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Swimming-induced exercise promotes hypertrophy
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and activation of myogenic and angiogenic
transcriptional programs in adult zebrafish
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Abstract

Background: The adult skeletal muscle is a plastic tissue with a remarkable ability to adapt to different levels of
activity by altering its excitability, its contractile and metabolic phenotype and its mass. We previously reported on
the potential of adult zebrafish as a tractable experimental model for exercise physiology, established its optimal
swimming speed and showed that swimming-induced contractile activity potentiated somatic growth. Given that
the underlying exercise-induced transcriptional mechanisms regulating muscle mass in vertebrates are not fully
understood, here we investigated the cellular and molecular adaptive mechanisms taking place in fast skeletal
muscle of adult zebrafish in response to swimming.

Results: Fish were trained at low swimming speed (0.1 m/s; non-exercised) or at their optimal swimming speed
(0.4 m/s; exercised). A significant increase in fibre cross-sectional area (1.290 + 88 vs. 1.665 + 106 pmz) and
vascularization (298 + 23 vs. 458 + 38 capillaries/mmz) was found in exercised over non-exercised fish. Gene
expression profiling by microarray analysis evidenced the activation of a series of complex transcriptional
networks of extracellular and intracellular signaling molecules and pathways involved in the regulation of
muscle mass (e.g. IGF-1/PI3K/mTOR, BMP, MSTN), myogenesis and satellite cell activation (e.g. PAX3, FGF,
Notch, Wnt, MEF2, Hh, EphrinB2) and angiogenesis (e.g. VEGF, HIF, Notch, EphrinB2, KLF2), some of which had
not been previously associated with exercise-induced contractile activity.

Conclusions: The results from the present study show that exercise-induced contractile activity in adult zebrafish
promotes a coordinated adaptive response in fast muscle that leads to increased muscle mass by hypertrophy and
increased vascularization by angiogenesis. We propose that these phenotypic adaptations are the result of extensive
transcriptional changes induced by exercise. Analysis of the transcriptional networks that are activated in response to
exercise in the adult zebrafish fast muscle resulted in the identification of key signaling pathways and factors for the
regulation of skeletal muscle mass, myogenesis and angiogenesis that have been remarkably conserved during
evolution from fish to mammals. These results further support the validity of the adult zebrafish as an exercise
model to decipher the complex molecular and cellular mechanisms governing skeletal muscle mass and function
in vertebrates.

Keywords: Exercise, Swimming, Growth, Muscle, Transcriptome, Zebrafish

* Correspondence: jplanas@ub.edu

Equal contributors

'Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat
de Barcelona, Barcelona, Spain

2Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona,
Spain

Full list of author information is available at the end of the article

- © 2014 Palstra et al, licensee BioMed Central. This is an Open Access article distributed under the terms of the Creative
( B.oMed Central Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain
Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article,
unless otherwise stated.


mailto:jplanas@ub.edu
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/

Palstra et al. BMC Genomics 2014, 15:1136
http://www.biomedcentral.com/1471-2164/15/1136

Background

In all animals, skeletal muscle has evolved to play a fun-
damental role in locomotion and energy metabolism.
The adult skeletal muscle is a post-mitotic tissue with
unique plasticity, that is, it has an extraordinary ability
to adjust to changes in its physiological environment by
altering its excitability, its contractile and metabolic
phenotype and its mass. Importantly, skeletal muscle
usage is able to exert profound changes in its pheno-
type. The induction of contractile activity by exercise
represents a physiological stimulus that elicits important
adaptive responses in skeletal muscle either directly by
mechanical strain or indirectly through its ability to in-
crease intracellular calcium levels in response to neural
stimulation [1-3]. These adaptive responses, that ultim-
ately serve to increase fitness, are governed by genetic
programs involving complex transcriptional responses
that depend on the activity of transcription factors and
chromatin modifying enzymes [4,5] and are not fully
understood, even in mammals. Due to the known benefi-
cial effects of exercise-induced skeletal muscle activity for
preventing cardiovascular (e.g. coronary heart disease,
hypertension), metabolic (e.g. type 2 diabetes mellitus,
obesity) and age-related (e.g. sarcopenia) conditions
[6,7] in humans, knowledge on the pathways that partici-
pate in the adaptation of skeletal muscle to exercise-
induced activity is of crucial importance for understanding
the basic mechanisms involved in this process. This may
also be important for assessing possible modulatory effects
of exercise on muscle regeneration and for identifying
potential pharmaceutical targets useful for the treatment
of muscle disorders.

After two decades as a research model, the zebrafish
(Danio rerio) has made important contributions to our
current knowledge on skeletal muscle developmental
biology [8,9] and the pathological basis of neuromuscular
disorders, such as muscular dystrophy and myopathies
[10,11]. This has been possible because the zebrafish skel-
etal muscle has many molecular features (i.e. a conserved
transcriptional network regulating myogenesis), as well
as histological and ultrastructural features, that are
very similar to those in the mammalian muscle [12,13].
Furthermore, the zebrafish has anatomically separated
fast- and slow-twitch fibres as a result of distinct onto-
genic programs making this an interesting model to inves-
tigate fibre type specification [9] and fibre growth [14,15].
Therefore, the zebrafish, due its tractability and the ease
of genetic manipulation coupled with the vast genetic and
genomic tools available, has tremendous potential to con-
tribute importantly to our knowledge on skeletal muscle
function and, specifically, on the mechanisms responsible
for the regulation of adult muscle mass in vertebrates, in-
cluding humans. However, most of the current knowledge
on the regulation of skeletal muscle mass in zebrafish is
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derived from studies on the effects of muscle inactivity or
injury and on genetic models of human muscle disorders
[10,14,16] and not based on models of increased skeletal
muscle activity, such as induced by exercise. In order to
begin to elucidate the effects of exercise-induced contract-
ile activity on skeletal muscle physiology in adult zebrafish
and to contribute to its establishment as an exercise
model species in fish and biomedical research, we recently
studied the swimming economy in adult zebrafish and
established its optimal swimming speed (i.e. the swimming
speed at which the cost of transport is lowest and the en-
ergetic efficiency is highest) [17]. By applying these aerobic
exercise conditions in a swimming training protocol for
20 days, a significant exercise-induced growth was dem-
onstrated for the first time in adult zebrafish that was
associated with the regulated expression of growth marker
genes in fast muscle [17]. Based on the results from that
study, we put forward the notion that zebrafish can be
used as an exercise model for studying muscle growth.
Therefore, the present study aimed to describe the cellular
and molecular adaptive response of fast skeletal muscle to
swimming-induced exercise in adult zebrafish and further
validate the zebrafish as a useful animal model for investi-
gating the effects of exercise on skeletal muscle physiology
in vertebrates.

In the present study, we report on the effects of exercise
training on the cellular and molecular characteristics of
fast muscle in adult zebrafish. Our results indicate that
exercise-induced contractile activity in adult zebrafish
promotes a coordinated adaptive response in fast muscle
that leads to increased muscle mass by hypertrophy and
increased vascularization by angiogenesis. These pheno-
typic changes are likely the result of the transcriptional ac-
tivation of a series of complex networks of extracellular
and intracellular signaling molecules and pathways in-
volved in the regulation of muscle mass, myogenesis and
angiogenesis in adult zebrafish, some not previously asso-
ciated with exercise-induced contractile activity. More-
over, the present study reinforces the notion that zebrafish
is a valid and promising animal model to promote our un-
derstanding of the complex mechanisms responsible for
the regulation of adult skeletal muscle mass by exercise.

Results

Exercise training promotes changes in fibre morphometry
and capillarization in fast muscle of adult zebrafish
Morphometrical assessment of fast muscle in exercised
and non-exercised adult zebrafish was performed to
evaluate the effects of exercise training on skeletal
muscle cellular characteristics (Figure 1A-D). Exercised
zebrafish showed a significant (P < 0.05) increase (29%)
in fibre cross-sectional area (FCSA) (Figure 1E). Fur-
thermore, exercised zebrafish also showed a significant
(P <0.05) increase in fibre perimeter (12%) (Figure 1F)
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Figure 1 Morphometrical fibre parameters in fast muscle of exercised and non-exercised adult zebrafish. A: Image of the swim tunnels
used for exercise training. Front tunnel: exercised zebrafish; back tunnel: non-exercised zebrafish. B-D: Images of zebrafish cross-sectional white
muscle. Images correspond to representative serial transverse secions stained (B) for succinate dehydrogenase for the identification of fast,
intermediate (pink) and slow muscle fibres; (C and D) for ATPase for capillary demonstration (arrows) and FCSA and FPER measures (white drawing)
from a non-exercised (C) and an exercised (D) adult zebrafish. Bar represents 50 um. Morphometric fibre parameters measured in non-exercised and
exercised zebrafish were: FCSA, fibre cross-sectional area (umz) (E); FPER, fibre perimeter (um) (F); FD, fibre density (fibres/mm?) (G); SF, shape factor

(H). Statistical significance values between non-exercised and exercised zebrafish: *P < 0.05. Values are mean + SEM from a sample size of n =8 for each
condition. I-J: Fibre cross-sectional area histograms from fast muscle of exercised (I) and non-exercised (J) adult zebrafish. In K, the two overlapped
curves are shown. Muscle fibre areas were grouped in intervals of 200 um? and the data correspond to mean + SEM frequency of six animals. Curves

represent a log-normal regression of four parameters. Regression parameters are shown in Additional file 1. See Methods for details.

and a non-significant decrease in fibre density (Figure 1G)
in fast muscle without changes in the shape of the fibres,
as indicated by the absence of differences in fibre circular-
ity (shape factor) between exercised and non-exercised
zebrafish (Figure 1H). Fast muscle fibre frequency dis-
tribution analyses in non-exercised and exercised zeb-
rafish evidenced that log-normal regression curves
were centered around higher FCSA values in exercised
(approximately 1.400 um?) (Figure 1I) over non-exercised
zebrafish (approximately 1.100 pmz) (Figure 1J), as also
deduced by the significant (P < 0.0001) shift to the right of
the regression curve of exercised zebrafish relative to that

of non-exercised zebrafish (Figure 1K; Additional file 1:
Table S1). When the mean percentages of muscle fibres
were grouped into three major intervals of FCSA and
quantified, exercised zebrafish presented significantly lower
percentages of small fibres (FCSA < 1.200 um?®) but signifi-
cantly higher percentages of medium (with sizes between
1.200 pum? and 2.400 pm?) and large fibres (FCSA > 2.400
um?) than non-exercised zebrafish (Additional file 1:
Table S1). Therefore, these observations clearly indicate
that fibre size was significantly increased in exercised zeb-
rafish and, consequently, that exercise training caused
hypertrophy of fast muscle fibres in adult zebrafish.
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Exercise training also induced vascularization of the
fast muscle in zebrafish, as assessed by histochemical
quantification of capillaries (Figure 1C,D). The total
capillary density increased by 54% (P <0.01) in fast
muscle of exercised relative to non-exercised zebrafish
(Figure 2A). Importantly, exercise training caused a
significant (P < 0.001) increase in the number of capil-
laries in contact with each fibre (98%) (Figure 2B) as
well as a significantly greater number of capillaries per
fibre area (52%) (Figure 2C) and per fibre perimeter
(76%) (Figure 2D) in fast muscle of adult zebrafish.
The capillary-to-fibre ratio (CD/FD) increased by 74%
(P <0.001) in exercised zebrafish (Figure 2E). However,
maximal diffusion distance between the capillary and
the centre of the fibre was modestly but significantly
(P <0.05) increased (15%) in the fast muscle of exercised
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zebrafish (Figure 2F), likely as a result of a greater fibre
size.

Exercise training induces profound transcriptomic
changes in fast muscle of adult zebrafish

In order to gain insight into the molecular basis of the in-
crease in fast muscle fibre hypertrophy and vascularization
in exercised adult zebrafish, we evaluated the transcrip-
tomic response of fast muscle to swimming-induced exer-
cise by microarray analysis. Gene expression profiling of
the zebrafish fast muscle evidenced important transcrip-
tomic changes, with 1.625 genes down-regulated and
2.851 genes up-regulated in response to exercise training.
Initial classification of differentially expressed genes by
Gene Ontology categories using DAVID revealed a signifi-
cant (p < 0.05) enrichment in functional categories related
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Figure 2 Morphometrical capillarity parameters in fast muscle of exercised and non-exercised adult zebrafish. Parameters measured
were: CD, capillary density (capillaries/mmz) (A); NCF, number of capillaries in contact with each fibre (B); CCA, relationship between NCF and the
FCSA (NCF - 10°/FCSA) (C); CCP, relationship between NCF and the FPER (NCF - 10%/FPER) (D); C/F, capillary-to-fibre ratio (CD/FD) (E) and MDD,
maximal diffusion distance between the capillary and the centre of the fibre (F). Statistical significance values between non-exercised and
exercised zebrafish: *P < 0.05, **P < 0.01, ***P < 0.001. Values are mean + SEM from a sample size of n =8 for each condition.
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to muscle development and differentiation, sarcomeric  of genes involved in a wide variety of processes that are
contractile elements, cell cycle and apoptosis, protein, responsible for the functional contractile activation of
carbohydrate and lipid metabolism, oxidative phos-  skeletal muscle fibres: activation of neuromuscular com-
phorylation and blood vessel development (Table 1). munication (e.g. ache, chrm2, scn4b), translation of
Importantly, exercise training modulated the expression  nerve-evoked electrical activity into an intracellular Ca®*

Table 1 Functional annotation analysis based on GO terms in zebrafish fast muscle in response to swimming (DAVID)

GO Term Count P-value
GO:0014706 Striated muscle tissue development 41 0,0014644
GO:0051146 Striated muscle cell differentiation 31 0,0042799
GO:0030239 Myofibril assembly 10 0,0227268
GO:0031032 Actomyosin structure organization 14 0,0028624
GO:0032956 Regulation of actin cytoskeleton organization 28 0,0318891
GO:0040007 Growth 65 1,72E-05
G0:0045926 Negative regulation of growth 36 0,0074826
GO:0000278 Mitotic cell cycle 124 8,01E-08
GO:0051726 Regulation of cell cycle 92 0,0053137
GO:0006915 Apoptosis 161 0,0014411
GO:0043065 Positive regulation of apoptosis 110 0,0295542
GO:0006457 Protein folding 60 1,67E-04
GO:0030162 Regulation of proteolysis 19 0,0245616
GO:0006468 Protein amino acid phosphorylation 173 0,0038954
GO:0006511 Ubiquitin-dependent protein catabolic process 84 2,55E-06
GO:0006979 Response to oxidative stress 46 0,0414755
GO:0080135 Regulation of cellular response to stress 31 0,0418028
GO:0045454 Cell redox homeostasis 21 0,0378637
G0:0015980 Energy derivation by oxidation of organic compounds 51 1,68E-04
GO0:0022900 Electron transport chain 41 567E-04
GO:0006754 ATP biosynthetic process 32 0,0025614
GO:0006119 Oxidative phosphorylation 44 5/45E-07
GO:0044262 Cellular carbohydrate metabolic process 111 6,80E-04
GO:0006096 Glycolysis 21 9,35E-04
GO:0044255 Cellular lipid metabolic process 157 4,84E-06
GO:0006635 Fatty acid beta-oxidation 15 7,99E-04
GO:0006631 Fatty acid metabolic process 75 2,13E-07
GO:0006633 Fatty acid biosynthetic process 30 0,0013958
GO:0006520 Cellular amino acid metabolic process 71 5,16E-04
GO:0042180 Cellular ketone metabolic process 190 1,95E-11
GO:0001568 Blood vessel development 78 1,68E-04
GO:0048514 Blood vessel morphogenesis 68 3,13E-04
GO:0001570 Vasculogenesis 16 0,0194009
GO:0045449 Regulation of transcription 593 0,0425425
G0:0043408 Regulation of MAPKKK cascade 35 0,011466
GO:0051101 Regulation of DNA binding 42 0,0010788
GO:0007243 Protein kinase cascade 95 0,0387284
GO:0030509 BMP signaling pathway 17 0,0170619
GO:0016055 Wnt receptor signaling pathway 53 2,84E-06
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signal (i.e. excitation-contraction coupling) (e.g. atp2al,
calml, casql, pvalb, ppp3ca, ryrl), sarcomere contraction
(e.g. actn4, actb, actcl, capzb, mybph, myhll, myl2, myl9,
mylpf, tpm1, tnni2, tnnt3, ttn), cytoskeletal transmission of
sarcomeric contractile force to the sarcolemma (e.g. ank2,
dagl, des, dmd, dinbpl, flnc, itga2b, itgh4, Imna, myozl,
myoz2, sntbl, sptbn, vim) and force transmission and
muscle structure maintenance by the extracellular matrix
(e.g. collal, col8a2, coll6al, lamal, lamc3, loxI2, loxl3,
sdcbp, tnc) (Table 2). Furthermore, exercise training also
altered the expression of fast muscle genes involved in the
control of muscle growth and development, such as
growth factors (e.g. egfi; fof13, fefl18, fgf20, fafrl, fafr2, fst,
igflr, igfbpl, igfbp3, igfbp7, igf2, mstn, ngf, tgfbl, tgfh2),
extracellular signaling molecules (e.g. bmpl, bmp4,
bmprla, bmprlb, ihh, nog, shh, wnt7a, wntlOa), com-
ponents of intracellular signaling pathways (e.g. esrra,
esrrb, esrrg, foxal, foxo3, irsl, irs2, mapkl, mapk8,
mapkl3, mapkl4pik3c2b, smad6) and transcriptional
regulators of myogenesis (e.g. hdac4, hadc6, idl, id3,
mef2a, mef2ca, mef2d, pax3) (Table 2).

Consistent with the increased vascularization of fast
muscle by exercise training, the expression of a number
of genes involved in angiogenesis was altered in fast
muscle, including angiopoietins (e.g. angpt2, angptl2,
angptl3), members of the ephrin family and receptors
(e.g. efna2, efna3, efub2, efub3, epha4, epha7, ephbd),
members of the notch family (e.g. dlli, jagl, jag2,
notchl, notch2), hypoxia-inducible factors (e.g. hiflan,
hif3a), gatal and nrpl (Table 3). Among genes involved
in metabolism with altered mRNA expression levels in
fast muscle of exercised zebrafish were genes responsible
for the metabolic provision of ATP in skeletal muscle such
as pdhal, members of the ATP-phosphagen system (e.g.
akl, ak2, a3, ckm, ckmt2), and multiple components of
the mitochondrial electron transport chain (e.g. ndufa,
cox, atp5) and the tricarboxylic acid (TCA) cycle (e.g. fh,
idh3b, idh3g, mdhl, mdh2, ogdh, sdha) (Table 3). Other
differentially expressed genes included genes known to
participate in energy metabolism (e.g. adipor2, mb,
prkaal, prkabl, prkagl, ppara, ppard, ucp2 and ucp3).
Moreover, genes involved in the metabolic utilization
of energy substrates as fuel, namely lipids (e.g. cpt2
captla, fabp3, Ipl, mcat, slc27a2) and carbohydrates (e.g.
aldoa, aldoc, enol, gapdh, gépc, gpi, hk2, pfkm, pgkl,
pkm), also showed altered expression in fast muscle of
exercised zebrafish. Importantly, exercise training altered
the expression of genes involved in protein synthesis and
degradation in fast muscle (e.g. eifde, eif4ebpl, fbxo32,
foxo3, pdkl, pdk2, rps6kal, trim63). Finally, exercise train-
ing caused alterations in the expression of immune-
related genes (e.g. illlra, il12b, ill13ra2, il17d, il17dr,
il20, il20ra, irf3, mif, mstl and traf6) in fast muscle of
adult zebrafish (Table 3).
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We further analyzed the transcriptomic effects of exer-
cise training on the fast muscle of adult zebrafish by
mining the Ingenuity Knowledge Base for biological
functions, pathways and networks. Among the biological
functions that showed highly significant (P <0.00001)
changes in fast muscle in response to exercise were
muscle development, myogenesis, angiogenesis, cell
cycle progression, mitosis, cytoskeleton organization,
lipid oxidation, lipid synthesis and organismal growth
(Additional file 2: Table S2), with 143, 59, 230, 408,
172, 424, 81, 240 and 201 differentially expressed genes,
respectively. The lists of differentialy expressed genes in-
volved in muscle development, myogenesis, angiogenesis
and cell proliferation are shown in Additional files 3, 4, 5
and 6: Tables S3-S6. Canonical pathway analysis identified
22 pathways that were significantly (P <0.05) over-
represented in fast muscle of adult exercised zebrafish
(Table 4). Regulated canonical signaling pathways as-
sociated with skeletal muscle contractile activity in-
cluded the calcium, integrin, actin cytoskeleton, FGE,
wnt/B-catenin and AMPK signaling pathways. More-
over, the IGF-1, insulin receptor, PI3K/AKT and mTOR
signaling pathways were also significantly regulated in fast
muscle, in accordance with the observed hypertrophy in
fast muscle of exercised zebrafish. Interestingly, the ca-
nonical TGFp signaling pathway was also significantly
altered by exercise in fast muscle. The metabolic effects of
exercise training in the zebrafish fast muscle were exem-
plified by the significant regulation of the protein ubiquiti-
nation pathway, glycolysis and fatty acid p-oxidation.
Furthermore, exercise training also caused a significant
over-representation of signaling pathways involved in
angiogenesis (e.g. ephrin B, VEGEF, hypoxia, PDGF, HIFla,
Notch and angiopoietin signaling pathways) in the zebra-
fish fast muscle (Table 4). The genes that are differentially
regulated by exercise training that correspond to each of
the over-represented canonical pathways are listed in
Additional file 7: Table S7.

Analysis of gene networks corresponding to muscle
development and angiogenesis by IPA allowed us to estab-
lish connectivity maps for these two processes (Figures 3
and 4). The connectivity map of regulated genes involved
in muscle development illustrates nodes around transcrip-
tion factors and nuclear genes such as ccna2, crebbp,
ep300, hdacl, kfl2, mef2c, mef2d, pax3, rela, smad?7, srf
and £p63, that are integrated with key sarcomeric and
cytoskeletal elements and key signaling molecules and
transducers of extracellular signals involved in the regula-
tion of this process (e.g. bmp4, dil1, fst, igf2, ihh, jagl,
mstn, shh, tgfbl, wntl, wnt2) (Figure 3). Regulated genes
involved in angiogenesis show a connectivity map with
nodes around the nuclear factors ctnnbl, crebbp, foxcl,
kif2, runx2, tfap2a, tp53 and sirtl that are clearly inte-
grated with extracellular signals (e.g. angpt2, bmp4, ednl,
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Table 2 Selected differentially expressed genes in fast muscle of exercised zebrafish that participate in the contractile
activation of skeletal muscle fibers

Gene name gene description FC Gene name gene description FC
Muscle contraction Muscle growth and development

capn8 Calpain 8 4.11 fgf20 Fibroblast growth factor 20 8.94
actn4 Actinin, alpha 4 3.99 hdacé Histone deacetylase 6 6.42
myhT1 Myosin, heavy chain 11, smooth muscle 3.63 fgf18 Fibroblast growth factor 18 6.30
camk2n2  Ca/calmodulin-dependent protein kinase Il inhibitor 2 3.38 wnt10a Wingless-type MMTV integration site, 10A 6.25
pvalb Parvalbumin 3.24 pax3 Paired box 3 6.21
tnni2 Troponin | type 2 (skeletal, fast) 3.12 tgfb2 Transforming growth factor, beta 2 5.35
capn3 Calpain 3, (p94) 3.08 nog Noggin 4.90
nfatc4 Nuclear factor of activated T-cells, calcineurin-dep. 4 3.08 esrra Estrogen-related receptor alpha 4.73
capn2 Calpain 2, (m/Il) large subunit 2,92 wnt7a Wingless-type MMTV integration site, 7A 4.60
tmod4 Tropomodulin 4 (muscle) 2.79 mstn Myostatin 4.41
nfatcl Nuclear factor of activated T-cells, , calcineurin-dep. 1 2.76 foxal Forkhead box A1 4.22
capzb Capping protein (actin filament) muscle Z-line, beta 2.75 fgfr2 Fibroblast growth factor receptor 2 4.05
casql Calsequestrin 1 (fast-twitch, skeletal muscle) 2.68 shh Sonic hedgehog 3.78
myl2 Myosin, light chain 2, regulatory, cardiac, slow 2.64 fzd2 Frizzled family receptor 2 3.08
ppp3cc Protein phosphatase 3, catalytic subunit, gamma 2,61 pik3c2b Phosphatidylinositol-4-p- 3-kinase c2b 3.06
capns Calpain 5 2.60 fgf13 Fibroblast growth factor 13 3.01
ttn Titin 2.58 mapk1 Mitogen-activated protein kinase 1 3.00
ppp3ca Protein phosphatase 3, catalytic subunit, alpha isozyme 2.52 fzd10 Frizzled family receptor 10 2,94
mylpf Myosin light chain, phosphorylatable, fast skel. muscle 2.26 ihh Indian hedgehog 291
mybph Myosin binding protein H 2.17 1zd8 Frizzled family receptor 8 2.87
capnl0 Calpain 10 2.15 esrrb Estrogen-related receptor beta 2.61
cacnals Calcium channel, voltage-dependent, L type, alpha 15 2.11 bmpria Bone morphogenetic protein receptor, IA 2.58
camk2a Calcium/calmodulin-dependent protein kinase Il alpha 1.98 ngf Nerve growth factor (beta polypeptide) 2.55
camk2d Calcium/calmodulin-dependent protein kinase Il delta 1.97 igfir Insulin-like growth factor 1 receptor 2.53
nfatc3 Nuclear factor of activated T-cells, calcineurin-dep. 3 1.92 bmpl Bone morphogenetic protein 1 2.46
acta? Actin, alpha 2, smooth muscle, aorta 1.92 avli Dishevelled, dsh homolog 1 (Drosophila) 243
mylk Myosin light chain kinase 1.87 smad?2 SMAD family member 2 2.40
tom4 Tropomyosin 4 1.78 bmp4 Bone morphogenetic protein 4 2.38
myl9 Myosin, light chain 9, regulatory 1.77 igfbp7 Insulin-like growth factor binding protein 7 2.36
ryrl Ryanodine receptor 1 (skeletal) 1.77 esrrg Estrogen-related receptor gamma 2.36
tomi Tropomyosin 1 (alpha) 1.71 bmprib Bone morphogenetic protein receptor, IB 2.27
atp2al ATPase, Ca transporting, cardiac muscle, fast twitch 1 1.70 erbb2 v-erb-b2 erythroblastic leukemia. 2 2.27
actcl Actin, alpha, cardiac muscle 1 1.68 mapki3 Mitogen-activated protein kinase 13 2.23
cacngl Calcium channel, voltage-dependent, gamma subunit 1 1.61 fst Follistatin 217
myl12b Myosin, light chain 12B, regulatory -1.59 mapk8 Mitogen-activated protein kinase 8 2.12
s100a4 S100 calcium binding protein A4 -1.63 smadé SMAD family member 6 2.06
calm1 Calmodulin 1 (phosphorylase kinase, delta) -2.04  fgfr Fibroblast growth factor receptor 1 1.96
actg? Actin, gamma 2, smooth muscle, enteric -3.87 irs2 Insulin receptor substrate 2 1.91
tnnt3 Troponin T type 3 (skeletal, fast) -7.01 runx2 Runt-related transcription factor 2 1.90
Cytoskeleton igfop1 Insulin-like growth factor binding protein 1 1,89
ank2 Ankyrin 2, neuronal 11.01 irs1 Insulin receptor substrate 1 1.78
plec Plectin 3.31 acvr2b Activin A receptor, type IIB 1.74
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Table 2 Selected differentially expressed genes in fast muscle of exercised zebrafish that participate in the contractile
activation of skeletal muscle fibers (Continued)

myozl Myozenin 1

myoz2 Myozenin 2

dagl Dystroglycan 1 (dystrophin-associated glycoprotein 1)
itgb4 Integrin, beta 4

itga2b Integrin, alpha 2b

dmd Dystrophin

filip1 Filamin A interacting protein 1

sntb] Syntrophin, beta 1 (dystrophin-associated protein A1)
vim Vimentin

Imna Lamin A/C

dtnbp1 Dystrobrevin binding protein 1

finc Filamin C, gamma

Neuromuscular junction

ache Acetylcholinesterase

vampl Vesicle-associated membrane prot. 1 (synaptobrevin1)
chrm2 Cholinergic receptor, muscarinic 2

snap25 Synaptosomal-associated protein, 25kDa

scn4b Sodium channel, voltage-gated, type IV, beta subunit
syn2 Synapsin |l

sytl Synaptotagmin |

rims2 Regulating synaptic membrane exocytosis 2

scnm1 Sodium channel modifier 1

syncrip Synaptotagmin binding, cytoplasmic RNA interact. pro.

241 tgfbl Transforming growth factor, beta 1 1.71
2.28 mef2d Myocyte enhancer factor 2D 1.71
2.26 hdac4 Histone deacetylase 4 1.71
1.99 igfbp3 Insulin-like growth factor binding protein 3 1.66
1.95 mef2a Myocyte enhancer factor 2A 1.66
1.94 igf2 Insulin-like growth factor 2 1.61
1.88 pten Phosphatase and tensin homolog -1.54
1.78 mef2c Myocyte enhancer factor 2C -1.59
1.61 egfr Epidermal growth factor receptor -2.13
-1.51 id3 Inhibitor of DNA binding 3 -2.39
-1.76 srf Serum response factor —-2.68
-1.88 mapk14 Mitogen-activated protein kinase 14 -2.78
Extracelular matrix
8.86 col8a2 Collagen, type VIII, alpha 2 12.06
3.78 lamc3 Laminin, gamma 3 10.06
3.65 colléal Collagen, type XV, alpha 1 6.17
3.08 colla2 Collagen, type |, alpha 2 3.12
3.01 bgn Biglycan 2,98
2.70 loxI2 Lysyl oxidase-like 2 2.92
2.22 mmp14 Matrix metallopeptidase 14 2.69
1.93 tnc Tenascin C 253
1.65 mmp10 Matrix metallopeptidase 10 (stromelysin 2) 2.06
-1.54 sdcbp Syndecan binding protein (syntenin) -2.26

Data are shown as fold change (FC).
Functional categories are indicated in bold.

fef13, igf2, jagl, pdgfa, vegfc) transducing their effects pri-
marily through the efub2, erbb2, fgf, igfl and notch signal-
ing pathways via molecules such as irsl, mapkl, mapk8,
nos2 and pik3cg among others (Figure 4).

The results of microarray analysis were validated by
qPCR for 7 differentially expressed genes in fast muscle:
4 down-regulated (fabp7, tubalb, psme3, psma5) and 3
up-regulated (capnsl, fgfrll, foxal) genes. The genes
examined showed a similar pattern of change with the
two techniques used, except for capnsl (Additional file 8:
Table S8).

Discussion

Exercise training induces growth of fast muscle fibers in
adult zebrafish

The present study describes the cellular and molecular
adaptive mechanisms that are responsible for the plasticity
of fast skeletal muscle to exercise-induced contractile ac-
tivity. Here, we have adopted swimming adult zebrafish as
a muscle activity model and have shown, for the first time
in adult zebrafish, that exercise training under sustained,
aerobic conditions causes hypertrophy of fast muscle

fibres. We hypothesize that this may explain, at least in
part, the stimulation of muscle growth by swimming in
adult zebrafish that we previously reported using the same
experimental conditions [17]. Therefore, as in mammals
[4,18] and in other fish species [19], exercise promotes
growth in adult zebrafish by increasing muscle mass as a
result of increased fibre hypertrophy.

Our gene expression analysis of fast muscle of exercised
adult zebrafish shows that the increase in fibre hyper-
trophy is associated with an important regulation of the
fast muscle transcriptome. Here, we show for the first
time in zebrafish that exercise-stimulated contractile activ-
ity in adult fast muscle induced significant and parallel
changes in the expression of canonical pathways import-
ant for the regulation of protein turnover, namely the ana-
bolic IGEF-1/PI3K/Akt/mTOR signaling pathways that
promote protein synthesis and the catabolic ubiquitination
and atrophy pathways that are responsible for protein
degradation [18]. The increase in the expression of
genes involved in protein synthesis and in its regulation
(e.g. igfrl, irsl, pi3k, pdkl, pdk2, rps6kal) and the decrease
in the expression of the translation inhibitor eif4ebpl
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Table 3 Selected differentially expressed genes in fast muscle of exercised adult zebrafish that participate in
angiogenesis, immune-related processess and metabolism

Gene name gene description FC Gene name gene description FC
Angiogenesis Energy metabolism
k2 Kruppel-like factor 2 (lung) 8.52 ¢ptia  Carnitine palmitoyltransferase 1A (liver) 5.23
robo?2 Roundabout, axon guidance receptor, homolog 430 pfkm Phosphofructokinase, muscle 3.84
2 (Drosophila)
angpt2  Angiopoietin 2 3.90 prkaag Protein kinase, AMP-activated, alpha 1 cat. 3.66
angptl3  Angiopoietin-like 3 3.47 elovi4  ELOVL fatty acid elongase 4 3.65
efna3 Ephrin-A3 3.45 prkagl  Protein kinase, AMP-activated, gamma 1 3.50
catalytic subunit
gatal GATA binding protein 1 (globin transcription 3.00 acadl  Acyl-CoA dehydrogenase, long chain 3.20
factor 1)
epha4 EPH receptor A4 296 ppard  Peroxisome proliferator-activated receptor d 3.19
nrpl Neuropilin 1 2.89 aldoa  Aldolase A, fructose-bisphosphate 3.18
mmpi14  Matrix metallopeptidase 14 (membrane-inserted) 2.69 mcat Malonyl CoA:ACP acyltransferase (mitochondrial) 3.14
nosl Nitric oxide synthase 1 (neuronal) 2.65 slc27a2 Solute carrier family 27 (fatty acid transporter), member 2 3.10
notchl  Notch 1 2.60 prkabl  Protein kinase, AMP-activated, beta 1 3.06
non-catalytic subunit
sema3f  Sema domain, immunoglobulin domain (Ig), short  2.57 mb Myoglobin 295
basic domain, secreted, (semaphorin) 3F
slit3 Slit homolog 3 (Drosophila) 2.53 cox/c Cytochrome c oxidase subunit Viic 2.85
amot Angiomotin 234 ppara  Peroxisome proliferator-activated receptor alpha 2.77
hey?2 Hairy/enhancer-of-split related with YRPW motif 2 2.20 tfo2m  Transcription factor B2, mitochondrial 242
tp63 Tumor protein p63 2.16 fbpl Fructose-1,6-bisphosphatase 1 2.39
mmp10  Matrix metallopeptidase 10 (stromelysin 2) 2.06 g6pc Glucose-6-phosphatase, catalytic subunit 2.38
siprl Sphingosine-1-phosphate receptor 1 2.03 pdhal  Pyruvate dehydrogenase (lipoamide) alpha 1 2.24
ephb4 EPH receptor B4 1.97 ckm Creatine kinase, muscle 2.24
nr2f2 Nuclear receptor subfamily 2, group F, member 2 1.95 fh Fumarate hydratase 2.20
efnb3 Ephrin-B3 1.94 ogdh Oxoglutarate hydrogenase (lipoamide) 2.19
hif3a Hypoxia inducible factor 3, alpha subunit 1.92 gapdh  Glyceraldehyde-3-phosphate dehydrogenase 2.19
epha’ EPH receptor A7 1.91 adhs Alcohol dehydrogenase 5 (class IIl) 2.18
angptl2  Angiopoietin-like 2 1.90 cox5a  Cytochrome c oxidase subunit Va 2.12
nos2 Nitric oxide synthase 2, inducible 1.85 pgkl Phosphoglycerate kinase 1 2.02
cdc42ep2 (CDCA42 effector protein (Rho GTPase binding) 2 1.83 fads6 Fatty acid desaturase 6 1.99
efna2 Ephrin-A2 1.83 mdh2 Malate dehydrogenase 2, NAD (mitochondrial) 1.97
nr2f1 Nuclear receptor subfamily 2, group F, member 1 1.83 cox6a2 Cytochrome c oxidase subunit Via polypeptide 2 1.97
Jjag1 Jagged 1 1.80 ndufvl  NADH dehydrogenase (ubiquinone) flavoprotein 1.94
1,51kDa
slit2 Slit homolog 2 (Drosophila) 1.79 fabp3  Fatty acid binding protein 3, muscle and heart 1.94
heyl1 Hairy/enhancer-of-split related with YRPW motif 1 1.78  slcad Solute carrier family 2 (facilitated glucose 1.92
transporter), member 2
hiflan Hypoxia inducible factor 1, alpha subunit inhibitor  1.73 atp5h ~ ATP synthase, H+ transporting, mitochondrial Fo complex, 1.91
subunit d
foxcl Forkhead box C1 1.68 ucp3 Uncoupling protein 3 (mitochondrial ) 1.88
efnb2 Ephrin-B2 1.63 cpt2 Carnitine palmitoyltransferase 2 1.86
jag2 Jagged 2 1.54 ndufbl  NADH dehydrogenase (ubiquinone) 1 beta 1.82
subcomplex, 1, 7kDa
vegfc Vascular endothelial growth factor C 1.36 ckmt2  Creatine kinase, mitochondrial 2 (sarcomeric) 1.82
dilt Delta-like 1 (Drosophila) -1.25 mdhl Malate dehydrogenase 1, NAD (soluble) 1.77
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Table 3 Selected differentially expressed genes in fast muscle of exercised adult zebrafish that participate in
angiogenesis, immune-related processess and metabolism (Continued)

racl Ras-related C3 botulinum toxin substrate 1 -1.57 sdha Succinate dehydrogenase complex, subunit A, 1.74
rock2 Rho-associated, coiled-coil containing protein -1.61 mt-atp6 ATP synthase FO subunit 6 1.70
kinase 2
notch2  Notch 2 -1.89 acacb  Acetyl-CoA carboxylase beta 1.70
cdc42 Cell division cycle 42 -1.97 ucp2 Uncoupling protein 2 (mitochondrial) 1.68
aggfi Angiogenic factor with G patch and FHA -2.10 atp50  ATP synthase, H+ transporting, mitochondrial F1 1.68
domains 1 complex, O subunit
Immune-related factors enol Enolase 1, (alpha) 1,68
trafé TNF receptor-associated factor 6, E3 ubiquitin 10.78 cox4il  Cytochrome c oxidase subunit IV isoform 1 1.68
protein ligase
il7D Interleukin 17D 6.51 cox/a2l Cytochrome c oxidase subunit Vlla polypeptide 1.67
2 like
ptgs] Prostaglandin-endoperoxide synthase 1 5.81 atp5f1  ATP synthase, H+ transporting, mitochondrial 1.65
Fo complex, subunit B1
irak1bpl  Interleukin-1 receptor-associated kinase 1 BP 1 4.98 nrfl Nuclear respiratory factor 1 1.62
irf3 Interferon regulatory factor 3 4.60 Idhb Lactate dehydrogenase B 1.60
il29ra Interleukin 20 receptor, alpha 3.91 adipor2 Adiponectin receptor 2 1.56
il12b Interleukin 12B 3.68 Ipl Lipoprotein lipase -1.51
il ira Interleukin 11 receptor, alpha 3.24 eifsb4 Eukaryotic translation initiation factor 2B, -1.58
subunit 4 delta, 67kDa
ptarl Prostaglandin reductase 1 3.21 gpi Glucose-6-phosphate isomerase -1.76
ptgds Prostaglandin D2 synthase 21kDa (brain) 3.18 ndufaf4 NADH dehydrogenase (ubiquinone) complex |, -1.88
assembly factor 4
ptgis Prostaglandin 12 (prostacyclin) synthase 2.87 aldoc Aldolase C, fructose-bisphosphate -2.03
ill3ra2 Interleukin 13 receptor, alpha 2 2.54 pkm Pyruvate kinase, muscle -2.24
il20 Interleukin 20 244 hk2 Hexokinase 2 -2.36
tnfrsf19  Tumor necrosis factor receptor superfamily, 2.43 Protein synthesis and degradation
member 19
nkrf NFKB repressing factor 1.77  pdk2 Pyruvate dehydrogenase kinase, isozyme 2 6.87
il7rd Interleukin 17 receptor D 1.74 fbxo32  F-box protein 32 6.01
mst1 Macrophage stimulating 1 (hepatocyte growth 1.66 pdki Pyruvate dehydrogenase kinase, isozyme 1 2.19
factor-like)
mif Macrophage migration inhibitory factor -1.50 foxo3 Forkhead box O3 2.08
(glycosylation-inhibiting factor)
i3 Interleukin enhancer binding factor 3, 90kDa -1.77 trim63  Tripartite motif containing 63, E3 ubiquitin protein ligase 2.02
ptges3 Prostaglandin E synthase 3 (cytosolic) —2.29 rpsékal Ribosomal protein S6 kinase, 90kDa, polypeptide 1 1.96
il21r Interleukin 21 receptor —2,59 eifde Eukaryotic translation initiation factor 4E -1,89
irak4 Interleukin-1 receptor-associated kinase 4 —2,68 eif4ebpl Eukaryotic translation initiation factor 4E -2,01

binding protein 1

Data are shown as fold change (FC).
Functional categories are indicated in bold.

(Tables 2 and 3), recently shown to be up-regulated in a
zebrafish inactivity model [14], is consistent with the
up-regulation of the mRNA expression levels of a large
number of genes that code for structural and regulatory
contractile elements as well as components of the extra-
cellular matrix in fast muscle of exercised zebrafish.
Further support for the activation of this pathway in fast
muscle of exercised zebrafish can be found in the down-

regulation of the expression of pten, a known inhibitor
of PI3K/Akt signaling [20]. These observations reinforce
the notion that accretion of myofibrillar proteins is an
important contributor to muscle growth in fish [21] and
strongly suggest that myofibrillogenesis can be stimulated
by exercise-induced contractile activity in adult zebrafish.
In support of this hypothesis, we recently reported that
the increase in protein deposition in the fast muscle of
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Table 4 Significantly over-represented putative canonical
pathways in fast muscle of exercised zebrafish

Ingenuity canonical pathways p-Value Ratio
Integrin Signaling 3.28E-16 94/208
Protein Ubiquitination Pathway 3.62E-12 103/268
Wnt/[-catenin Signaling 557E-11 75/175
mTOR Signaling 6.06E-06 68/211
TGF- Signaling 7.22E-06 36/89
Ephrin B Signaling 246E-05 32/82
Actin Cytoskeleton Signaling 3.04E-05 72/239
IGF-1 Signaling 6.53E-05 38/105
Glycolysis 1.01E-04 14/41
VEGF Signaling 1.03E-04 36/104
AMPK Signaling 4.67E-04 46/169
Calcium Signaling 6.03E-04 58/213
Insulin Receptor Signaling 1.22E-03 44/142
FGF Signaling 1.53E-03 31/92
Chemokine Signaling 1.72E-03 26/73
PI3K/AKT Signaling 1.75E-03 41/144
Fatty Acid 3-oxidation 1.99E-03 14/45
Hypoxia Signaling in the Cardiovascular System 4.35E-03 24/67
PDGF Signaling 4.63E-03 27/85
HIF1a Signaling 9.07E-03 33/108
Notch Signaling 9.60E-03 15/43
Angiopoietin Signaling 3.00E-02 21/74

The associated p-value (Fisher’s exact test P < 0.05) and the ratio of the number
of differentially expressed genes in fast muscle of exercised zebrafish over the
total number of genes in each particular pathway in the Ingenuity Knowledge
Base. Canonical pathway names are from Ingenuity Systems.

swimming rainbow trout [22] was associated with the
transcriptional activation of a large set of genes involved
in protein biosynthesis and in muscle contraction and de-
velopment, including components of the sarcomeric struc-
ture of skeletal muscle [23]. Interestingly, in the present
study exercise also increased the mRNA expression levels
of known regulators of atrophy in skeletal muscle, namely
the E3 ubiquitin ligases trim63 and fbxo32 [24] and
their transcriptional activators foxo3 [25] and traf6 [26]
(Table 3), consistent with previous reports indicating that
TRIM63 and FBXO32 mRNA expression levels increase
in hypertrophied muscles in humans subjected to resist-
ance training [27]. These observations suggest that genes
involved in the regulation of the degradation of skeletal
muscle protein (i.e. atrogenes), in addition to a large set of
genes belonging to the ubiquitin proteasome pathway or
other proteolytic systems (e.g. calpains), may also partici-
pate in the hypertrophic response of the zebrafish fast
muscle to exercise-induced contractile activity, possibly to
facilitate the maintenance of normal skeletal muscle pro-
tein turnover during long-term training [27]. Therefore,
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our results strongly indicate that exercise-induced hyper-
trophy of fast muscle fibres in adult zebrafish involves in-
creased protein turnover, shown for the first time in this
species by the parallel activation of the IGF-1/PI3K/
mTOR signaling and atrophy pathways that, in turn, in-
duce the expression of a number of downstream genes
coding for myofibrillar elements, as illustrated by the mo-
lecular interactome of the muscle development process
(Figure 3).

One of the important and novel findings of our tran-
scriptome analysis of the hypertrophic fast muscle of
exercised adult zebrafish is the activation of nearly all
TGEP superfamily signaling pathways known to regulate
skeletal muscle mass in mammals. On one hand, we
observed an increase in the mRNA levels of follistatin
(fst), known to promote muscle hypertrophy in mam-
mals by binding myostatin (MSTN) and preventing its
interaction with activin receptors resulting in activation
of the Akt/mTOR signaling pathway to stimulate protein
synthesis [28]. The MSTN signaling pathway, known in
mammals and fish to exert a repressive action on muscle
hypertrophy [29,30] through its inhibition of IGF-1/Akt
signaling [31], was also up-regulated in fast muscle of
exercised zebrafish as evidenced by the increased expres-
sion of the extracellular ligand (mst), corroborating the re-
sults of our previous study [17], receptors (acvrib and
acvr2b) and signaling molecules (smad2). On the other
hand, a number of components of the bone morpho-
genetic protein (BMP) signaling pathway, including extra-
cellular ligands (bmpl, bmp3, bmp4, bmp8b), receptors
(mbprla, bmprib), gene targets (idI) and antagonists such
as noggin and smad6, were also all up-regulated in fast
muscle of exercised zebrafish. In mammals, BMPs pro-
mote skeletal muscle hypertrophy by stimulating mTOR-
dependent anabolism [32,33]. The results from the present
study are significant because they suggest, for the first
time, that the BMP signaling pathway may be involved in
exercise-induced hypertrophy of skeletal muscle. In mam-
mals, it has been proposed that the regulation of muscle
mass depends on the balance between the competing
MSTN and BMP signaling pathways [32]. We hypothesize
that the exercise-induced increase in muscle mass associ-
ated with hypertrophy of fast muscle in adult zebrafish
may have resulted, at least in part, from alterations in the
normal balance between negative (MSTN) and positive
(EST, BMPs) regulators of skeletal muscle mass.

Importantly, our study also provides molecular evidence
to suggest that exercise in adult zebrafish may have acti-
vated a myogenic program resulting from the activation of
satellite cells. Satellite cells, muscle precursor cells with
stem cell characteristics [34], are known to contribute im-
portantly to postnatal skeletal muscle growth and muscle
regeneration after injury. However, their involvement in
hypertrophic muscle growth in adult mammals is currently
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Figure 3 IPA-based network generated from molecules involved in muscle development and myogenesis that are differentially
expressed in fast muscle of exercised adult zebrafish. The shapes of the genes correlate with the functional classification symbolised in the
legend. Arrows represent the direct relationship between molecules. Color intensity correlates to transcription value, calculated as log2ratio
(exercised/non-exercised); green represents molecules with repressed transcription (negative log2ratio); red represents molecules with enhanced

transcription (positive log2ratio).

a subject of debate, particularly in the light of studies
showing that hypertrophy does not require the presence
of satellite cells [35] or their activation [36,37]. In contrast,
postembryonic muscle growth in zebrafish is accom-
plished by mosaic hyperplasia (i.e. new myotubes forming
on the surface of existing muscle fibres) until fish achieve
half of their final body length after which growth is only
accomplished by hypertrophy [21]. To date, the exact role
of satellite cells (refered to as myogenic precursor cells in
fish) in exercise-induced activity in skeletal muscle or
whether contractile activity of skeletal muscle fibres can

modify the quiescent status of satellite cells and promote
their activation in adult muscle are two aspects that are
not completely understood. However, there are reports
showing that hypertrophy due to resistance training in
humans is associated with an increase in the satellite cell
pool probably as a result of increased proliferation [38].
Here, we show for the first time in fish that exercise-
induced activity in adult zebrafish increased the expression
of genes known to participate in the myogenic program,
most notably the satellite cell marker pax3 and its target
gene lbxl. PAX3 is a key factor in skeletal muscle
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Figure 4 IPA-based network generated from molecules involved in angiogenesis that are differentially expressed in fast muscle of
exercised adult zebrafish. The shapes of the genes correlate with the functional classification symbolised in the legend. Arrows represent the
direct relationship between molecules. Color intensity correlates to transcription value, calculated as log2ratio (exercised/non-exercised); green
represents molecules with repressed transcription (negative log2ratio); red represents molecules with enhanced transcription (positive log2ratio).

development thought to be responsible for the enlarge-
ment of the satellite cell population in muscle at least in
part through its activation of the FGF signaling pathway
[4]. PAX3 is important for the activation of the muscle
regulatory factors MYOD and, together with the mesen-
chyme homeobox gene 2 (MEOX2) and SIX proteins
(SIX1 and SIX4), of MYF5 [4]. PAX3 was recently
shown to be up-regulated specifically in hyperplastic
growth zones in the late embryonic myotome in rain-
bow trout [39], another fish species with hyperplastic
growth continuing into adulthood. In the present study,
we show that the mRNA expression levels of a number
of components of the FGF signaling pathway, including

ligands (fgf13, fgf18, fgf20), receptors (fgfrl, fefr2, fefrll)

and signaling molecules (mapkl, rafl, mapkl3, crebbp),
as well as meox2, sixl and six4, were increased in fast
muscle in response to exercise training in adult zebrafish.
All these factors interact with pax3, sox9 and rela in a
complex molecular network similar to that described in
the exercise-trained human skeletal muscle [40,41]. Inter-
estingly, the canonical Notch and Wnt signaling pathways,
known to sequentially control the transition of satellite
cells from a proliferative to a differentiative phase [42],
were also significantly altered in fast muscle of exercised
zebrafish. In accordance with the increased expression of
pax3, the altered expression of ligands (dll1, jagl, jag2)
and receptors (notchl, notch2) of the Notch signaling
pathway, coupled with the significant alteration of the
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expression of genes involved in mitosis and cell cycle pro-
gression (Additional files 6 and 9: Table S6 and Figure S1),
suggests that satellite cells may have been activated by
exercise. The recent demonstration that satellite cells in
adult zebrafish muscle fibres can be activated by mechan-
ical stretch [43] and that pax3 is expressed in satellite cells
isolated from adult zebrafish muscle [44] provide support
for the hypothesis that satellite cells may have proliferated
in fast muscle of adult zebrafish in response to exercise-
induced activity. In addition, exercise caused a significant
increase in the expression of components of the Wnt (e.g.
wntl, wnt2, wntd, wnt6, wnt7a, wnt7b, wnt8a, wntlOa,
wnt10b, wntll, wntl6; fzd2 to 5, fzd8 to 10; dvll, dvi2,
cendl) and the hedgehog (e.g. shh, ihh) signaling path-
ways, known to play a key role in the induction of myo-
genesis in vertebrates by promoting differentiation of
satellite cells [8,45]. Interestingly, hyperplastic growth in
embryonic trout was also associated with an important
up-regulation of growth factors and soluble signaling mol-
ecules (including members of the Wnt pathway) [39] but,
to our knowledge, this is the first report of exercise regu-
lating the expression of the hedgehog signaling pathway.
However, the expression of various paralogs of fast skeletal
myosin heavy chain (e.g. myhz1.1, myhz1.2, myhz1.3 and
myhz2) that were reported to be markers for hyperplastic
growth in zebrafish [15] did not change in fast muscle of
exercised adult zebrafish. Therefore, it will be important
to investigate in future studies whether exercise can pro-
mote proliferation and/or activation of satellite cells in fast
muscle of adult zebrafish.

Exercise-induced activity also altered the mRNA expres-
sion levels of other important myogenic differentiation
factors in the zebrafish fast muscle, most notably Myocyte
enhancer factor 2 (mef2) and serum response factor (srf).
MEF2 family members are transcription factors that do
not have intrinsic myogenic activity but control the differ-
entiation of skeletal muscle during development through
transcriptional cooperation with co-activators such as
CREBBP(CBP)/p300, resulting in the potentiation of the
function of myogenic regulatory factors (MRFs) and in the
regulation of fibre type-specific gene expression programs
in mammals [46]. In the adult mammalian muscle, MEF2,
in addition to NFAT proteins, is induced by contractile ac-
tivity in a calcineurin- and CAMKIV-dependent fashion
[47] to regulate the metabolic and structural (contractile)
phenotype of skeletal muscle cells. Several mef2 genes are
expressed in the zebrafish skeletal muscle [48], with mef2a
being expressed in fast muscle after differentiation, mef2c
after myoblast terminal differentiation and mef2d in
muscle precursor cells [49]. Although Mef2c and Mef2d
proteins are not required for muscle fibre terminal dif-
ferentiation, they are indispensable for myofilament ex-
pression and myofibril assembly in zebrafish fast muscle
fibres [49]. Recently, mef2ca was shown to be induced
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post-transcriptionally by the TOR pathway to regulate
hypertrophic muscle growth in zebrafish [14]. Here, we
observed an up-regulation of the mRNA levels of ep300
and crebbp, two nuclear genes that occupy a central
position in the transcriptional network in fast muscle of
exercised zebrafish (Figure 3), and of mef2a and mef2d;
however, the expression of mef2ca was decreased by
exercise. In addition, genes involved in calcium signal-
ing initiated by nerve-elicited electrical activity and that
regulate MEF2 activity such as ppp3ca (calcineurin), its
targets nfatcl, nfatc 3 and nfatc 4, camk4 and hdac4
were all up-regulated by exercise in the zebrafish fast
muscle. Another central molecule in the transcriptional
network of regulated nuclear genes in the fast muscle of
exercised zebrafish is SRF, a transcription factor that
regulates myogenic fusion and differentiation and that is
also required for overload-induced hypertrophy in the
adult mammalian muscle by controlling satellite cell
proliferation [50]. The altered expression of srf in fast
muscle of exercised zebrafish, as well as that of the tran-
scriptional repressor hdacl, is consistent with their role
as regulators of skeletal myogenesis [50,51].

Exercise training promotes vascularization in fast muscle
of adult zebrafish

In addition to the increased hypertrophy of fast muscle
fibres, exercise increased vascularization of this tissue in
adult zebrafish. This is consistent with the well-known
increase in capillary number that accompanies fibre
hypertrophy in humans and mammalian models [52,53]
and also with previous reports that indicate that swim
training increases muscle capillarity in several fish species,
including larval zebrafish [54-57]. In mammals, exercise-
induced angiogenesis is believed to be induced by the con-
tractile activity of skeletal muscle fibres that, through the
combination of growth factor production, hypoxia and
shear and mechanical stresses, results in the activation of
pro-angiogenic signaling pathways [58]. Importantly, our
transcriptomic profiling of the fast muscle of exercised
adult zebrafish clearly evidenced the activation of the
majority of signaling pathways known in mammals and
zebrafish to regulate angiogenesis [59-62], and identified
for the first time the molecular programs responsible
for the observed increase in vascularization of this tissue
by exercise. Specifically, fast skeletal muscle of exercised
zebrafish increased the mRNA levels of genes involved
in vascular sprouting, including sema3d, sema3f, netrinl
and efnb2, molecules known to be important for inter-
segmental vessel formation in zebrafish [62], as well as
of robo2 and slit2, an endothelial cell guidance receptor
and its ligand, respectively. In addition, exercise also
activated at the transcriptional level several canonical
signaling pathways known to control the specification of
arteries and veins (e.g. Vegf, Notch, Ephrin B2) [63,64],
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as supported by the increased mRNA levels of ssk, of
members of the Vegf signaling pathway including ligands
(e.g. vegfc), co-receptors (nrpl) and downstream signaling
molecules (pik3c2a, pike3b, pik3cg, plcgl, mapkl), of
notchl and of efnb2 and its receptor ephb4. Furthermore,
exercise altered the mRNA levels of genes involved in vas-
cular lumen formation in zebrafish such as integrins,
cdc42, racl and pax2 [62]. Interestingly, to the best of our
knowledge, we provide the first demonstration that exer-
cise increases the mRNA levels in fast muscle of kif2, a
shear stress-responsive transcription factor that is acti-
vated by the onset of blood flow in newly formed vessels
and that induces vessel remodelling through alteration of
PI3K and MAPK signaling in zebrafish [65]. kIf2 occupies
a central position in the angiogenic transcriptional network
in fast muscle of exercised adult zebrafish with connections
with soluble pro-angiogenic factors (e.g. endothelins,
angiopoietins, IGF2, semaphorins), signaling molecules
(e.g. traf6, erbb2) and transcriptional regulators (e.g.
idl, ctnnbl, crebbp, sirtl) (Figure 4). Remarkably, kif2,
as well as other components of the angiogenic transcrip-
tional network such as the IGF-1, TGFf and Notch signal-
ing pathways and the nuclear transcriptional regulator
crebbp, also participate in the muscle development net-
work (Figure 3). Thus, the molecular response to exercise
in skeletal muscle may involve the coordinated activation
of angiogenic and muscle development transcriptional
programs.

The mechanisms by which angiogenesis is initiated
under the normal conditions of adaptive remodelling
imposed by exercise are complex and not entirely
understood, even in humans. It has been proposed that
mechanical and metabolic stimuli responsible for exercise-
induced angiogenesis exert their effects by stimulating
the production of VEGEF, considered to be a central pro-
angiogenic factor in the regulation of physiological
angiogenesis [52,66]. In the present study, we report
that exercise-induced contractile activity in adult zebra-
fish caused changes in the expression of the VEGF
canonical pathway and of factors that participate in its
regulation including members of the hypoxia-inducible
factor family (hiflan, hif3a), nitric oxide synthases (n0s1
and nos2), ppard, known to increase VEGF production
and skeletal muscle angiogenesis [67], and esrra, an
important mediator of hypoxia-induced PGC-1la tran-
scriptional regulation of VEGF [68]. Therefore, these
results suggest that exercise in adult zebrafish may have
induced a transcriptional angiogenic program, at least
in part, by activating VEGF and its signaling in fast
muscle. In support of this hypothesis, swim training in
larval zebrafish was recently reported to increase the
expression of the HIF and VEGF pathways [69]. To the
best of our knowledge, we provide the first evidence
that exercise training in zebrafish activates a complex
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transcriptional program in fast muscle involving multiple
signaling pathways (e.g. VEGE HIF, TGEpB, Ephrin-B,
PDGE, angiopoietin) known to participate in the induction
and regulation of angiogenesis, resulting in an important
increase in vascularization of this tissue.

We hypothesize that, as in mammals [58], the increase
in capillarity as a result of exercise training may enhance
the exchange of respiratory gasses, substrates and metabo-
lites between the blood and fast muscle. Consequently, by
increasing the oxygen exchange capacity and the ensuing
oxidative capacity, exercise may induce a more aerobic
phenotype in fast muscle in zebrafish, in agreement with
previous studies that showed that swim training increased
the aerobic capacity of the fast muscle by increasing the
expression of respiratory genes in adult zebrafish [70,71]
and in developing zebrafish, as shown by the increased ex-
pression of erythropoietin and myoglobin [72]. Support
for an increased aerobic phenotype of fast muscle in exer-
cised zebrafish is derived from the observed increased ex-
pression of a large set of genes that participate in oxidative
metabolism in mitochondria (i.e. TCA cycle and oxidative
phosphorylation) and of the oxygen transport protein
myoglobin. Although we do not have direct evidence for
an effect of exercise on mitochondrial biogenesis, it is in-
teresting to point out that the relationship between capil-
lary and fibre density (C/F ratio), shown here to increase
in adult zebrafish in response to exercise as in mammals
[58], is related to mitochondrial volume [73] suggesting
that swimming-induced exercise could have improved
mitochondrial function and number. Surprisingly, the the-
oretical maximum diffusion distance from the capillaries
to the mitochondria increased in fast muscle of exercised
zebrafish. Although this finding could initially suggest a
reduction in muscle oxidative capacity, it should be only
seen as a consequence of fibre hypertrophy. The exercise-
induced increase in capillarization of fast fibres relative to
their area and perimeter provides further support for the
hypothesis of increased mitochondrial oxidative capacity
of fast muscle fibres in adult zebrafish subjected to aerobic
exercise training.

Conclusions

In the present study we have shown that exercise-
induced contractile activity in adult zebrafish promotes
a coordinated adaptive response in fast muscle that
leads to increased muscle mass by hypertrophy and in-
creased vascularization by angiogenesis. We hypothesize
that these phenotypic adaptations are the result of
extensive transcriptional changes induced by exercise.
Analysis of the transcriptional networks that are acti-
vated in response to exercise in the adult zebrafish fast
muscle allowed us to identify signaling pathways and
transcriptional regulators that play an important role in
the regulation of skeletal muscle mass, myogenesis and
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angiogenesis by exercise. The present study is the first
to describe coordinated molecular programs regulating
muscle mass and vascularization induced by exercise in
any species other than humans [74] and supports the
notion that these programs may regulate “generic” features
of exercise adaptation in the vertebrate skeletal muscle. The
development of these adaptive responses to exercise in the
zebrafish fast muscle, together with an important metabolic
remodelling of this tissue, strongly suggest that exercise
training may have caused the acquisition of a more aerobic
phenotype in fast muscle in zebrafish. It will be interesting
to determine in future studies if these changes result in
improved aerobic work capacity. In summary, exercise-
induced activity resulted in the transcriptional activation
of a series of complex networks of extracellular and intra-
cellular signaling molecules and pathways involved in the
regulation of muscle mass, myogenesis and angiogenesis
in adult zebrafish, some of which had not previously been
associated with exercise-induced contractile activity. The
results from this study demonstrate the utility of the adult
zebrafish as an excellent exercise model for advancing our
knowledge on the basic mechanisms underlining the regu-
lation of skeletal muscle mass.

Methods

Ethical approval

Experiments complied with the current laws of the
Netherlands and were approved by the animal experi-
mental committee (DEC number 09161).

Experimental fish and conditions

Wild-type zebrafish purchased from a local pet shop were
housed in two Blazka-type swim tunnels of 127 liters [17]
at 28°C where approximately 500 liters of fresh water were
recirculated over a biofilter system. The photoperiod re-
gime was 16L:8D and they were fed twice a day (DuplaRin
pellets, Dupla, Gelsdrof, Germany) before and after each
daily training session. In total, two separate experiments
were performed: Experiment 1 was described previously
[17] and Experiment 2 was executed under the exact same
conditions. In each of the two experiments, one swim
tunnel contained the non-exercised group (Experiment
1: n=83; Experiment 2: n=30) and the other tunnel
contained the exercised fish (Experiment 1: n=84;
Experiment 2: n = 30).

Group-wise long term exercise training protocol

In our previous study [17], a swim training protocol was
established for adult zebrafish, where the optimal swim-
ming speed (U, was determined at 0.396 + 0.019 m st
or 13.0 +0.6 standard body lengths s™. Exercised fish
swam at U,p for 6 hours per day during 20 experimental
days while non-exercised fish rested at a lower swim-
ming speed of 0.1 m s™*. After 20 experimental days, fish
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were anesthetised with 1 ml clove oil (10% in absolute
ethanol) in 1 liter of fresh water and euthanized by decapi-
tation. In Experiment 2, exercised fish showed significantly
higher body weight than non-exercised fish (0.34+0.02 g
vs. 0.25 £ 0.02 g, P < 0.05), confirming the results of Ex-
periment 1 [17]. Dorsal epaxial fast muscle filets were
dissected and either immediately frozen in isopentane
cooled to -160°C and stored in liquid nitrogen until
sectioned for histochemical analyses (Experiment 2) or
stored at -20°C in RNA later (Life Technologies, Barcelona,
Spain) for microarray analyses (Experiment 1).

Muscle histochemical analyses

Fast muscle samples for histochemical analyses were ob-
tained from non-exercised and exercised zebrafish from
Experiment 2. After placing the frozen samples in OCT
embedding medium at -22°C, serial transverse sections
of 16 pum in thickness were obtained in a cryostat (Leica
CM3050S, Wetzlar, Germany) and mounted on 2% gela-
tinised slides. Two histochemical assays were performed
on fast muscle serial sections: (1) succinate dehydrogen-
ase (SDH) according to [75] in order to demonstrate the
aerobic or anaerobic characteristics of muscle fibres; and
(2) endothelial ATPase according to [76] to reveal muscle
capillaries.

All morphofunctional measurements of fast muscle
cellularity and vascularization were performed on the
sections processed for endothelial ATPase activity by
using a light microscope (BX61, Olympus, Tokyo, Japan)
connected to a digital camera (DP70, Olympus). Image
Capturing software (DP Controller v. 1.1.1.65, 2002
Olympus) and Image Managing software (DP Manager
v. 1.1.1.71, 2002 Olympus) were used to obtain digital
microphotographs and to ensure accurate calibration
of all measurements. All the parameters listed below
were empirically determined from windows of tissue of
approximately 5,5 x - 10° um? from two different zones
or muscle fields in each sample using Image] analyzing
software (v. 1.47, National Institutes of Health, USA).
After testing for the absence of differences between the
two muscle fields from each sample, the data obtained
from both fields were considered together so that the
sample size was large enough. The mean results presented
throughout tables and figures were obtained from a sam-
ple of n=38 fish for each condition (non-exercised and
exercised).

In order to determine if swimming-induced exercise
caused changes in the morphometric and vascularization
characteristics of fast muscle fibres, the following param-
eters were counted or calculated: capillary density (CD;
capillary counts per unit cross-sectional area of muscle),
fibre density (FD), capillary-to-fibre ratio (C/F = CD/FD;
a parameter relatively independent of FCSA and a good
indicator of muscle capillarization [73]), the number of
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capillaries in contact with each fibre (NCF) and the
circularity shape factor (SF = 4-7-FCSA/FPER?), which
is an estimation of the circular morphology of the fibre
(with a value of 1 for a perfect circle). Capillary and fibre
counts were calculated and expressed as capillaries and
fibres per mm?®. The following fibre morphometric param-
eters were measured: fibre cross-sectional area (FCSA)
and perimeter (FPER) and the maximal diffusion distance
(MDD) between the capillary and the centre of the fibre.
The total number of fibres analyzed in each muscle sam-
ple ranged from 200 to 250. The indices expressing the
relationship between the number of capillaries per fibre and
the fibre cross-sectional area (CCA = NCF-10%/FCSA)
or fibre perimeter (CCP =NCF-10%*/FPER) were also
calculated. These indices are considered a measure of
the number of capillaries per 1,000 pm? of muscle FCSA
and the number of capillaries per 100 pm of muscle
FPER. Data for all the parameters are expressed as sam-
ple means + standard error of the mean (SEM).

The histograms of FCSA (Figure 1I-K) express the per-
centage frequencies of fibres grouped in intervals of 200
um? and error bars represent the SEM. To obtain the
superposed curves in the histograms, a dynamic fitting
by nonlinear regression was performed for each group of
fish (non-exercised and exercised). The approximation
was done by a log-normal (four parameters) equation
with a dynamic fit option of 200 for both total number
of fits and maximum number of iterations. The R values
and parameters of the log-normal equations (a, b, xo and
Yo), reported with their SEM, are shown in Additional
file 1.

Microarray analyses

Single color microarray-based gene expression analysis
was performed using an Agilent custom oligo microarray
4x44K with eArray design ID 021626 and containing a
total of 43.863 probes of 60 oligonucleotides in length.
Total RNA from fast skeletal muscle samples of individual
adult zebrafish from Experiment 1 (non-exercised, n=8;
exercised, n =8) was isolated with TRIzol (Invitrogen,
Barcelona, Spain). RNA concentrations of the 16 sam-
ples used for microarray analyses, as measured with a
NanoDrop ND-1000 (Thermo Scientific), ranged from
83 to 260 ng ul™ (134 + 15 ng pl™), with average ab-
sorbance measures (A260/280) of 2.04 + 0,03, and RNA
Integrity Number (RIN) values of 8.85 + 0.35, as obtained
using a 2100 Bioanalyzer system (Agilent Technologies,
Santa Clara, CA), that were indicative of clean and intact
RNA suitable for microarray analysis. RNA was amplified
and labeled with Cy3 dye using single color Low Input
Quick Amp Labeling kit (Agilent Technologies) following
the manufacturer’s indications using 200 ng of RNA in
each reaction. Next, 1.65 pg of labeled cRNA were hy-
bridized to the arrays. Overnight hybridization (17 h,
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65°C and 10 rpm rotation) was performed in a Microarray
Hybridization Oven (Agilent Technologies). After hybri-
dization, microarrays were washed with Gene Expression
Wash Buffers 1 and 2 (Agilent Technologies) and scanned
using the High-Resolution C Scanner (Agilent Tech-
nologies). Feature Extraction Software 10.7.3 (Agilent
Technologies) was used for spot to grid alignment, fea-
ture extraction and quantification. Processed data were
subsequently imported into GeneSpring GX 11.5 (Agilent
Technologies). Significance cut-offs for the ratios of
exercised vs non-exercised were set at at P < 0.01 (sample
t-test) and >1-fold change for differentially expressed
genes (DEGs). For the DEGs, gene IDs were converted to
human ENSEMBL gene IDs using g:orth function from G:
profiler (http://biit.cs.ut.ee/gprofiler), taking advantage of
the more complete gene ontology (GO) annotations of the
human genes and improving, in this way, the subsequent
analysis of the functional categories. The complete
microarray data have been deposited in NCBI’s Gene
Expression Omnibus and are accessible through GEO
Series accession number GSE58929 (http://www.ncbinlm.
nih.gov/geo/query/acc.cgi?acc=GSE58929). GO enrichment
analysis was performed using Database for Annotation,
Visualization and Integrated Discovery (DAVID) software
tools (http://david.abcc.nciferf.gov), and the resulting cat-
egories were considered significant at P < 0.05. Pathway and
network analyses were conducted using Ingenuity” Systems
Pathway Analysis (IPA) software (Redwood City, CA).
To analyze by IPA, annotated spots were mapped to
zebrafish and human orthologs using BLASTN against
the Ensembl Danio rerio gene database (v.Zv9.66) and
the Homo sapiens transcript database (v.GRCh37.66) with
an e-value <1.00E - 05. Human and zebrafish orthologs
were then compared to the Ingenuity” Knowledge Base
(www.ingenuity.com) and significantly altered pathways
and biological functions were determined using the Fisher
exact test (P < 0.05).

Quantitative real-time PCR (qPCR)

Quantitative real time PCR analysis was performed using
RNA treated with RQ1 RNase-free DNase (Promega) to
remove any contaminating genomic DNA and reverse
transcribed using SuperScript III Reverse Transcriptase
(Invitrogen), as specified by the manufacturer. Reactions
were run in a MyiQ Real-Time PCR Detection System
(Bio-Rad, Madrid, Spain) under the following thermal
cycling conditions: 2 m at 50°C, 8 min at 95°C, followed
by 40 cycles of 15 s denaturation at 95°C and 30 s at cor-
responding melting temperature, and a final melting
curve of 81 cycles from 55°C to 95°C (0.5°C increments
every 10 s) to identify the presence of primer dimers and
to analyze the specificity of the reaction. The reactions
(20 pl) contained 200nM final concentration of each
amplification primer, 10pl of SYBR GreenER qPCR
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SuperMix (Invitrogen) and 5 pl of a 1:25 dilution of
cDNA for reference gene and target genes. All PCR
reactions were run in triplicate (including the non-
template controls) and fluorescence was measured at
the end of each extension step. Efficiency of PCR reactions
was calculated by analyzing serial dilutions of pooled
c¢DNA samples and was always higher than 99%. The
27AACt method [77] was used for real-time PCR ana-
lysis and the threshold cycle (Ct) for each gene was
normalized to the Ct of RPS15 as reference gene, chosen
because of the lack of changes in its expression between
exercised and non-exercised zebrafish as assessed by
microarray analysis. Primer sequences, amplicon sizes and
Ensembl accession numbers of the selected genes are pre-
sented in Additional file 10: Table S9.

Statistical analyses

For capillarization and fibre morphometrical parameters,
the normality of the data was tested by the Kolmogorov-
Smirnov test (with Lilliefors’ correction) and the compari-
sons between the two groups of fish (non-exercised and
exercised) were analysed by Student’s ¢ tests. To test the
differences between non-exercised and exercised fish
in the frequencies for three intervals of FCSA mea-
sured (i.e. fibres with areas below 1.200 |Jm2, between
1.200 and 2.400 pm* and above 2.400 um?; Additional
file 1: Table S1), Student’s ¢ tests were performed. The
normalizing arcsine transformation was applied as a
previous step. All statistical analyses were performed
using SigmaStat 4.0 (in SigmaPlot 11.0 Software, Systat
Software Inc., San Jose, CA, USA).

Additional files

Additional file 1: Table S1. Equation parameters for the log-normal
regression of the fiber cross-sectional area histograms in the fast muscle
of zebrafish.

Additional file 2: Table S2. Biological functions that were significantly
altered (Fisher's exact test, p < 0.05) in zebrafish fast muscle in response
to swimming.

Additional file 3: Table S3. List of differentially expressed genes
involved in the development of muscle in the zebrafish fast muscle in
response to exercise.

Additional file 4: Table S4. List of differentially expressed genes
involved in myogenesis in the zebrafish fast muscle in response to exercise.

Additional file 5: Table S5. List of differentially expressed genes
involved in angiogenesis in the zebrafish fast muscle in response to
exercise.

Additional file 6: Table S6. List of differentially expressed genes
involved in cell proliferation in the zebrafish fast muscle in response to
exercise.

Additional file 7: Table S7. Canonical pathways that were significantly
altered (Fisher's exact test, p < 0.05) in zebrafish fast muscle in response
to swimming. The number of differentially expressed genes in relation to
the total number of genes present in each pathway in the Ingenuity
Knowledge Base (No. Genes) and their identity (Pathway molecules) are
shown.
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Additional file 8: Table S8. Quantitative real-time PCR (gPCR) validation
of microarray results from selected genes.

Additional file 9: Figure S1. IPA-based network generated from
molecules involved in cell proliferation that are differentially expressed in
fast muscle of exercised adult zebrafish. The shapes of the genes correlate
with the functional classification symbolised in the legend. Arrows represent
the direct relationship between molecules. Color intensity correlates to
transcription value, calculated as log2ratio (exercised/non-exercised); green
represents molecules with repressed transcription (negative log2ratio); red
represents molecules with enhanced transcription (positive log2ratio).

Additional file 10: Table S9. Sequences of primers used in gene
expression analyses by qPCR.
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