-
fore, the animals could have been experiencing acute
withdrawal; while 2) the post-mortem human brain sam-
ples originated from human alcoholics that were consid-
ered active heavy drinkers until the time of death, thus
negating effects of acute withdrawal in this group. It
would be beneficial to conduct additional expression
studies after longer drinking protocols to determine a
time sequence of expression changes in the alcohol-
treated mouse as it progresses towards long-term etha-
nol consumption. It is also important to conduct expres-
sion profiling after longer time points of ethanol
withdrawal, to determine whether withdrawal may influ-
ence the direction of mRNA and miRNA expression
changes in the mouse.

The mouse miRNA-mRNA interaction networks pre-
sented here provide evidence for some striking features
in the alcohol-specific network topologies. Contrary to ex-
pectations and to what happens in the brain of chronic
human alcoholics, we did not find differences between the
negatively correlated interaction network (upregulated
miRNAs targeting downregulated mRNAs) and a random
network, which indicates no selective pressure under the

alcohol treatment for this type of interaction. Interestingly,
we discovered that the positively correlated network
(upregulated miRNAs targeting upregulated mRNAs)
displayed an unexpected behavior, being twice as
interconnected than expected by chance, and with a
highly dense core of interactions. When overrepresenta-
tion of miRNA targets was evaluated, we found that a
majority of upregulated miRNAs (over 80%) have a signifi-
cantly higher number of upregulated targets than is
expected by chance (enrichment for over-targeting), while
only 24% of the miRNAs displayed the behavior towards
downregulated genes (depletion for over-targeting). We
speculate that miRNA targeting of upregulated genes
might be in an “uncompensated” state in our mouse
model, where miRNAs have not yet been able to down-
regulate the expression of their relevant targets. The ex-
tended and highly statistically significant over-targeting of
upregulated genes in general, might indicate a signal for
transcript downregulation. We speculate that a selective
pressure to target ethanol-induced (upregulated) genes is
impinged by chronic, binge alcohol consumption in an
apparent adaptive response from the cellular environment
to recover homeostasis. To our knowledge, this is the first
report identifying positively correlated miRNA-mRNA

N
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Figure 6 Correlations of module eigengenes vs. consumption and top 20 differentially expressed miRNA traits. Significant miRNA
targeting is evident primarily against red and turquoise modules. Brown and yellow modules show significant correlations to a lower but relevant
number of differentially expressed miRNAs.
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networks in an animal model, which we propose as an
adaptive mechanism to reinstate cellular homeostasis. Our
current working model suggests that alcohol drinking acti-
vates a variety of brain genes and pathways that are conse-
quently targeted for down-regulation by mature miRNAs
that are activated in response to the aforementioned gene
activation. Over-targeting of red and brown module genes
by several miRNAs described in this work are examples of
the behavior. Our assumption is that activated miRNAs in
the mouse frontal cortex had not yet been able to over-
come the induced upregulation of alcohol-responsive
genes, at the experimental time point chosen to collect
the mouse brains and conduct the expression profiling
studies. We also suggest, based on expression patterns
in similar brain regions from human alcoholics, that
miRNAs eventually dominate the regulatory interac-
tions with targeted genes and consequently induce a
downregulated state in those alcohol-responsive gene.
These results underscore the biological importance of
targeting alcohol-induced genes by alcohol-induced
miRNAs and suggest that induction of miRNA targeting
in the frontal cortex is a conserved (from rodent to hu-
man), adaptive response to counter an initial activation
of transcription induced by high ethanol consumption.

One possible explanation for the unexpected correlation
(between upregulated miRNAs and upregulated target
mRNAs) in the early stages of adaptation (binge mouse
model) is the temporal inability of miRNA expression
levels to cope with the levels of expression of target
mRNAs. It is unlikely that indirect activities (e.g., activa-
tion of certain ethanol-responsive transcription factors
that concomitantly activate certain miRNAs and respect-
ive target genes) are responsible for such over-targeting
of upregulated mRNAs by a majority of the upregulated
miRNAs.

The coexpression network analysis underscores the main
biological processes affected by alcohol and miRNA regula-
tion in the mouse model, such as synaptic vesicle-mediated
transport and endocytic recycling, as well as neuroimmune
signaling mediated by chemokine and Toll-like receptor
signaling. The fact that signaling pathways that are
upregulated by alcohol and over-targeted by upregulated
miRNAs also show up enriched in downregulated mod-
ules, confirms the importance of these pathways in trans-
ducing alcohol’s actions during early stages of chronic
alcohol consumption and their role as triggers of a miRNA
adaptive response aimed at counteracting such activation.
MicroRNAs miR-34c-5p and let-7g-5p, in particular,
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appear to be central regulators of hub genes in the most
significant ethanol-responsive gene modules. Similarly,
these two miRNAs were also upregulated in PFC of human
alcoholics [4,11], and a let-7 family member was demon-
strated to alter cocaine-induced conditioned place prefer-
ence behavior when manipulated in the nucleus
accumbens of rats [27]. We are enthusiastic about future
prospects of using let-7 modulation in mouse brain to in-
duce behavioural changes related to alcohol consumption
and development of dependence.

One of the miRNA-targeted hub genes highlighted by
the coexpression network analysis was synaptotagmin 11
(red module). The synaptotagmin family members are
known to function by cooperating with SNARE proteins
and accelerating membrane fusion [28,29]. Several other
genes in the red module, such as sorting nexin-17
(Snx17), target of mybl (Toml), and bridging integrator
1 (Binl), are also involved in membrane trafficking and
sorting processes relevant to synaptic transmission as
well as the recycling of adaptor components involved in
signaling of Toll receptors and the interleukin IL-1 recep-
tor [21-24,30]. These results underscore the relevance of
synaptic vesicle transport and endocytic recycling in the
transduction of alcohol’s actions. Our group has previ-
ously gathered proteomics/genomics evidence that sup-
port the role of these pathways [31-33].

Among the hub genes in the brown module, Ppm1la is
strongly expressed in the brain and involved in the regu-
lation of the stress response by acting on mitogen-
activated protein (MAP) kinase signaling and by regu-
lating the immune response [34,35]. Ethanol is well
known to differentially modulate MAP kinase signaling
cascades depending on the cell type, brain region, and
ethanol treatment paradigm [3,36-42]. PPM1A phos-
phatase has been reported to play an important role in
the termination of TNFa-mediated NFkB activation
through dephosphorylation and inactivation of IKKP
[35]. Accordingly, the NF-kB pathway has been widely
implicated in the transduction of alcohol effects, and
activation of the pathway is associated with increased
ethanol consumption [43-49]. Stress-induced chaper-
ones Hspa8 (an Hsp70 family member) and Hsp90ab
were also among brown module’s highly connected genes.
These chaperons exert a variety of cellular functions in-
cluding proteostasis maintenance [50,51] and endotoxin-
like effects through Toll-like receptor 4 (TLR4) [52,53].
Upregulation of genes encoding several classes of chap-
erons has been previously reported after ethanol treat-
ment [54-56]. Hsp70 and Hsp90 have also been reported
as co-clustering factors of the LPS-sensing complex,
which also contains CD14, CXCR4, GDF5, and TLR4 [57].
Importantly, LPS-triggered signaling through this complex
has been recently reported to increase ethanol consump-
tion and to alter certain aspects of alcohol reward and
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aversion in mice [46]. Glrb, another hub gene in the
brown module, codes for the beta subunit of the glycine
receptor (a neurotransmitter-gated pentameric ion chan-
nel) that is essential for targeting the receptor to the
synapse. Glycine receptors contain an integral chloride
channel and are known to have modulatory sites for anes-
thetics, neurosteroids, inhaled drugs of abuse, and ethanol
[58-61]. Interestingly, a3 subunit-containing glycine re-
ceptors expressed in spinal cord dorsal horn synapses have
been found to be specifically inhibited by inflammatory
mediators [62,63], which raises the possibility that ethanol
and ethanol-induced inflammatory signals may initiate
converging activities through glycine receptor signaling in
the forebrain. Overall, this module emphasizes the pri-
mary role that activation of stress and inflammatory
responses, as well as intracellular vesicle transport and
neurotransmitter-mediated signaling, play in the establish-
ment of ethanol-induced behaviors.

In the turquoise module, the CXCR4-mediated signal-
ing pathway appeared as one of the most enriched.
Concordantly, the CXCR4 gene was previously reported
as one of the genes more significantly overtargeted by
miRNAs in PFC of human alcoholics [11]. This result
underscores the relevance of this cytokine receptor path-
way in the transduction of alcohol actions. CXCR4 has
been reported to interact with the LPS-sensing complex
that also includes CD14, Hsp70, Hsp90, GDF5, and
TLR4 [57]. As mentioned earlier, LPS-triggered signaling
through this complex has been recently reported to in-
crease ethanol consumption and to alter certain aspects of
alcohol reward and aversion in mice [46]. CXCR4 has also
been implicated in opiate-induced hypernociception [64]
and polymorphisms in SDF1 (aka CXCL12, the CXCR4
ligand) associated with several phenotypes, including alco-
hol consumption [65]. In addition, CXCR4 has been im-
plicated in glutamate exocytosis from astrocytes [66],
differentiation of oligodendrocytes progenitors and
remyelination [67], and appears to be required for proper
distribution of GABAergic interneurons and the establish-
ment of functional cortical circuitry in certain cortical re-
gions and layers [68]. Moreover, the CXCR4 ligand
(CXCL12) induced presynaptic enhancement of GABA
and glutamate release at serotonin dorsal raphe nucleus
neurons [69].

The evidence shown here suggests that one of alcohol’s
primary effects, in the early stages of development of
dependence (represented here by the binge-drinking
mouse model), is the transcriptional activation of genes
involved in synaptic signaling, endocytic transport, and
inflammatory response. A limitation of our study is the
temporal resolution of the gene expression signal, which
is a snapshot at the end of the drinking protocol. We
speculate that our results describe the “intermediate state”
of a dynamic process of mRNA regulation by miRNAs.
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Future studies need to explore gene expression profiles at
additional time points during the drinking protocol and
for an extended period of time and validate the regulatory
relationship between miRNA/mRNA pairs. Based on our
current model, we speculate that with time, the brain
under ethanol insult mounts an adaptive miRNA response
that counteracts the effect of the initial transcriptional
activation. The well-adapted human alcoholic brain might
represent this latter state. This hypothesis is consistent
with processes of adaptive homeostasis generally triggered
by addiction disorders [44,70,71]. The level of mechanistic
conservation we observe between the mouse and human
models is impressive, thereby warranting further investiga-
tion of the regulatory networks identified in our mouse
model.

Conclusions

By simultaneously studying miRNA and mRNA expres-
sion profiles in the frontal cortex of ethanol-treated mice
and comparing these with similar studies conducted in
brains of human alcoholics, we provide evidence that al-
cohol drinking induces extensive activation of miRNA
expression. We suggest that this is an adaptive response
to modulate an initial broad activation of genes primarily
involved in synaptic signaling, endocytic transport, and
inflammatory response. Importantly, conserved subsets
of miRNAs and mRNAs demonstrate changing expres-
sion levels in response to alcohol in both mice and
humans. Our results provide the first evidence for posi-
tively correlated miRNA-mRNA interaction networks
based on expression correlation analyses that suggest an
adaptive miRNA response secondary to the activation of
gene expression in brains under ethanol insult. This study
underscores the value of integrative miRNA-mRNA ana-
lyses that could be critical for the future of addiction
research. Further analysis should be conducted with inde-
pendent expression profiling datasets to validate the use
of these conserved miRNA and mRNA expression signa-
tures as biomarkers for ethanol consumption. In vivo
studies (i.e., manipulation of specific miRNA levels in
mouse brain using direct stereotaxic injection in mutant
mice) are currently in progress in our lab to elaborate on
our findings and to discover specific miRNAs or relevant
miRNA combinations that could alter drinking behaviors.
Our results identify miRNAs as novel and promising
therapeutic candidates for the treatment of alcoholism
and other complex psychiatric disorders.

Methods

Mice and drinking protocol

Female hybrid F1 mice from reciprocal intercrosses of
C57BL/6] x FVB/NJ F1 and FVB/NJ x C57BL/6] F1
(maternal strain x paternal strain) were used. These mice
have been shown to drink the most ethanol at high
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concentrations and to achieve behaviorally significant
blood ethanol concentrations [26]. The B6 and FVB
breeders were purchased from The Jackson Laboratory
(Bar Harbor, ME) and mated at age 8 weeks in the Texas
Genetic Animal Core of the INIA (Integrated Neurosci-
ence Initiative on Alcohol) at the University of Texas at
Austin. General methods implemented were as previously
described [26]. Alcohol drinking protocol followed a Two-
Bottle Choice (2BC)-Drinking in the Dark (DID) para-
digm. In this paradigm, mice were allowed to voluntarily
drink 20% ethanol or water from two separate bottles
(bottle positions were alternated daily) during a 3-hour
time span starting three hours into the dark cycle. This
modification of the DID test was published by Blednov
and Harris [72]. The drinking protocol was maintained for
a total of 20 days and mice sacrificed by cervical disloca-
tion 20 hours after the last drinking session. Brains were
quickly removed and snap frozen in liquid nitrogen.
Thirty-two mice were used in this study: 20 ethanol-
treated and 12 matched controls. This study is in compli-
ance with animal research guidelines and was approved by
the Institutional Review Board of the University of Texas
at Austin.

Total RNA extraction from brain tissue and microarray
expression profiling

Frontal cortex (FCtx) tissue was dissected using a brain
slicer (Zivic Instruments, Pittsburg, PA) to produce a 2-mm
coronal section from the most rostral portion of the
mouse brain devoid of olfactory bulbs (coordinates
Bregma +1.56 to +3.56). The dorsal part of this coronal
section, cut immediately above the forceps minor of the
corpus callosum as the anatomical landmark, was used for
RNA extraction. This section of the cortex is mostly
composed of frontal associated cortex (FrA), cingulate
cortex area 1 (Cgl), prelimbic cortex (PrL), and primary
(M1) and secondary (M2) motor cortices, as depicted in
the mouse brain atlas [73]. Samples from both alcohol-
treated and control groups were always included in each
batch of extracted RNA. Total RNA was extracted using
the mirVana® miRNA Isolation kit (Ambion, Austin, TX)
according to the manufacturer’s instructions. Yield and
quality of the total RNA preparation was determined using
the Agilent 2100 Bioanalyzer (Agilent, Palo Alto, CA). For
mRNA expression profiling, biotin-labeled cRNA was
prepared using Illumina TotalPrep RNA Amplification
kit (Ambion, Austin, TX) and then hybridized to Illumina
MouseRef-8 v2.0 Expression BeadChips (Illumina,
San Diego, CA). The quality of the Illumina bead sum-
mary data was assessed using the Bioconductor packages
Lumi and arrayQualityMetrics. Data preprocessing in-
cluded variance stabilization and quantile normalization
using the Lumi package. Statistical analysis comparing
ethanol-treated and control groups was performed using
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the Bioconductor package limma, which implements an
empirical Bayes approach in R [74]. For miRNA expres-
sion profiling, Exiqon miRCURY LNA microRNA Arrays
5th generation (Exiqon, Vedbaek, Denmark) were used for
hybridization and scanning at the Moffitt Cancer Center
Microarray Facility (Tampa, FL). Data analysis was
performed using the limma package. Data preprocessing
included minimum background correction and scale
normalization between arrays. As each probe was spotted
as four replicates on the arrays, within-array replication
was assessed using the limma duplicate correlation func-
tion. False discovery rate (FDR) was assessed using the
Benjamini-Hochberg method [75]. Our list of differentially
expressed genes was compared to the list of differentially
expressed genes from human alcoholics reported previ-
ously [14], and also compared to the list of differentially
expressed genes from a mouse model of alcohol
dependence reported previously [15]. The statistical
significance of the matches was empirically evaluated
by implementing Monte Carlo simulations in the R
environment (R Core Team 2012. R: A language and
environment for statistical computing. R Foundation for Stat-
istical Computing, Vienna, Austria. ISBN 3-900051-07-0,
URL http://www.R-project.org/).

Validation by real-time PCR analysis

For miRNA validation, single-stranded cDNA was syn-
thesized from total RNA using the TagMan® MiRNA Re-
verse Transcription kit (Applied Biosystems, Foster City,
CA). Following reverse transcription, quantitative real
time PCR (qPCR) was performed in triplicate, using
TagMan® MiRNA Assays together with the TagMan® Uni-
versal PCR Master Mix (Applied Biosystems), as per man-
ufacturer’s instructions. TagMan® miRNA assays used
were: mmu-miR-7a-5p (ID: 000268), mmu-miR-15b-5p
(ID: 000390), mmu-miR-101a-3p (ID: 002253), mmu-miR-
101b-3p (ID: 002531), mmu-miR-140-5p (ID: 001187),
mmu-miR-152-3p (ID: 000475), mmu-miR-195a-5p (ID:
000494), mmu-miR-541-5p (ID: 002562), mmu-let-7c-5p
(ID: 000379), mmu-let-7f-5p (ID: 000382), and mmu-let-
7g-5p (ID: 002282). Assays used for endogenous control
were: snoRNA142 (ID: 001231) and snoRNA234 (ID:
001234), which were chosen out of five endogenous con-
trol assays tested in our samples. Reactions were carried
out in a 7900HT Fast Real-Time PCR System and data
collected using SDS software (Applied Biosystems). For
mRNA validation, single-stranded cDNA was synthe-
sized from total RNA using the TagMan® High Capacity
c¢DNA Reverse Transcription Kit (Applied Biosystems).
Following reverse transcription, qPCR was performed in
triplicate, using TagMan® Gene Expression Assays to-
gether with the TagMan® Universal PCR Master Mix
(Applied Biosystems), as per manufacturer’s instruc-
tions. TagMan® Gene expression assays used were: Syt11
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(ID: MmO00444517_m1), Atp2b1(ID: Mm01245805_m1),
and Fermt2 (ID: MmO00600590_m1). Assays Hprt (ID:
MmO00446968_m1) and Gusb (ID: MmO00446953_m1)
were used as endogenous controls after being selected
as the most invariable control assays tested in our sam-
ples. GenEx software (MultiD Analyses AB, Gothenburg,
Sweden) was used for analysis of real-time PCR data,
including selection of endogenous controls using the
GeNorm [76] and NormFinder [77] algorithms.

Weighted Gene Coexpression Network Analysis (WGCNA)

WGCNA was conducted as described previously [15] with
modifications of a few parameters mentioned below. The
general framework of WGCNA has been described in de-
tail elsewhere [17]. In short, we constructed a signed net-
work by calculating the Pearson’s correlations for all pairs
of genes and the signed similarity (Sij) matrix derived from
Sij = (1 + cor(x;X;))/2, where gene expression profiles x;
and x; consist of the expression of genes i and j across
multiple microarray samples. In the signed network, the
direction of the changes in expression profiles can be in-
ferred. The signed similarity (S;) was then raised to the
power [ to represent the connection strength (a;): a; = SE.
This step aims to emphasize strong correlations and re-
duce the emphasis of weak correlations on an exponential
scale [15]. We chose a power of p=12 so that the
resulting networks exhibited approximate scale-free top-
ology (Soft.R.sq = 0.88). All genes were hierarchically clus-
tered based on a dissimilarity measure of topological
overlap which measures interconnectedness for a pair of
genes [17]. The resulting gene dendrogram was used for
module detection using the dynamic tree cut method and
blockwiseModules function parameters: block size =
15000, minimum module size = 100, cutting height = 0.99,
and deepSplit =4. Gene modules corresponding to the
branches cut off of the gene tree were labeled in unique
colors. Unassigned genes were assigned to the grey mod-
ule. Interaction networks were constructed for select
modules. Only genes with high module membership
(MM > 0.5) and high gene significance (GS > 0.5) were in-
cluded in these networks. The trait-based gene signifi-
cance measure is defined in WGCNA as the absolute
value of the correlation between a specific node (gene)
profile and the sample trait (ethanol consumption). The
higher the value of GS, the more biologically significant
the specific gene. On the other hand, module member-
ship, also known as eigengene-based connectivity, corre-
lates the gene expression profile of the specific gene with
the module eigengene of a given module. Highly
connected intramodular hub genes tend to have high
module membership values to the respective module [78].
The WGCNA analysis was first conducted on all mice
(controls and alcohol-treated) and included all genes on
the chips that were present (expressed over noise levels)
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in 75% or more of the samples. This first network is not
unique to alcohol but represent an admixture of alcohol
and control expression levels, which are later correlated
with ethanol consumption to make inferences about the
changes in expression being driven by ethanol consump-
tion. A second analysis was conducted on each group in-
dependently in order to assess whether changes in
network topology occurred between the coexpression net-
work in control animals and the coexpression network in
alcohol-treated animals.

Construction of miRNA-mRNA interaction database

A universe of miRNA-mRNA interactions for all reported
miRNAs was constructed as a composite of all validated
interactions downloaded from TarBase (http://diana.cslab.
ece.ntua.gr/tarbase) [79] and predicted targets reported by
miRecords (http://miRecords.biolead.org) [80]. The pre-
dicted component integrates the predictions produced by
11 established miRNA target prediction programs
(DIANA-microT, Microlnspector, miRanda, MirTarget2,
miTarget, NBmiRTar, PicTar, PITA, RNA22, RNAhybrid,
and TargetScar/TargertScanS). Predictions were filtered to
only consider those targets predicted by at least 4 of 11
prediction algorithms. The TarBase validated interactions
were then added to the filtered list and duplicated
interactions eliminated (validated interactions were
given preference) to avoid overcounting during over-
representation analyses. miRecords’ predicted target
information for every mouse miRNA accessible through
the website was obtained using the RCurl package.
MicroRNA family information was downloaded from
miRBase (http://miRBase.org) [81] and included into
the miRNA-mRNA interaction universe.

Integrative analysis of miRNA and mRNA microarray data

Statistical tests for comparison of multiple experimental
proportions extracted from the integrated data set
containing information about differentially expressed
miRNAs, differentially expressed mRNAs, and putative/
validated miRNA targets were implemented in the R
environment. Specifically, hypergeometric tests for each
differentially expressed miRNA were conducted to deter-
mine whether corresponding targets were overrepresented
among inversely and directly correlated differentially
expressed mRNAs from the same samples. Hypergeometric
tests for each differentially expressed mRNA that is pre-
dicted to be targeted by more than one miRNA were
conducted to determine whether any of such mRNAs could
be subjected to “over-targeting” by miRNAs (an indication
of redundant regulation or potential combinatorial action
of miRNAs). When comparisons were made between dif-
ferentially expressed sets of miRNAs from distinct species
(ie, mouse vs. human and mouse vs. rat) the species-
specific miRNA IDs were converted to family IDs, which
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are consistent across species. MicroRNA families were
downloaded from miRBase and ID conversion and
matching code automated in R. When comparisons
were implemented between differentially expressed sets
of genes from distinct species (i.e., mouse vs. human),
the human gene symbols were first converted into mouse
symbols based on homology matching. The homology
conversion table was downloaded from the Homologene
database (ftp://ftp.ncbinih.gov/pub/HomoloGene/current/
homologene.data) and ID conversion and matching code
automated in R.

Functional enrichment analyses

Enrichment analysis of gene ontology annotations were
conducted using lists of differentially expressed mRNAs
and module-specific mRNAs using ToppGene functional
analysis tool and the R packages GO.db and GOstats. To
determine which cell types could have contributed to the
detected gene expression changes and coexpression pat-
terns in each module, cell-type enrichment analysis was
conducted as described by Ponomarev and collaborators
[15]. Gene sets known to be preferentially expressed in
mouse neurons, oligodendrocytes, astrocytes, and micro-
glia were used. Statistical analysis was performed using
the hypergeometric test and corrections for multiple com-
parisons using the Benjamini-Hochberg method.

Availability of supporting data

The data discussed in this publication have been depos-
ited in NCBI's Gene Expression Omnibus [82] and are
accessible through GEO Series accession number
GSE50427 (http://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE50427).

Additional file

Additional file 1: Figure S1. Random interaction networks generated
as control networks. Table S1. Differentially expressed genes in FCtx of
ethanol-treated mice. Table S2. Overrepresentation analysis of miRNA
targets among upregulated genes. Table S3. Overrepresentation analysis
of miRNA targets among downregulated genes. Table S4. Cell type-
specific modular enrichment. Table S5. Functional enrichment analysis
for red module genes with high GS and high MM. Table S6. Functional
enrichment analysis for brown module genes with high GS and high
MM. Table S7. Functional enrichment analysis for turquoise module
genes with high GS and high MM. Table S8. Prediction of miRNA-MRNA
interactions based on expression correlation patterns between single
mRNAs and single differentially expressed (alcohol-responsive) miRNAs.
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