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Abstract

salterns and were named “Spiribacter”.

Background: Thalassosaline waters produced by the concentration of seawater are widespread and common
extreme aquatic habitats. Their salinity varies from that of sea water (ca. 3.5%) to saturation for NaCl (ca. 37%).
Obviously the microbiota varies dramatically throughout this range. Recent metagenomic analysis of intermediate
salinity waters (19%) indicated the presence of an abundant and yet undescribed gamma-proteobacterium. Two
strains belonging to this group have been isolated from saltern ponds of intermediate salinity in two Spanish

Results: The genomes of two isolates of “Spiribacter” have been fully sequenced and assembled. The analysis of
metagenomic datasets indicates that microbes of this genus are widespread worldwide in medium salinity habitats
representing the first ecologically defined moderate halophile. The genomes indicate that the two isolates belong
to different species within the same genus. Both genomes are streamlined with high coding densities, have few
regulatory mechanisms and no motility or chemotactic behavior. Metabolically they are heterotrophs with a
subgroup Il xanthorhodopsin as an additional energy source when light is available.

Conclusions: This is the first bacterium that has been proven by culture independent approaches to be prevalent
in hypersaline habitats of intermediate salinity (half a way between the sea and NaCl saturation). Predictions from
the proteome and analysis of transporter genes, together with a complete ectoine biosynthesis gene cluster are
consistent with these microbes having the salt-out-organic-compatible solutes type of osmoregulation. All these
features are also consistent with a well-adapted fully planktonic microbe while other halophiles with more complex
genomes such as Salinibacter ruber might have particle associated microniches.
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Background

The development of techniques to directly study genes
in the environment, first by PCR and cloning of 16S
rRNA genes and later by metagenomics has provided a
more realistic view of the microbial community struc-
ture of natural environments. Historically, a gap between
cultured microbes and the real natural diversity was rec-
ognized and expressed as the “great plate anomaly” [1].
We are now in a better position to assess the selective
bias introduced by nutrient-rich laboratory media.
“Classical” marine bacteria, such as Vibrio species, easily
isolated in pure culture, are now recognized as rare
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inhabitants selected by laboratory conditions [2]. On the
other hand, the most abundant marine microbes such as
Candidatus Pelagibacter, are extremely difficult to re-
trieve in pure culture and are still largely studied by dir-
ect sequencing of the biomass or, at best, of a few
isolated strains [3]. Rather than such unexpected find-
ings remaining restricted to the marine habitat, they rap-
idly turned out to be the norm, especially in the case of
aquatic systems, e.g. the high abundances of low GC
Actinobacteria in freshwater [4] and even in the ocean
[5] and many other groups that are just starting to be
known and studied [6,7]. A similar discovery was made
regarding hypersaline environments. The classical ex-
treme halophiles that have been studied for decades such
as Halobacterium or Haloarcula were barely detectable
by molecular approaches in saturated brines [8,9].
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Instead, slow growing and extremely fastidious to isolate
microbes, such as Haloquadratum walsbyi, have shown
to be dominant worldwide in neutral saturated brines
[10,11]. Recently, a new group of extremely small ar-
chaea (the Nanohaloarchaea) were discovered by meta-
genomic approaches to be also relatively abundant in
saturated brines, but no culture of these microbes is yet
available [12-15].

In a large metagenomic study carried out in a solar
saltern in which different salinities were studied by dir-
ect 454 pyrosequencing [12], it came as no surprise
when in intermediate salinities (19%, about half a way
between seawater salinity, 3.5% and saturation, 37%) the
classical moderately halophilic bacteria such as Salinivi-
brio or Halomonas [16] turned out to be nearly absent.
The few studies carried out by PCR and cloning of 16S
rRNA [9] had already indicated the presence of bacteria
distantly related to Nitrococcus mobilis. Metagenomic
assembly provided many contigs that clearly belonged to
gamma-proteobacterial cells that gave consistent hits to
the genomes of both Nitrococcus mobilis Nb-231 and
Alkalilimnicola ehrlichii MLHE-1. Assembly of the meta-
genome allowed to reconstitute large genomic fragments
and indicated that this was a new microbe (or group of
microbes) distantly related of the previously mentioned.

In an attempt to retrieve this new microbe, oligotrophic
media were designed to isolate bacteria from a ca. 20%
salinity saltern ponds in Isla Cristina, Huelva (Spain) and
from the large number of colonies screened, a microbe
with 95% identity of the 16S rRNA gene to Alkalilimni-
cola could be isolated. Independently, a sample from the
intermediate salinity saltern in Santa Pola also gave a simi-
lar isolate. Both microbes, like most environmentally suc-
cessful aquatic microbes, are extremely slow growing and
fastidious to maintain in the laboratory. Their genomes
have now been sequenced and assembled and they have
proven to be representatives of the bacteria that were
dominant in the 19% saltern pond metagenome. Actually
they seem to be very abundant at all medium salinity (15-
25%) neutral hypersaline waters for which metagenomes
are available.

Results and Discussion

Two strains, M19-40 and UAH-SP71, were isolated from
saltern ponds of intermediate salinity (see methods) in
South west and South east Spain (Isla Cristina and Santa
Pola) respectively. Both microbes are representatives of a
novel group of Ectothiorhodospiraceae that by metage-
nomics appeared to be the dominant bacterial group in
saltern ponds of intermediate salinity [12]. By 16S rRNA
sequencing they were tentatively assigned to a new genus
“Spiribacter” and two separate species “Spiribacter salinus”
M19-40 and “Spiribacter” sp. UAH-SP71. A complete taxo-
nomic description is being prepared (Leon et al, in
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preparation). The genomes of the two isolates have now
been fully sequenced and assembled into a single contig
(Table 1).

General characteristics and comparison with other
Ectothiorhodospiraceae

The phylogenomic relationships of “Spiribacter” with
other members of the family Ectothiorhodospiraceae that
have been completely sequenced are shown in Figure 1.
Allochromatium vinosum DSM 180 and Thioflavicoccus
mobilis 8321, two purple sulfur marine bacteria which
belong to the family Chromatiaceae, were used as out-
group. The family Ectothiorhodospiraceae is composed
of purple sulfur photosynthetic bacteria that are in most
cases halophilic and also often alkaliphilic [17]. Many of
the most classical isolates come from alkaline hypersa-
line lakes [18]. The results confirm the initial phylogeny
described by 16S rRNA gene sequence comparison
(Additional file 1: Figure S1). Both strains appear mono-
phyletic and only distantly related to the closest neigh-
bor Arhodomonas aquaeolei DSM 8974, an aerobic
chemoheterotroph [19], and Nitrococcus mobilis Nb-231,
an obligate chemolitotrophic bacterium [20]. The aver-
age nucleotide identity (ANI) between the two strains
was only 77.3%, what fits with what is expected of differ-
ent species of the same genus [21]. Both microbes have
genomes close to 2 Mbp (Table 1), making them the
smallest genomes described within the Ecthiorhodospira-
ceae and for any halophilic bacterium. The genomes are
very streamlined with a median intergenic spacer of only
14-19 nucleotides, also the smallest of any member of
this family (Figure 2). The GC content is relatively high
as seems to be the case with all the Ectothiorhodospira-
ceae sequenced till now. The genomes were composed

Table 1 General features of the two new genomes
compared with A. ehrlichii

“Spiribacter salinus”  “Spiribacter”  A. ehrlichii
M19-40 sp. UAH-SP71 MLHE-1
Size (bp) 1,739,487 1,926,631 3,275,944
GC content (%) 62,7 639 67,5
Contigs 1 1 1
Protein coding 1706 1874 2865
genes
rRNA operons 1 1 2
tRNAS 45 44 48
Hypothetical 173 199 637
proteins
Functions 1533 1675 2228
assigned
IS elements 7 5 20
ANI (%) - 773 68,0

"ANI, average nucleotide identity [21].



Lopez-Pérez et al. BMC Genomics 2013, 14:787
http://www.biomedcentral.com/1471-2164/14/787

Page 3 of 12

Arhod

Allochromatium vinosum DSM 180
_|:Thfoffa vicoccus mobilis 8321

Nitrococcus mobilis Nb-231(3.6 Mb; GC60.0%) OB O

aquaeolei DSM 8974 (4.0 Mb; GC 69.4%) O (]

_L

—

“Spiribacter”sp. UAH-SP71 (1.9 Mb; GC 63.9%) O []

{smﬂhsclersn!mus"M19-dD (1.7Mb; 6C 62.7%) O []

AlkalilimnicolaehrlichiiMLHE-1(3.3Mb;GC67.5%) O (]l O

Halorhodospira halophilaSL1(2.7Mb;GC67.5%)@ O @

Thioalkalivibriosp. K30mix (2.7Mb; GC65.5%)O [l O

[Thioalkaﬁvibrio thiocyanoxidans ARh2 (3.8 Mb;GC66.5%)O W O

Thiorhodospira sibirica ATCC 700588 (3.2Mb; GC56.7%)O l O

Thioalkalivibrio nitratireducens DSM14787 (4.0Mb;GC66.5%)O Wl O
Thioalkalivibrio paradoxus ARh1(3.3Mb;GC67.0%)O Ml O

Thioalkalivibrio sulfidophilus HL-EbGr7 (3.5Mb; GC65.1%)O Wl O

_L_

0.08

“Spiribacter" genomes are highlighted in a grey box.

Ectothiorhodospira haloalkaliphila ATCC 51935 (3.4Mb; GC63.0%)@ @ OO

_:clo!hiorhadospfra spPHS-1(2.9Mb; GC63.7%) @ @ ()

Figure 1 Phylogenetic tree constructed using a concatenate of 277 conserved proteins in all genomes of available
Ectothiorhodospiraceae genomes. Allochromatium vinosum DSM 180 and Thioflavicoccus mobilis strain 8320, belonging to Chromatiaceae were
used as outgroups and are shown in red. Metabolic characteristics are indicated next to the names and a key is provided at the bottom right.
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of a single circular replicon with only one rRNA operon and
with a high level of synteny, considering the relatively low
ANI between the two genomes (Figure 3). It is clear from
the comparison with the closest available complete gen-
ome (Alkalilimnicola ehrlichii MLHE-1) how “Spiribacter”
species are simplified in their metabolic versatility, missing

the chemolitotrophic and carbon fixation pathways.
The small number of IS and other mobile genetic ele-
ments and absence of CRISPR system and flagellum
was also remarkable. All these are frequently observed
characteristics of oligotrophic microbes with stream-
lined genomes that reach high population densities in
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Figure 2 Comparison of intergenic spacer size in the Ectothiorhodospiraceae available genomes. Two genomes from Chromatiaceae are
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Figure 3 Alignment of the “Spiribacter” genomes and the closest available genome of Alkalilimnicola ehrlichii MLHE-1. Each genome is
represented linearized starting from the OriC. Some genomic regions relevant to lifestyle present in A. ehrlichii MLHE-1 and completely missing
in “Spiribacter" are highlighted as blue rectangles. Genomic islands of very different genetic make up between both “Spiribacter" genomes are
indicated below, in blue when present in both (but containing different genes) and green when present in one of the strains only. Locations of

rRNA genes of each genome are indicated in yellow.

aquatic environments, such as Ca. Pelagibacter ubique
in the ocean.

Ecological insights

In a previous work, metagenomic sequencing indicated that
the communities at 19% salinity had already a marked halo-
philic profile with the hyperhalophilic haloarchaeon Halo-
quadratum predominating in numbers [12]. However, a
major difference with the NaCl saturated ponds was the
presence of the gammaproteobacterium associated to Alka-
lilimnicola-Nitrococcus that we now know corresponds
largely (if not completely) to “Spiribacter” representatives.
To confirm this, we have analyzed the recruitment of the
two genomes from the available metagenomes of hypersa-
line waters. Besides the 19% metagenome we also used data
from a San Diego saltern metagenome [22] also represent-
ing intermediate salinity ponds. As shown in Figure 4,
M19-40 was the known bacterial genome recruiting most
in San Diego 12-14% and in Santa Pola 19%, only two
halophilic archaea, H. walsbyi and Ca. Haloredivivus, re-
cruited more. The data confirms that “Spiribacter” is a
very abundant microbe in intermediate salinities but its
abundance decreases sharply at both high and low salin-
ities (Figure 4A). In this sense, it can be considered a bona
fide moderate halophile that prefers to inhabit intermedi-
ate salinities. Former definitions of moderate halophiles
[16] were based on laboratory studies of growth rates at
different salinities, but are often misleading as shown
clearly by the lack of representation of most moderate hal-
ophiles defined this way in intermediate salinities. Besides,

the growth salinity range in the laboratory is often very
wide, with very similar growth rates over most inter-
mediate salinities. Some of the assembled metagenomic
contigs described before were now clearly associated with
“Spiribacter” (Additional file 1: Figure S2). Actually, these
were the largest contigs obtained from the 19% metagen-
ome confirming the abundance of “Spiribacter” cells in
this environment. However, many of these contigs had
lower similarities while still being syntenic to “Spiribacter”
genomes (Additional file 1: Figure S2) indicating that
there might be other “Spiribacter” species present in sig-
nificant amounts in this specific sample.

The recruitment of M19-40 (Figure 4B) shows the typ-
ical metagenomic islands [23] that are found when a well-
represented microbe is compared to the metagenome of
its habitat. These islands are a reflection of the diversity of
co-existing clonal lineages that diverge in genomic regions
delineated by the islands. The most remarkable feature in
the case of strain M19-40 is the small number and size of
these islands concordant with the highly streamlined gen-
ome and relatively restricted metabolic versatility. Gen-
omic island (GI) 1 accumulates 4 of the 7 IS elements of
the genome but no specific function could be attributed
to the few other genes present. GI2 was the largest and
contains a large urease cluster. Ureases are not present in
strain UAH-SP71 and, although the cluster in M19-40 re-
cruits very little at high identity, it showed many hits
below 97% identity indicating the presence of other line-
ages that carry ureases. The rest of GI2 contains many
toxin-antitoxin systems as is typical of flexible genomic
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Figure 4 Recruitment of some representative halophile genomes from metagenomes of hypersaline waters of different salinities.

A- Reads recruitment at 95% of identity in at least 50 bp was normalized against the size of the genomes and the databases. Recruitment of
both “Spiribacter” was compared with three haloarchaea: Haloquadratum walsbyi, Halonotius pteroides, Ca. Haloredivivus and four bacteria
Salinibacter ruber, Salinivibrio costicola, Chromohalobacter salexigens and Halomonas elongata. B.- Figure show genomic islands and metagenomic
recruitment of the “Spiribacter salinus” M19-40 against metagenome from Santa Pola (19%). A restrictive cut-off of 95% of nucleotide identity in
50% of the length of the metagenomic read was used. ND: not determined.

(1739487 pb) vs Santa Pola 19%

islands of bacteria in general. GI3 is the cluster coding for
the O-chain of the lipopolysaccharide which is a typical
genomic island in all Gram-negative bacteria and its vari-
ability has been attributed to its major role as a phage rec-
ognition target [23,24].

To assess the presence of “Spiribacter” associated mi-
crobes worldwide, we have searched the complete Ribo-
somal Database Project for 16S rRNA sequences highly
similar (>97%) to that of either strain. The results de-
scribed in Additional file 1: Figure S3 indicate that they
are found worldwide (as already indicated by the recruit-
ment in Spanish and Californian salterns) and always
(when the data were available) in intermediate salinity
hypersaline waters.

Metabolism

Both strains of “Spiribacter” were isolated on media for
heterotrophic aerobic microbes (M19-40 on pyruvate
and yeast extract and UAH-SP71 on pyruvate, dextrose

and peptone). The genomes confirm that these microbes
are devoid of any photosynthetic or chemolithotrophic
capabilities, what sets them apart from most members
of the Ectothiorhodospiraceae. No carbon fixing path-
ways were detected either. The only other member of
this family with a purely heterotrophic metabolism is
Arhodomonas aquaeolei, a halophilic aerobic hetero-
troph isolated from a petroleum reservoir [19]. In con-
cordance with their heterotrophic nature, transporters
formed a large fraction of the genes in both genomes.
TransporterDB (see methods) predicts 217 and 268
transport-associated genes for M19-40 and UAH-SP71,
respectively. In comparison, in S. ruber, which has a much
larger genome than either of them (3.5 Mbp), a similar
number of genes (223) was detected by the same method.
One of the main carbon and energy sources for halo-
philic microorganisms in the salterns is glycerol. Massive
amounts of this compound are produced by the unicel-
lular green algae Dunaliella, the main primary producer
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in these hypersaline habitats, as a compatible solute to
provide osmotic balance [25]. In its catabolic degradation,
glycerol is converted to dihydroxyacetone phosphate
(DHAP), a glycolysis intermediate, by two different path-
ways. The first pathway, involving glycerol kinase and gly-
cerol 3-phosphate dehydrogenase [26], was found as a
complete cluster in both “Spiribacter” strains. These clus-
ters included also two genes encoding a glycerol-3-
phosphate ABC transporter and a glycerol-3-phosphate
regulon repressor. In strain UAH-SP71, three other differ-
ent glycerol 3-phosphate dehydrogenase genes were also
found together in a separate location of the genome. In
the second pathway, glycerol is metabolized to DHA first
and then phosphorylated by a dihydroxyacetone kinase
into DHAP. In strain M19-40 this second route is totally
absent while in UAH-SP71 a DHA kinase was found, indi-
cating the ability to use both pathways. Besides, located
near this DHA kinase gene, another gene coding for a
phosphoenolpyruvate dependent DHA phosphotransfer-
ase system was found. Although apparently redundant,
this second enzyme seems to be involved in the transport
of DHA rather than in catabolism of this compound [27].
The same DHA uptake system has been found before in
the haloarchaeon H. walsbyi [28]. The authors of that
study suggested that H. walsbyi can use DHA as carbon
and energy source, which is known to be released by
S. ruber (and likely other halophilic microbes) as a bypro-
duct of glycerol metabolism.

Glycine betaine (trimethylated glycine) is another im-
portant osmoprotectant that could be an abundant carbon
source in hypersaline environments. Along these lines,
strain M19-40 has two paralogous operons of four sar-
cosine oxidase genes located in separate regions of the
genome. Sarcosine oxidase is a heterotetrameric enzyme
that catalyzes the oxidative demethylation of sarcosine
(N-methylglycine) to yield glycine that can be further
catabolized and used as a source of carbon and energy
[29]. Strain UAH-SP71 did not have these genes. An-
other difference indicating different lifestyles for both iso-
lates was the presence of a complete cluster encoding a
cytochrome ¢ oxidase (cbb3) complex involved in micro-
aerobic respiration in strain UAH-SP71. This heme-copper
oxidase provides a better adaptation to respiration under
microoxic conditions [30] indicating that strain UAH-
SP71 might be specialized in comparatively less oxyge-
nated microenvironments.

Regarding nitrogen metabolism, neither “Spiribacter”
genomes have genes that code for nitrogen fixation or
nitrate/nitrite assimilation. Both genomes have the gene
coding for a high-affinity ammonium transporter Amt,
indicating that nitrogen uptake occurs in its most re-
duced form, ammonia. Accordingly, the essential genes
involved in ammonia assimilation and amino acid me-
tabolism, glutamine synthetase and glutamate synthase,
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were found. Besides, several ABC transporters for ex-
ogenous nitrogen-rich organic compounds such as basic
amino acids, putrescine/spermidine and polyamines
were also found. In addition, each genome contained
other non-shared genes that can provide nitrogen rich
compounds. For example, strain M19-40 contained a
complete urease gene cluster (see above), including the
genes for the transport and conversion to ammonia,
while strain UAH-SP71 carries an ABC transporter for
the nitrogen rich osmolyte taurine (TauABC) [31]. Inor-
ganic phosphate appears to be mainly transported in
both microbes by the high-affinity phosphate transport
system, PstSCAB. Both genomes contained also the
ABC transporter PhnCDE, a high affinity uptake system
for phosphonates. Phosphonates are organophosphorus
compounds characterized by the presence of a carbon-
phosphorus bond and could be used also as a nutri-
tional source of phosphorus in response to phosphate
starvation [32].

As expected from the evident streamlining of these ge-
nomes, regulatory mechanisms were very scarce. Only two
sigma factors involved in response to environmental
stresses were found, 032 a heat shock sigma factor and 654
that has been linked to the regulation of nitrogen metabol-
ism [33,34]. Along similar lines, only two two-component
regulatory systems were found, one involved on survival
under nitrogen limited growth conditions (GInLG) and
PhoBR that regulates the response to variations in the level
of extracellular inorganic phosphate [35,36].

Osmoregulation

Despite the small genome size, both “Spiribacter” strains
appear to have all the typical salt-out osmoregulatory
mechanisms. The salt-out strategy is based in keeping
most of the inorganic salts out and using organic osmo-
lytes to balance the high salinity of the environment
[37]. These “organic compatible solutes” include amino
acids and derivatives such as glycine betaine and ectoine
[38]. In the case of “Spiribacter”, judging by the number
of betaine transporters in these genomes (six different
ABC-type glycine betaine transport systems were found
in both microbes) it seems that this compound has an
important role. Besides, a choline transporter betH was
also present. Choline itself is not an osmoprotectant but
we found in both genomes the key enzymes for the syn-
thesis of glycine betaine from choline, choline dehydro-
genase (betA), glycine betaine aldehyde dehydrogenase
(betB) and the transcriptional regulator (betl) [39].
Ectoine is another widely distributed compatible solute
commonly synthesized by halophilic bacteria [40].
Ectoine biosynthesis is a separate branch along the path-
way for the synthesis of the amino acid aspartate. In
both “Spiribacter” we found the complete ectABC gene
cluster, diaminobutyric acid (DABA) acetyltransferase
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(EctA), DABA aminotransferase (EctB) and ectoine syn-
thase (EctC) [41].

It has been suggested that an important adaptation to
saline environments may be an increase in the number
of acidic amino acids to reduce their surface hydropho-
bicity. We have characterized the two strains M19-40
and UAH-SP71 proteomes by virtual 2D-gels and to
analyze the differences in protein acidity we have com-
pared them to those from a salt-in halophilic archaeon
(Halobacterium sp. NRC-1), a salt in halophilic bacter-
ium (Salinibacter ruber DSM 13855), a marine bacter-
ium (Alteromonas macleodii DE1) and a freshwater
bacterium (Fluviicola taffensis RW2627) (Figure 5). The
whole proteome pl plots showed the change from the
bimodal pattern of the freshwater marine bacterium,
F. taffensis, to a single peak around 4.5 for Halobacterium
sp. NRC-1. This figure shows how the pl distribution of
the second peak representing basic proteins, that contains
the transmembrane proteins, has evolved toward acidity
in response to increase in salinity of the environment. In a
manner similar to Halobacterium sp. NRC-1, both “Spiri-
bacter” showed reduction of the amount of basic amino
acids resulting in a single peak at around a pI 5.0. In any
case, recent evidence indicates that the low pI peak that
characterizes many halophiles is more a condition for a
salt-in strategy than a reflection of that mechanism really
taking place in the cells [42,43].

Another way to gauge the salt adaptation of a microbe is
the reliance on the Na" gradient to actively transport nutri-
ents into the cell. Both “Spiribacter” strains have secondary
transporters that catalyze the translocation of solutes across
the cytoplasmic membrane using electrochemical ion gra-
dients, for example, the tripartite ATP-independent peri-
plasmic family transporters [44]. Thirteen and fifteen of
these transporters (in M19-40 and UAH-SP71, respectively)
that catalyze uptake of C4-dicarboxylates, sugars and me-
tabolites using the Na™ gradient were found. Both microbes
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also possess several genes encoding Na* symporters for
proline, bicarbonate or anions and Na*/H* and Na*/Ca**
antiporters, consistent with adaptations to a high-salt envir-
onment [16]. The genomes contain also a cluster of six
genes coding for the multi-subunit Na*/H" antiporter Mrp
[45], which has been suggested to be the main mechanism
to maintain pH homeostasis. In response to osmotic stress,
bacteria can also accumulate K as an osmoregulatory sol-
ute and pH regulator [46,47]. The uptake of K" is catalyzed
by multiple uptake systems [48]. Interestingly, both “Spiri-
bacter” strains only harbour the gene cluster trkAH that
codes for the Trk transport system, while in S. ruber genome
four copies of a trkA and two copies of a trkH gene and also
the K" efflux system KefB were present [49].

Xanthorhodopsin (XR)

XRs are rhodopsin proton pumps that sometimes use a
carotenoid pigment antenna to harvest light, a mechanism
that is convergent with that of the chlorophylls of photo-
synthetic microbes and widens the light absorption
spectrum [50]. XR was first discovered in the extremely
halophilic bacterium S. ruber [49] but later on they have
been found to be widespread in marine and halophilic mi-
crobes. Recently, a separation of xanthorhodopsins in two
families has been proposed on the grounds of the gene se-
quence and predicted biophysical properties [51]. One of
these families, Group II XRs, lack some essential keto-
carotenoid binding sites and have been described as being
devoid of the carotenoid antenna characteristic of group I
[51]. Both “Spiribacter” genomes were found to contain
rhodopsin-coding genes that, after sequence comparisons,
cluster clearly with the XR genes found in other microbes
(Additional file 1: Figure S4). The predicted proteins con-
tained all the characteristic functional groups of proton-
pumping rhodopsins (Additional file 1: Figure S5). These
results suggest that both XRs are functional. Furthermore,
the phylogenetic analysis (Additional file 1: Figure S4) and
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the characteristic genes found in the cluster (Figure 6) in-
dicate that both closely related genes of “Spiribacter” en-
code XRs affiliated to subgroup II. This XR subgroup, was
found in a heterogeneous group of different alpha and
gamma proteobacteria, mostly of marine origins, and in
marine eukaryotes. Actually, group II XRs have already
been found by other authors in metagenomes in medium
salinity, hypersaline and fresh water habitats [51].
Regardless of whether they have carotenoid antennas or
not, all rhodopsins require the chromophore retinal. The
gene clusters including the XR gene of group II, always
contain four of the genes involved in the synthesis of the
retinal precursor -carotene from isopentenyl diphosphate
(crtE, crtl, crtB and crtY) (Figure 6). In addition, UAH-
SP71 has a paralogous gene (crtB2, 44% amino acid iden-
tity) coding for CrtB (phytoene synthase) located else-
where in the genome. The presence of two phytoene
synthase paralogs has been already reported in the gen-
ome of the Gram-positive bacterium Corynebacterium
glutamicum [52]. The authors reported that both phy-
toene synthases were functional leading to an overproduc-
tion of carotenoids. Another difference between the two
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strains involves the location of the [-carotene 15,15'-
monooxygenase (Brp/Blh) gene. In M19-40 this gene was
found within the cluster while in UAH-SP71 this gene ap-
peared at a distant locus in the genome (Figure 6).

Conclusions

In recent years it has become apparent that planktonic
aquatic habitats are often dominated by microbes that
have highly streamlined genomes [2,5]. They tend to be
sessile and, in the case of heterotrophs in euphotic wa-
ters, often have rhodopsins. In high-salinity hypersaline
habitats, two archaeal groups appear to occupy this
niche, Haloquadratum and the Nanohaloarchaea. In
intermediate salinities there appears to be more diversity
and the “Spiribacter” representatives fill a significant
gap. The widespread distribution of this microbe and its
natural range indicates that it is present in 10 to 25% sa-
linities worldwide. In other words, it is an ecological
moderate halophile in the same manner Haloquadratum
is an ecological extreme halophile. Thus the classical
classification based on growth rate range in the labora-
tory can be replaced by a more realistic classification
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based on ecological distribution. The classical microbes
classified as moderate halophiles, such as Halomonas or
Salinivibrio, have been shown to be almost absent from
hypersaline habitats and, at least in the case of Halomonas,
appear to be just salt tolerant opportunistic marine bacteria
that happen to survive higher salinities and be thus isolated
often from moderately saline waters.

“Spiribacter” shows many characteristics in common
with dominant aquatic microbes such as Ca. Pelagibac-
ter or Ca. Actinomarina. The cells are small, although
not as small as the marine counterparts, and so is the
genome. Motility is absent as in most genuinely plank-
tonic prokaryotes. Flagellar motility only has bearing
when there are significant gradients of nutrients to
traverse. This is unlikely to be the case in the water col-
umn of large aquatic habitats such as the ocean. Besides,
the genes involved in motility and chemotaxis impose an
additional genomic burden. A major difference between
the planktonic marine habitat and its hypersaline coun-
terpart (aside from salinity itself) is the nutrient status.
Hypersaline waters tend to be eutrophic and organic
matter is supposed to be plentiful for heterotrophs.
However, the energetic efficiency of streamlined cells
such as “Spiribacter” has to be a significant advantage
even under relatively nutrient rich conditions. H. walsbyi
genome was not considered to be streamlined. It is a
relatively large genome (ca. 3.0 Mbp), has very low cod-
ing density (76.5%) and contains several IS, repetitive el-
ements [53] and genomic islands [54,55]. However, the
abundance of IS elements seems to be a general feature
of haloarchaea and could be related to their proven level
of promiscuity [56]. Furthermore, many regions identi-
fied as non-coding have revealed a rich content of small
RNAs [53] that might be very important for the biology
of this microbe, i.e. the apparent wastefulness of the
Haloquadratum genome might just reflect our ignorance
of archaeal biology.

The comparison of both “Spiribacter” with the only
other bacterium that seems to be naturally abundant in
hypersaline waters, the bacteroidete S. ruber, is also inter-
esting. Both bacteria are carriers of similar xanthorhodop-
sins, although the type present in “Spiribacter” seems to
operate without the associated carotenoid antenna that
was originally characterized in this type of rhodopsins
[51]. Salinibacter however is motile and also carries sen-
sory rhodopsins and chemotaxis machinery. Actually, the
real relevance of S. ruber in the planktonic brines is not
very clear. In metagenomes the available genomes do not
recruit very extensively and, although its numbers are sig-
nificant, they are always very far from those of the ar-
chaeal members of the population. Salinibacter together
with many high GC haloarchaea, that are often isolated
from salterns, could live attached to particles, a niche that
is often overlooked but can explain the need for motility
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to commute between particles or get to the most nutrient
rich areas.

Methods

Isolation of the strains

The two strains used in this study were isolated from
water samples collected from two intermediate salinity
ponds of the salterns “Bra¢ del Port” located in Santa
Pola (Alicante, Spain, 38°13" N - 0°35" W) and Isla Cris-
tina (Huelva, Spain, 37°13" N — 7°19" W). “Spiribacter”
sp. UAH-SP71 isolated from the Santa Pola salterns was
grown in medium R2 Agar (Microkit, ref. DMT215)
contained (in %): 0.0525 peptone, 0.035 yeast extract,
0.035 dextrose, 0.035 starch, 0.021 K,HPO,, 0.021 so-
dium pyruvate, 0.0175 tryptone, 0.00168 MgSO, and
supplemented with 10% of sea salts [57], pH 8. The
medium for “Spiribacter salinus” M19-40 contained in %
15 sea salts, 0.5 casein digest, 0.1 yeast extract, 0.1 dex-
trose and 0.1 pyruvic acid, pH 7.5.

DNA sequencing and assembly

DNA was extracted by phenol-chloroform [58] and
checked for quality on a 1% agarose gel. Whole genome
sequencing for both isolates was performed using the
[lumina HiSeq 2000 (100-bp paired-end read) sequen-
cing platform. In addition, Pacific Bioscience 3- to 5-Kb
reads were generated for “Spiribacter salinus” M19-40.
Error correction of the PacBio reads was performed
using the Illumina reads as described before [59]. The
reads were assembled de novo using MIRA [60] and
Geneious Pro 5.0.1. Both results were compared for
equal assemblies. Finally, oligonucleotides designed from
the sequence of the ends of assembled contigs were used
to obtain single closed contigs [61].

Genome annotation

The genomes were annotated using the NCBI PGAAP
annotation pipeline (http://www.ncbinlm.nih.gov/gen-
ome/annotation_prok/). The predicted protein se-
quences were also compared using BLASTP to the
National Center for Biotechnology Information nr pro-
tein database (e value: le-5). BioEdit was used to ma-
nipulate the sequences [62]. GC content was calculated
using the EMBOSS tool geecee [63]. For comparative
analyses, reciprocal BLASTN and TBLASTXs searches
between the genomes were carried out, leading to the
identification of regions of identity, insertions and rear-
rangements. To allow the interactive visualization of
genomic fragment comparisons Artemis v.12 [64], Arte-
mis Comparison Tool ACTv.9 [65] were used to com-
pare the genomes. Average nucleotide identity (ANI)
was calculated as defined before [21]. Transporters were
annotated using the TransporterDB database [66].
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Phylogenetic analysis

To determine the exact phylogenetic relationship of the
new isolates within the family, phylogenetic analysis of
16S rRNA gene sequences for all the Ectothiorhodospira-
ceae members were carried out. Maximum likelihood
tree was created using MEGA (version 4.0.2). The tree
was rooted using Allochromatium vinosum DSM 180
and Thioflavicoccus mobilis 8321 as outgroups. For cre-
ating the phylogenomic tree in Figure 1, the complete
genomes of Ectothiorhodospiraceae were analyzed using
TIGRfams and 277 proteins conserved in all genomes
were identified and concatenated. The concatenated pro-
teins were aligned using Kalign [67] and a maximum
likelihood tree was made using FastTree [68] using a
JTT + CAT model and a gamma approximation.

Fragment recruitment

Genomes recruitments from metagenomic datasets de-
rived from some available marine habitats with different
salinity [12,22] were carried out via BLASTN. A restrict-
ive cut-off of 95% of identity in at least 50 bp was estab-
lished to guarantee that only similarities at the level of
nearly identical microbes were counted. The number of
hits was normalized against the genomes and the data-
base sizes. As controls, similar recruitment experiments
were carried out for other typical halophilic microorgan-
ism in this environment, three haloarchaea: Haloquadra-
tum walsbyi, Halonotius pteroides, Ca. Haloredivivus
and four bacteria Salinibacter ruber, Salinivibrio costi-
cola, Chromohalobacter salexigens and Halomonas elon-
gata. Recruitment of the genome of strain M19-40
against the metagenome from Santa Pola (19%) (Fig-
ure 4B), 95% of identity in 50% of the length of the
metagenomic read was used as a cut-off to construct the
plot.

Accessions

The genomes have been deposited in NCBI GenBank
and can be accessed with the following accession num-
bers: “Spiribacter salinus” M19-40 (CP005963) and
“Spiribacter” sp. UAH-SP71 (CP005990).

Additional file

Additional 1: Figure S1. 165 rRNA phylogeny. Maximum likelihood
phylogenetic tree based on the comparison of 165 rRNA gene sequences
of the Ectothiorhodospiraceae. Allochromatium vinosum DSM 180 and
Thioflavicoccus mobilis 8320, belonging to the Chromatiaceae were used
as outgroup and are shown in red. Bootstrap values are indicated at the
nodes. Figure S2. BLASTN comparisons of metagenomic contigs from
19% Santa Pola to “Spiribacter” genomes. The metagenomic contigs are
shown in the middle. A color key for the similarity is shown on the top
right. Figure S3. Global distribution of Spiribacter 16S rRNA gene
sequences. Locations where 16S rRNA gene sequences from the
Ribosomal Database Project were found (>97% identical, >300 bp) are
indicated by colored boxes. The color code indicates the number of
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sequences found at each location. The map is a modified version of a
freely available map from http://www.naturalearthdata.com. Figure S4.
Phylogenetic tree of the two xanthorhodopsins found in both
"Spiribacter” with all the xanthorhodopsins available. Taxonomy and origin
of isolation of each strain are also shown. Figure S5. Xanthorhodopsin
amino acid sequence alignment. Multiple alignments of all the predicted
aminoacid sequences of the two xanthorhodopsin subgroups. Rectangles
over the sequence indicate predicted transmembrane regions. Proton
acceptor and donor and the conserved lysine linked to the cofactor
retinal are marked by a rectangle with a yellow line. Yellow rectangles
with red line indicated the residues that interact with the keto-carotenoid
identified by [69]. Maintaining nomenclature, the letters ¢, g, k and r, indi-
cate contact with the chain, glucoside, keto group and ring of the carot-
enoid, respectively.
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