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Abstract

Background: Plant calcium (Ca**) signals are involved in a wide array of intracellular signalling pathways following
pathogen invasion. Ca**-binding sensory proteins such as Ca**-dependent protein kinases (CPKs) have been
predicted to mediate signalling following Ca** influx after pathogen infection. However, to date this prediction has
remained elusive.

Results: We conducted a genome-wide identification of the Malus x domestica CPK (MdCPK) gene family and
identified 30 CPK genes. Comparative phylogenetic analysis of Malus CPKs with CPKs of Arabidopsis thaliana (AtCPKs),
Oryza sativa (OsCPKs), Populous trichocarpa (PtCPKs) and Zea mays (ZmCPKs) revealed four different groups. From the
phylogenetic tree, we found that MdCPKs are closely related to AtCPKs and PtCPKs rather than OsCPKs and ZmCPKs,
indicating their dicot-specific origin. Furthermore, comparative quantitative real time PCR and intracellular cytosolic
calcium ([Ca2+]cyt) analysis were carried out on fire blight resistant and susceptible M. x domestica apple cultivars
following infection with a pathogen (Erwinia amylovora) and/or mechanical damage. Calcium analysis showed an
increased [CazJ’]Cyt over time in resistant cultivars as compared to susceptible cultivars. Gene expression studies
showed that 11 out of the 30 MdCPKs were differentially expressed following pathogen infection.

Conclusions: We studied the genome-wide analysis of MdCPK gene family in Malus x domestica and analyzed their
differential gene expression along with cytosolic calcium variation upon pathogen infection. There was a striking
difference in MdCPKs gene expressions and [Ca”]Cyt variations between resistant and susceptible M. x domestica
cultivars in response to E. amylovora and mechanical wounding. Our genomic and bioinformatic analysis provided
an important insight about the role of MdCPKs in modulating defence responses in susceptible and resistant apple
cultivars. It also provided further information on early signalling and downstream signalling cascades in response to
pathogenic and mechanical stress.

Keywords: Malus x domestica, Calcium dependent Protein Kinases, Erwinia amylovora, Phylogenetic analysis,
Gene expression, Cytosolic calcium variations

* Correspondence: chidananda.nagamangala@fmach.it

'Research and Innovation Centre Genomics and Biology of Fruit Crop
Department, Fondazione Edmund Mach (FEM), Istituto Agrario San Michele
(IASMA), Via Mach 1, 38010, San Michele all’Adige (TN), Italy

Full list of author information is available at the end of the article

© 2013 Kanchiswamy et al, licensee BioMed Central Ltd. This is an open access article distributed under the terms of the

( BioMed Central Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.


mailto:chidananda.nagamangala@fmach.it
http://creativecommons.org/licenses/by/2.0

Kanchiswamy et al. BMC Genomics 2013, 14:760
http://www.biomedcentral.com/1471-2164/14/760

Background

Calcium ions (Ca®") plays a central role as a second
messenger in nearly every aspect of cellular signalling.
In plants, regulation of cytosolic Ca**-concentration
([Ca2+]cyt) occurs in response to various endogenous and
external signals, including changes in hormone status,
abiotic stress stimuli such as drought, high and low
temperature or light, biotic stress stimuli such as pathogen
infection, microbial elicitors and symbiotic nodulation
factors, as well as mechanical wounding [1-4]. Ca** influx is
also a prerequisite for programmed cell death in plants
[5,6]. These Ca”* signatures are perceived by different Ca®*
sensor molecules which subsequently transduce the signal
to downstream signalling cascades such as phosphorylation
of target proteins [3,7,8].

Plants have four different classes of Ca>* sensors: cla-
modulins (CaM), clamodulin-like proteins (CaML),
calcineurin B-like proteins (CBL) and calcium-dependent
protein kinases (CPKs) [9]. CaM, CaML and CBL lack an
effector domain and contain only a Ca** binding domain;
hence, they can sense and transmit Ca* signals by inter-
acting with target proteins [10]. In Arabidopsis, the
CaM-like protein (CML24) is required for nitric oxide
(NO) production and AvrRpt2-mediated programmed
cell death (PCD) [5], whereas CML42-mediated Ca**
signalling coordinates responses to herbivory and abiotic
stress [11].

CPKs constitute a large family of serine/threonine pro-
tein kinases that are widely distributed in the plant king-
dom. For example, the Arabidopsis genome is predicted
to have 34 different CPKs, Zea mays has 34, Populus 30,
Oryza 31 and Triticum 24 CPKs [9,12-14], which can be
classified into four groups (I-IV) based on sequence
similarity [15]. CPKs are of special interest, since they
represent a new class of Ca®" sensors, having both a
protein kinase domain and a calmodulin-like domain
(including an EF-hand calcium-binding site) in a single
polypeptide [9,15]. CPKs are activated by the binding of
Ca®* at the EF-motifs, resulting in protein conform-
ational changes that in turn drive the auto inhibitory do-
main to become detached from the protein kinase
domain [16]. Activated CPKs can mediate Ca®* signal-
ling by phosphorylating their substrate proteins [3]. The
N- and C-terminal domains are variable, differing in
their length and amino acid composition in various CPK
proteins and it has been suggested that these variable
domains determine the specific functions of individual
CPKs [17,18]. Arabidopsis CPKI1 was the first CPK to be
characterised, and is known to be activated by phospho-
lipids and 14-3-3 proteins [19]. AtCPKs 3, 4, 6, 11 and
32 act as abscisic acid (ABA) signalling components,
and are involved in ABA-responsive gene expression,
seed germination, seedling growth, and stomatal move-
ment [20-22]. In plant immunity, four Arabidopsis CPKs
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(CPKs 4/5/6/11) have been shown to play important
roles, together with mitogen activated protein kinase
(MAPK) cascades, in relaying primary microbe associ-
ated molecular pattern (MAMP) immune signalling [23].
Recently, six Arabidopsis CPKs have been identified in
sensing and transducing Ca*”, indicating the specificity
and redundancy of individual CPKs in nucleotide-
binding domain leucine-rich repeat (NLR) signalling
events: CPK4/5/6/11 modulate immune response ex-
pression, CPK1/2/4/11 ROS production, and CPK1/2/5/
6 are involved in programmed cell death (PCD), as re-
vealed by integrative molecular analyses [6,24]. Appar-
ently, specific CPKs are engaged in diverse immune
responses via phosphorylation and activation of WRKY
transcription factors. For example, activation of CPK4/5/
6/11 phosphorylates WRKY8/28/48 for transcription
reprogramming of immune genes; CPKI1/2/4/11 phos-
phorylates NADPH oxidases for ROS production and
contributes to PCD [6]. These results indicate that
CPKs are involved in the bifurcation of NLR signalling
mechanisms.

The most economically important fruit and ornamental
trees and bushes, such as apple (Malus x domestica), pear
(Pyrus communis), peach (Prunus persica), cherry
(Prunus avium), strawberry (Fragaria spp.), apricot
(Prunus armeniaca), almond (Prunus amygdalus) and
rose (Rosa hybrida) all belong to the Rosaceae family
[25]. M. x domestica is one of the most economically im-
portant woody plants cultivated worldwide as a fruit crop,
however the function of apple CPKs in the immune re-
sponse to pathogens has never been reported.

The enterobacterial phytopathogen Erwinia amylovora
causes fire blight, an invasive disease that threatens a
wide range of commercial and ornamental Rosaceae host
plants [26]. It has been difficult to eradicate or reduce
the incidence of fire blight epidemics. Management
practices include the use of a few size-controlling
rootstocks that are resistant to fire blight and chemical
treatments to enhance host resistance [26]. Molecular
investigations of the E. amylovora-Malus interaction
have been limited to a restricted number of plant de-
fences previously characterised in other plant-pathogen
interactions [27], or via untargeted analysis [28-31].
These different molecular approaches have provided a
long list of up or down regulated genes in susceptible or
resistant plants, but have not elucidated the mechanism
of apple susceptibility or resistance to fire blight.

Here we undertook a genome wide study to identify
and to classify the CPKs involved in the defence
response of M. x domestica against the pathogen
E. amylovora. A gene encoding CPK was shown to be
up-regulated in the blossom of susceptible apple culti-
vars after E. amylovora infection, suggesting that
Ca®* may be one of the key signals that initiates stress
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resistance reactions in blossom [31]. In order to identify
genes implicated in the control of fire blight resistance,
we evaluated [Ca2+]cyt, the role of CPKs in early signal-
ling cascades in the cultivars Golden delicious 'GD'
(susceptible) and 'M.7" (resistant) [28] following chal-
lenge with a virulent strain of E. amylovora (Ea273) or
mechanical damage.

The purpose of this study was to understand the
mechanisms of interaction between M. x domestica and
E. amylovora in resistant and susceptible apple cultivars.
The results will help to design new strategies to improve
apple resistance to E. amylovora and facilitate develop-
ment of resistant transgenic lines for economically
important susceptible cultivars.

Results

MdCPK gene family is distributed in 14 out of 17
chromosomes

M. x domestica has a diploid genome that underwent a
whole genome duplication for 50 million years ago. It has
x =17 chromosomes containing 26,374 loci and 63,541
transcripts, organised in a 881.3 Mb genome [32,33]. A
genome-wide search for memebrs of the MdCPK gene
family led to identification of 30 CPK genes. Most of the
CPK genes have alternative transcript variants. MdCPK11
has 15 possible transcript variants (Table 1). Transcript or-
ganisation of MdCPKs shows an average of 8 exons per
gene, with the exception of MdCPK11, which has no in-
trons (Table 1, Additional file 1: Figure S1). CPK genes are
distributed in 14 of the 17 apple chromosomes (Figure 1).
Most CPK genes are present in clusters rather than dis-
playing tandem distribution. Chromosome 12 contains five
MdCPKs (MdCPK2, MdCPK8c, MdCPK9, MdCPK20b,
and MdCPK29) whereas, chromosome 8 and 9 contain
three CPKs (MdCPK17a, MdCPK26a, MdCPK26b and
MdCPK4a, MdCPK11, MdCPK24b respectively).

Phylogenetic analysis shows that MdCPKs are clustered
into four clades

The Malus MdCPK amino acid sequence length ranged
from 345 (MdCPK13b) to 1403 amino acids (MdCPK26b).
Cluster analysis identified thirty MdCPKs nested into four
distinct clades, as shown in Figure 2. A phylogenetic study
of MdCPKs with orthologous A. thaliana, O. sativa,
P. trichocarpa and Z. mays also clustered into four clades.
MdACPKs are closely related to AtCPK and PtCPKs and
that the proposed nomenclature for MdCPKs is consistent.
The OsCPKs and ZmCPKs are less closely related to
MdCPKs indicating their dicot-specific origin (Figure 2).

All MdCPKs have an EF-hand domain and palmitoylation
sites

Ca®* signals are decoded by many different protein
kinases, and CPKs play significant roles in these
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signalling events [24,34,35]. The Ca** binding EF-hands
are the predominant Ca** sensors, consisting of twelve
residue loops, flanked on both sides by twelve alpha-
helical domain residues [Additional file 2: Figure S2].

In response to E. amylovora and mechanical damage,
MdCPKs are differentially expressed in resistant 'M.7'
and susceptible 'G.D' M. x domestica cultivars

To clarify MdCPKs role in the resistance and suscepti-
bility of M. x domestica to E. amylovora and mechanical
damage (MD), we carried out a comparison between
CPK gene expression patterns in the resistant Malling7
apple rootstock (M.7) and the susceptible golden deli-
cious (GD) by using quantitative real time PCR analysis
(qPCR) at 2, 6, 12 and 24 hours post inoculation (hpi)
(Figure 3). These time points were selected based on
previous analyses of the temporal transcriptional re-
sponse of Malus to E. amylovora, indicating that basal
defence to pathogen associated molecular patterns
(PAMPs) occurred within 1-2 hpi, whereas expression
of defence proteins occurred at 24-48 hpi [28]. These
two genotypes were chosen based on their level of resist-
ance and susceptibility to fire blight disease. M.7 is a
highly resistant genotype whereas GD is a susceptible
genotype to fire blight disease.

Few of the MdCPKs were up-regulated in the M.7 re-
sistant genotype as compared to GD susceptible plants.
Of the thirty MdCPKs analysed by qPCR, only eleven
showed differential expression in susceptible and resist-
ant apple genotypes following E. amylovora infection or
MD (Figures 3, 4 and 5).

Four MdCPKs were specifically induced after infection
with E. amylovora (Figure 3). In the resistant genotype
following E. amylovora infection, MdACPKI9 and
MdCPK28 were significantly up regulated at 6 and 12 hpi,
whereas MdCPK26b was up regulated at 12 and 24 hpi.
Following E. amylovora infection, MdCPK8a was similarly
up regulated at 6, 12 and 24 hpi in both resistant and
susceptible cultivars. None of the CPK genes were acti-
vated after MD (Figure 3). However, MdCPK8b was
specifically induced in response to MD in the suscep-
tible genotype at 2 and 6 hpi, whereas the resistant
genotype showed no induction after either E. amylovora
infection or MD (Figure 4).

Six other MdCPKs were differentially expressed in re-
sistant and susceptible cultivars following E. amylovora
infection and/or MD at different time points (Figure 5).
In the resistant genotype, four CPKs (MdCPK1b, MdCPKlIc,
MdCPK9 and MdCPK29) were significantly up regulated at
different time points following E. amylovora infection
(Figure 5). It is interesting to note that in response to
E. amylovora infection, MdCPKI1b was up-regulated at
later than MdCPKIc and that both genes were up-
regulated later following MD than E. amylovora in-
fection (24 hpi, Figure 5). The susceptible genotype
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Table 1 Phytozome locus ID and transcript details of Malus CPKs
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SI. Phytozome Location in Gene ORF No.of No. of No. of alternative 5'-3' Coordinates  Phylogenetic
No locus ID chromosome name a.a Introns splicing variants group
17 MDP0000153100 2 MdCPK1a 1694 566 6 5 MDC017159.84: I
8453 - 14350
2 MDP0000142687 7 MdCPK1b 1763 618 8 5 MDC021045.283:
1756 - 8958
3 MDP0000128057 7 MdCPK1c 1943 660 8 5 MDC013839.354:
42 - 7131
4 MDP0000232344 12 MdCPK2 2296 775 8 4 MDC012227.366:
34198 - 38360
5 MDP0000260834 9 MdCPK4a 1553 517 6 4 MDC020449.143:
14625 - 18251
6  MDP0000232885 10 MdCPK4b 1544 518 6 2 MDC010220.255:
18291 - 21903
7 MDP0000269423 2 MdCPK8a 1612 553 8 3 MDC001073.515: %
2333 - 8854
8  MDP0000119457 15 MdCPK8b 1417 476 6 3 MDC001073.498: %
3281 - 6157
9  MDP0000260857 12 MdCPK8c 1881 665 9 5 MDC021346.204: v
29191 - 34837
10  MDP0000169895 12 MdCPK9 1451 491 2 4 MDC003603.228:
1126 - 2789
11 MDP0000218522 6 MdCPK10a 1692 570 7 5 MDC020438.169: %
10660 - 14149
12 MDP0000301254 Unanchored MdCPK10b 1618 548 7 8 MDC016267.124: %
15630 - 19053
13 MDP0000308706 Unanchored MdCPK10c 1613 548 7 8 MDC020438.160: %
35695 - 39116
14 MDP0000494270 9 MdCPK11 1489 498 0 15 MDC010082.361:
3158 - 4654
15 MDP0000164868 4 MdCPK13a 1757 585 8 4 MDC000306.525: vV
1570 - 6773
16 MDP0000649496 13 MdCPK13b 1023 345 4 2 MDC000271.449: v
354 - 2825
17 MDP0000802997 8 MdCPK17a 1591 533 7 2 MDC040478.10: Il
1862 - 4930
18  MDP0000138436 Unanchored MdCPK17b 1605 534 7 3 MDC010071.376: I
1022 - 3758
19 MDP0000180811 " MdCPK19 1496 504 9 1 MDC008434.490: Il
2551 - 5781
20  MDP0000318339 14 MdCPK20a 2994 1023 10 3 MDC031256.8:
21258 - 31086
21 MDP0000513005 12 MdCPK20b 1963 679 7 0 MDC008272.442:
6235 - 19231
22 MDP0000232001 5 MdCPK21 1641 554 7 3 MDC002417.261: Il
24324 - 28052
23 MDP0000262701 17 MdCPK24a 1623 541 7 3 MDC020007.246: %
24451 - 27032
24 MDP0000282003 9 MdCPK24b 2860 954 12 2 MDC006465.419: %
8202 - 16334
25 MDP0000297184 8 MdCPK26a 1685 571 6 3 MDC012276.352:
7244 - 10346
26 MDP0000457940 8 MdCPK26b 4152 1403 8 0 MDC001323.383:

1559 - 7846
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Table 1 Phytozome locus ID and transcript details of Malus CPKs (Continued)

27 MDP0000208913 2 MdCPK28 1861 626
28  MDP0000142398 12 MdCPK29 1584 527
29 MDP0000649508 15 MdCPK32a 2081 709
30  MDP0000179069 14 MdCPK32b 2011 676

13 10 MDC018730.149: M1l
4526 - 9378

7 4 MDC015573.110: Il

52421 - 55302

10 4 MDC001801.279: v
799 - 8644

10 3 MDC006959.379: I\
1716 - 6520

showed a significant up regulation of MdCPK4b and
MdCPK11 (except for 12 hpi) following MD (Figure 5).

E. amylovora induced differential intracellular cytosolic
calcium variations in susceptible and resistant M. x
domestica genotypes

CPK activity is often associated with variations in
[Ca2+]cyt [3,35-38]. Having determined that some
MdACPK genes are differentially expressed following
E. amylovora infection in resistant and susceptible M. x

domestica cultivars, we evaluated [Ca2+]cyt by Confocal
Laser Scanning Microscopy (CLSM) with the calcium
indicator, calcium orange. In the susceptible genotype,
[Ca2+]cyt was found to decrease in both MD (Figure 6,
A-C) and E. amylovora infected leaves (Figure 6, D-F)
from 1 to 6 hpi. Conversely, the resistant genotype
showed a consistent and significant (p < 0.05) increase in
[Ca2+]cyt over the same time period. In particular, E.
amylovora infected leaves (Figure 6, M-O) showed a

Chr2 Chr4 Chr5 Chré Chr7 Chr8 Chr9
0 —
0 0 1 CPK21 0 0 0
5 - CPK1c
6 CPK1b 6 CPK24b
10 CPK26b
11 CPK28 10. CPK26a
16 CPK13a 16 CK17a
18 CPK11
21 CPK10a 22 CPK4a
23
26 CPK8a % 26
29 Chr15
30 CPK1a 31 0
34
36
Chr10 Chr11 Chr12 Chr13 Chr14 Chr17
0 0 0 — 0
25 4 CPK9 0
4.1 I CPk3on
6 CPK4b 7- CPK8c 6 CPK20a 6 CPK24a
10 CPK32b
16 CPK13b
21 CPK29
23 CPK19
41 CPK32a
411 CPK8b 25
29
47
33 32
35 35
Figure 1 Genomic distribution of MdCPK genes in Malus chromosomes. The number in brackets shows the position of the gene on the
Malus chromosome pseudomolecules. The chromosome numbers are indicated at the top of each bar. Figure show, MdCPK genes are distributed
evenly in different chromosome.
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Figure 2 Phylogenetic tress of Malus CPKs with orthologous
CPKs of Arabidopsis thaliana (AtCPKs), Oryza sativa (OsCPKs),
Populous trichocarpa (PtCPKs) and Zea mays (ZmCPKs).
Phylogenetic trees show, all the CPKs are clustered into four different
groups and MdCPKs genes are found to be much close to AtCPKs.
Phylogenetic tree was constructed by MEGAS software and statistical
method used was Neighbor-joining, substitutition type: amino acid,
Model: Jones-Taylor-Thornton (JTT) and no. of bootstrap replication
AICPK25 was 500.

higher [Ca2+]cyt level when compared to both infected
(Figure 6, D-F) and MD resistant genotype leaves
(Figure 6, H-L). A higher magnification of resistant geno-
type leaves at 6 hpi showed a clear cytosolic localization of
Ca** (Figure 6, P), which is more evident than in the sus-
ceptible genotype infected leaves (Figure 6, G). Figure 6
also shows the relative percentage of calcium orange fluo-
rescence in both resistant and susceptible apple cultivars
upon MD and E. amylovora infection.

Discussion

Regulation of Ca>* homeostasis is important, particularly
when Ca®* is involved as a signalling ion. In plant cells,
Ca**-binding proteins also serve as regulators of internal
free Ca* levels [4,5,38,39]. Since CPKs may be involved
in the specificity and cross-talk of signal transduction in
a variety of biotic and abiotic stresses, their possible in-
volvement in active signalling cascades in response to
pathogens deserves a thorough investigation. Recent ex-
pression profiles of M. x domestica blossom—Erwinia

— AICPK:
100 1Cl
&
100 — MdCPK17b

D e oo interaction revealed the involvement of CPKs in the sig-
75— ACPKIE . .
w T nal transduction process [31]. However, a detailed study
5 PtCPKZﬂ . . . .
R on the involvement of the MdCPK gene family in resis-
) 00 ZmCPK28 . . .
wl GG tant and susceptible apple plants is lacking.
100 ZmCPK16a . . . .
J— * i anceies This work provides fundamental information on the

phylogeny, gene structure, and gene expression of
MdCPKs in response to pathogen and wound signalling
in fire blight resistant and susceptible apple cultivars.
The M. x domestica (GD) genome sequence is assem-
bled in 21,554 scaffolds and different gene families reside
p— within these scaffolds. The CPK gene family is one of
them and is evenly distributed throughout the 17 pseu-
domolecules of the GD genome sequence. A global sur-
vey of the recent apple genome database reveals the
presence of 30 MdCPKs from 57,386 annotated genes in
the apple genome [40]. All the MdCPKs analysed here
have the typical structures of the CPK family, including an
N-terminal variable domain, a protein kinase domain, an
TR e auto-inhibitory domain, a calmodulin-like domain, an
B e | EF-hand like domain and a C-terminal domain. The cal-
cium binding EF-hands are the predominant Ca®* sensors.

Comparative plant genomics studies show that plant
gene families are largely conserved over evolutionary
timescales, including diversification of angiosperm and

ZmePKi9
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Figure 3 Quantitative RT-PCR comparison of resistant and susceptible Malus cultivars after E. amylovora infection and mechanical
damage at 2, 6 12 and 24 hpi. The transcript level of genes in resistant/susceptible cultivars at 2,6,12 and 24 hpi were normalised with those of
EFT and UBT measured in the samples and expressed in relation to the normalised transcript level in the leaves of the respective uninfected
plants (0 hrs). Metric bars represent the standard error (SE). Asterisks indicate significant differences: * P < 0.05, ** P < 0.01.

I G.D. Susceptible M.D.
I G.D. Susceptible E.amylovora
I M.7 Resistant M.D.
g I M.7 Resistant E.amylovora
7 | MdCPK28
6
5
4
3 -
. -
y ‘ , . -
2h 6h 12h 24h
8
7 | MJCPK8a
6
5
4
3
2
1
0
2h 6h 12h 24h
Time

non-flowering plants [41]. Co-linearity resulting from
the common ancestors of the angiosperms provides a
powerful way of determining orthology, while compara-
tive sequence analyses provides a wealth of information
about the nature of sequence arrangement and evolution
[42]. In this study, comparative sequence analysis of the
orthologous protein sequences of Malus CPKs in rela-
tion to A. thaliana and P. trichocarpa CPKs showed a
high level of conservation and significant orthology com-
pared to O. sativa and Z. mays CPKs [12,13]. Improved

orthologous gene detection is critically important for ac-
curate functional annotation and study of comparative
and evolutionary genomics. Besides this, all the 30
Malus CPKs are highly homologous to each other. Fur-
thermore, the similarity found between MdCPK gene
family with AtCPKs shows that Malus and Arabidopsis
CPKs may derive from a common ancestor. Despite this
evolutionary conservation of gene families, lineage-
specific fluctuations in gene family size are frequent
among taxa [41,43].
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Figure 4 Quantitative RT-PCR comparison of resistant and susceptible Malus cultivars after E. amylovora infection and mechanical
damage at 2, 6, 12 and 24 hpi. The transcript level of genes in resistant/susceptible cultivars at 2,6,12 and 24 hpi were normalised with those
of EF1 and UBT measured in the samples and expressed in relation to the normalised transcript level in the leaves of the respective uninfected
plants (0 hrs).Metric bars represent the standard error (SE). Asterisks indicate significant differences: * P < 0.05, ** P < 0.01.
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Figure 5 Quantitative RT-PCR comparison of resistant and susceptible Malus cultivars after E. amylovora infection and mechanical
damage at 2, 6, 12 and 24 hpi. The transcript level of the genes in resistant/susceptible at 2,6,12 and 24 hpi were normalised with those of £F1
and UBT measured in the samples and expressed in relation to the normalised transcript level in the leaves of the respective uninfected plants
(0 hrs). Metric bars represent the standard error (SE). Asterisks indicate significant differences: * P < 0.05, ** P < 0.01.
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In this study we found that in group III there is only
one Malus CPK (MdCPK28) present in the phylogenetic
tree as compared to three from Arabidopsis, four from
Zea, four from Oryza and two from Populous. The pres-
ence of MdCPK (MdCPK28) in group III was very diver-
gent from other MdCPKs and may have evolved in
Rosaceae following divergence with a distinct dicot
specific function.

In the EF-hand loop, Ca** is coordinated in a pen-
tagonal bi-pyramidal configuration [44]. The six residues
involved in Ca** binding are 1, 3, 5, 7, 9 and 12. The in-
variant Glu (E) or Asp (D) amino acids at position 12
provide two O, that can bind Ca®* ions. The variable
N-terminal domain contains myristoylation or palmitoy-
lation sites. Palmitoylation is the reversible covalent at-
tachment of palmitic acid to cysteine and less frequently
to serine or threonine residues of proteins. Palmitoyla-
tion enhances the hydrophobicity of proteins and helps
association with membranes (as well as sub-cellular
trafficking between membrane compartments) and helps
protein-protein interactions [45]. All MdCPKs here

reported contain palmitoylation sites, usually present at
the 4th or 5th position of the N-terminal end (Table 2).

In eukaryotes and higher plants, some genes are
spliced alternatively during various developmental stages
or in response to stresses, creating multiple mRNA tran-
script for a single gene [46]. Spliced genes may encode
proteins with different functions or different cellular or
sub-cellular localizations [47]. In this study, MdCPKs
were found to have several alternative spliced transcript
variants (Table 1). The majority of plant alternative
spliced transcripts have not yet been functionally charac-
terised, but the evidence suggests that alternative spli-
cing plays a major role in plant function, including stress
response, and may impact domestication and trait selec-
tion [48]. Splicing variants play important roles within
cells and increase proteome diversity and cellular func-
tion [49]. Thus, the presence of a significant number of
alternative splicing variants in Malus might explain its
domestication and resistance to stress response. Further
studies are necessary to better understand their inde-
pendent role in different stress responses.
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Figure 6 Intracellular Ca®" variations in GD and M7 leaf cells following pathogen infection and mechanical damage. Leaves were treated
with calcium orange for 1 hr and then infected with £. amylovora. The cytosolic Ca>* concentration of leaf cells was determined 1 hr, 2 hr and

6 hrs after infection. Mechanically damaged (MD) leaves served as a control for both genotypes. In the lower panel, the bar represents the
relative percentage of calcium orange fluorescence in at least 3 replicates. Asterisk indicate significant (p <0.05) differences. Scale bars for Figures
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Our study also provides information on the possible in-
volvement of MdCPKs in regulating E. amylovora infec-
tion and wound response via Ca**-mediated signalling.
The differential expression of MdCPKs in fire blight resis-
tant and susceptible M. x domestica cultivars shows the
involvement of CPKs in the regulation of E. amylovora in-
fection and/or to MD The selective expression of a few
CPKs in the resistant cultivar in response to E. amylovora
indicates the importance of these CPKs in modulating the
resistance/susceptibility mechanisms by transducing the
signal to downstream defence signalling pathways [3,4,38].

The early induction of a few CPKs observed, specifi-
cally, in the resistant cultivar, indicates they may play an
important role in recognising pathogen infection and
transducing the signals to downstream signalling cas-
cades. These data show a divergent role for CPKs in re-
sponse to various stimuli and their specific recognition
[4,6,50,51].

[Ca2+]cyt variations occur in response to various biotic
and abiotic stresses [3,4,52-55]. In our study we found
that the M.7 resistant cultivar showed a significantly
higher [Ca2+]cyt accumulation to E. amylovora infection
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Table 2 Prediction of putative palmitoylation sites of
MdCPKs using CSS-palm 3.0

Gene Position Sequence Score Cutoff
MdCPK1a 5 #**MGNTCVGPSISK 1467 0.196
MdCPK1b 5 *MGNTCVGPSISK 1576 0.196
MdCPK1c 5 FFMGNTCVGPSISK 1.576 0.196
MdCPK2 10 PRDDQIGCQXYLQLS 2645 1.225
MdCPK4a 37 QFGTTYLCTHKPTGA 0.152 0
MdCPK4b 44 QFGTTYLCTHKPTGA 0.157 0
MdCPK8a 93 EFGVTYLCTEASSNE 0224 0.196
MdCPK8b 4 #*MGNCCVTLGAP 3132 1225
MdCPK8c 4 F**MGNCCATPQTG 2814 0308
MdCPK9 1 KATPSTICSTXASDL 143 122
MdCPK10a 4 FMGNCNVCVRAD 2777 1225
MdCPK10b 4 FHEMGNCNVCVRAD 3.132 1.225
MdCPK10c 4 FFMGNCNVCVRAD 3.132 122
MdCPK11 48 QFGTTYLCTEISSGH 0471 0
MdCPK13a 4 FHMGNCCRSPAAY 2.824 0.308
MdCPK13b 28 VILYILLCGVPPFWA 0.219 0.196
MdCPK17a 4 A MGNCCSQCNTE 3.567 0308
MdCPK17b 4 FF*MGNCCSQRNTE 4.248 0308
MdCPK19 139 RGQAVCPCLYGAGEL 0.907 0497
MdCPK20a 91 [TSRQFVCAHQGKHY 0.357 0308
MdCPK20b 198 QFGTTFLCVEKETNK 0.31 0.308
MdCPK21 3 *RMGCYSSKENA 2319 0308
MdCPK24a 4 *MGSCLCTPANA 0.943 0308
MdCPK24b 4 FEMGSCVCTPAKA 4019 0497
MdCPK26a 5 ***MGNTCRGSFRGK 211 0308
MdCPK26b 26 IGTPLYLCCRSLTFS 1.657 0308
MdCPK28 4 X MGICFSAVKVS 4727 1225
MdCPK29 4 FFEMGLCFTKCQSH 1.514 0308
MdCPK32a 4 #MGNCCVTLGAP 3132 1225
MdCPK32b 4 FEMGNCCVTPQTG 2252 0.308

The prediction showed that all MdCPKs identified had palmitoylation sites
characterised by the presence of cysteine residues at the N-terminal end,
usually in positions 4 and 5.

Presence of “****” indicate palmitoylation site present at 4th position and “***”
indicate palmitoylation site present at 5th position of respected CPK gene.

and MD, whereas the GD susceptible cultivar showed a
decreased [Ca2+]cyt accumulation. These [Ca2+]Cyt differ-
ences between the M.7 and GD cultivars in response
to E. amylovora infection show the ability of the resistant
plant to recognise E. amylovora infection by signifi-
cantly inducing [Ca2+]cyt accumulation and transducing
downstream signalling cascades and are consistent with
induction of MdCPKs genes. It has been shown that re-
cognition of the pathogen or its effectors increases [Ca2+]cyt
elevation in plant cells, which is a prerequisite for hypersen-
sitive response development [56-58]. Despite a significant
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correlation between Ca®* influxes and pathogen recogni-
tion, how the Ca®* signal is transduced to downstream
signalling events remains elusive. However, recent disco-
veries have identified six closely related CPKs in Arabi-
dopsis (ie. CPKs 1, 2, 4, 5, 6 and 11, all of them belonging
to cluster I) as sensors and transducers of Ca®* signalling
triggered by recognition of pathogen effectors [6,24]. In
our study, we found that most of the CPKs (such as
MdCPK1b, Ic, 4b and 11) were differentially expressed
in resistant and susceptible cultivars all belong to clus-
ter I, indicating the importance of this cluster in the
mechanism of resistance to the E. amylovora pathogen.
Preliminary data has shown down regulation of some
CPK genes in the flower of susceptible Malus after
inoculation with E. amylovora [31].

Conclusions

Our data can be used to further extend our understan-
ding of the downstream signalling network in fire blight
resistant and susceptible apple cultivars by mutant and
overexpressing candidate Malus CPKs analyses. Since
Ca** and its binding proteins are involved in early recog-
nition of pathogen infection and signal transduction to
downstream target molecules [24], it would be interest-
ing to understand downstream target genes and the pos-
sible role of phytohormones in regulating pathogen and
wound defence mechanisms. We identified a few candi-
date CPKs which are specific to M7 and GD M. x
domestica cultivars. Overexpression or silencing of these
CPKs might modulate the resistance to E. amylovora
infection. This study provides new tools for clarifying
important signalling molecules in regulating the most
devastating disease of Malus and other Rosaceae host
plants.

Methods

Plant material and pathogen inoculation

One year old plants of Malus x domestica cv Golden
Delicious (GD) and own-rooted M.7 rootstock, were
grown in the greenhouse at 24°C. Erwinia amylovora
strain Ea273 was grown overnight at 28°C in Kado
medium [59] supplemented with 0.3 g/L MgSO,. The
inoculum concentration was adjusted to 10° cfu ml™
by dilution with sterile 0.05 M potassium phosphate buf-
fer, pH 6.5. The youngest actively growing leaves of
plants were transversally cut using scissors dipped in the
bacteria suspension or phosphate buffer as a mechanical
damage control [28]. Six plants were inoculated with
Erwinia amylovora for each time point. Four to six mm
wide leaf strips, parallel to the original cut, were collected
according to the symptom progression at 0, 2, 6, 12, 24,
and 48 hours post inoculation (hpi), frozen in liquid
nitrogen and stored at —80°C.
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Database search and identification of Malus CPKs

Calcium dependent protein kinase (CPK) genes from
Malus x domestica were downloaded from the publicly
available phytozome (www.phytozome.net, www.rosa-
ceae.org) database using the hidden Markov model
approach as well as the BLASTP protocol [32,33,60].
The BLASTP results are provided in supplementary
Additional file 3: Table S1. CPK genes from Arabidopsis
thaliana were used as query sequences to search Malus
CPK genes. A. thaliana CPK genes were downloaded
from “The Arabidopsis Information Resources” (TAIR)
(www.arabidopsis.org) [44]. All sequences were con-
firmed by carrying out a BLASTP run against the TAIR
database. Malus x domestica CPKs, which gave a
BLASTP hit with Arabidopsis CPKs, were considered as
Malus CPKs and the nomenclature was thus carried out
accordingly. All the CPKs of M. x domestica were
scanned using SCAN PROSITE software to confirm the
presence of the EF-hands signature motif and hence
CPK genes (http://prosite.expasy.org/scanprosite/) [61].
Identified Malus CPKs genes were aligned using CLUS-
TALW software, using BLSOUM62 software with gap
open 10, gap extension 0.20, gap distance 5 and cluster-
ing neighbour joining [62] to find out the conserved
EF-hand domains. Palmytoilation sites of CPKs were pre-
dicted using CSS palm software [63,64]. The protein se-
quences were carefully analysed for sequence redundancy
followed by removal of alternatively spliced variants. In
order to confirm the presence of alternatively spliced gene
sequences, the genomic sequence of each candidate gene
was also examined. Sequence similarity of Malus CPK
genes was carried out using online software EMBOSS
Needle (http://www.ebi.ac.uk/Tools/psa/emboss_needle/).

Chromosomal location

The phytozome (http://www.phytozome.net/, www.rosaceae.
org) database was used for identification of putative MdCPKs.
Each of the MdCPKs was positioned on the M. x domestica
chromosome pseudo molecules using the apple genome
browser (http://genomics.research.iasma.it/gb2/gbrowse/apple/).

Phylogenetic analysis of the MdCPK gene family

Multiple sequence alignment analysis carried out using
CLUSTALW was used to construct the phylogenetic
tree. The CPKs of Oryza sativa, A. thaliana, Populus
trichocarpa, Zea mays and M. x domestica were used to
construct the phylogenetic tree with MEGA software,
version 5, using the neighbour joining statistical method
and Jones-Taylor-Thornton (JTT) model [65].

RNA isolation and g-PCR

Total RNA from leaves was isolated using the Sigma
Spectrum™ plant total RNA kit protocol. Before cDNA
synthesis, RNA was treated with RQ1 RNase-free DNase
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(Promega, Madison, WI, USA) according to the manu-
facturer’s instructions to ensure no DNA contamination,
and first-strand ¢cDNA synthesis was then carried out
with approximately 1 pg RNA wusing an Invitrogen
Superscript VILO™ First Strand ¢cDNA Synthesis Kit and
oligo-dT primers according to the manufacturer’s pro-
cedure. Primers were designed using Primer3 v. 0.4.0
(http://frodo.wi.mit.edu/) with melting temperatures at
58-60°C, primer lengths 20-24 bp and amplicon lengths
250-300 bp. All the primer sequences are listed in
Additional file 4: Table S2. q-PCR was conducted on a
Biorad iCycler® App 9001 Detection System using SYBR
GreenER™ q-PCR supermix (Invitrogen). Reactions were
prepared in a total volume of 20 pl containing: 10 pl of
2xSYBR Premix, 2 pl of cDNA template, 0.4 pl of each
specific primer to a final concentration of 200 nM. The
reactions were performed in the following conditions:
initial denaturation step of 95°C for 10 s followed by
two-step thermal cycling profile of denaturation at 95°C
for 5 s, and combined primer annealing/extension at
60°C for 1 min for 40 cycles. No-template controls were
included for each primer pair and each PCR reaction
was performed in triplicate on 2 biological replicates. To
verify the specificity of the amplicon for each primer
pair, melting curve analysis was performed ranging
from 60 to 95°C, with temperature increasing steps of
0.06°C/s (five acquisitions per °C) at the end of each run.
Baseline and threshold cycles (Ct) were automatically
determined using Biorad iCycler® IQ5 Software. Relative
expression was calculated as described previously using
EF1 and UBI as the reference gene [66,67].

Determination of intracellular calcium variations using
confocal laser scanning microscopy (CLSM) and calcium
orange

Calcium orange dye (stock solution in DMSO, Molecular
Probes) was diluted in 5 mM MES-Na buffer (pH 6.0) to
a final concentration of 5 pM. This solution was applied
to intact M. x domestica leaves as detailed in [68]. Five
UM calcium orange solution was applied and after 60 min
the leaf was mounted on a Nikon Eclipse C1 spectral
CLSM stage, without separating the leaf from the plant,
to assess basic fluorescence levels as a control. The
microscope operated with a Krypton/Argon laser at
488 nm with a BP of 500-540 nm and a LP of 650 nm.
Digital images were analysed using NIH image software
as described earlier [53]. After pathogen inoculation (see
above) or mechanical damage performed with scissors,
leaves were perfused with calcium orange and analysed
using CLSM as described above. Controls were repre-
sented by application of 5 uM calcium orange solution
to intact leaves. At least 5 biological replicates were
performed and several images taken for each biological
replicate.
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Data and statistical analysis

At least 2 biological replications and 3 technical replica-
tion sets were used for the statistical treatment of data.
The data are expressed as mean values; error bars indi-
cate the standard error. To evaluate the significance of
differences in data, ANOVA followed by Fisher’s PLSD
test was performed.

Additional files

Additional file 1: Figure S1. Multiple sequence alignment of MdCPK
genes. Amino acid sequence alignment of MdCPK genes show presence
of kinase domain and four calcium binding EF-hands in regulatory do-
main. In EF-hands, Ca®* ion are co-ordinated in a pentagonal bipyramidal
configuration. Ca** binding amino acid residue are present at position 1,
3,5,7,9 and 12. The conserved Glu (E) or Asp (D) provides two oxygen
for liganding Ca’*. Multiple sequence alignment of MdCPK genes were
carried out using multalin (http://multalin.toulouse.inra.fr/multalin)
software using statistical programme BLOSUM. Red and blue color
indicate high and low conserved domains/motifs respectively, whereas
black indicate neutral.

Additional file 2: Figure S2. Schematic representation of transcript of
MdCDPK genes. Box mark represents the exon and line represents the
intron of specific CDPK gene. The name to the right of the gene
structure indicates the gene name.

Additional file 3: Table S1. Q PCR Primer list of all MdCDPK genes
used in this study.

Additional file 4: Table S2. The BLASTP score of MdCPKs found during
their identification. The E- value found during BLASTP search show very
significant similarity.
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