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Abstract

Background: Defining cell type-specific transcriptomes in mammals can be challenging, especially for unannotated
regions of the genome. We have developed an analytical pipeline called groHMM for annotating primary transcripts
using global nuclear run-on sequencing (GRO-seq) data. Herein, we use this pipeline to characterize the transcriptome
of an immortalized adult human ventricular cardiomyocyte cell line (AC16) in response to signaling by tumor necrosis
factor alpha (TNFα), which is controlled in part by NF-κB, a key transcriptional regulator of inflammation. A unique
aspect of this work is the use of the RNA polymerase II (Pol II) inhibitor α-amanitin, which we used to define a set of
RNA polymerase I and III (Pol I and Pol III) transcripts.

Results: Using groHMM, we identified ~30,000 coding and non-coding transcribed regions in AC16 cells, which
includes a set of unique Pol I and Pol III primary transcripts. Many of these transcripts have not been annotated
previously, including enhancer RNAs originating from NF-κB binding sites. In addition, we observed that AC16 cells
rapidly and dynamically reorganize their transcriptomes in response to TNFα stimulation in an NF-κB-dependent
manner, switching from a basal state to a proinflammatory state affecting a spectrum of cardiac-associated
protein-coding and non-coding genes. Moreover, we observed distinct Pol II dynamics for up- and downregulated
genes, with a rapid release of Pol II into productive elongation for TNFα-stimulated genes. As expected, the
TNFα-induced changes in the AC16 transcriptome resulted in corresponding changes in cognate mRNA and protein
levels in a similar manner, but with delayed kinetics.

Conclusions: Our studies illustrate how computational genomics can be used to characterize the signal-regulated
transcriptome in biologically relevant cell types, providing new information about how the human genome is
organized, transcribed and regulated. In addition, they show how α-amanitin can be used to reveal the Pol I and Pol III
transcriptome. Furthermore, they shed new light on the regulation of the cardiomyocyte transcriptome in response to
a proinflammatory signal and help to clarify the link between inflammation and cardiomyocyte function at the
transcriptional level.
Background
The repertoire of coding and non-coding transcripts
expressed in a given cell type - the “transcriptome” -
reflects the specific biology of that cell type, including
responses to external stimuli. Thus, information about the
transcriptome can provide deep biological insights with
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relevance to physiology and disease. Determining and
analyzing the complete transcriptome, however, can be
challenging, especially with respect to unannotated cell
type-specific transcripts. This endeavor, however, has
been facilitated by computational genomics approaches
that leverage deep sequencing technologies. Herein, we
apply these approaches to the study of the cardiomyocyte
transcriptome, which has revealed interesting new infor-
mation related to cardiovascular disease (CVD).
CVD is the leading cause of death worldwide [1].

Many of the underlying pathologies of CVD are directly
or indirectly associated with inflammation. Many studies
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have focused on the effects of inflammation on endothe-
lial function and atherosclerosis [2-4]. However, the det-
rimental effects of inflammation are not limited to the
vascular system, but also occur in cardiomyocytes. The
progression from heart injury to heart failure is closely
linked to necrosis, apoptosis, or autophagy in cardio-
myocytes [5,6]. During heart failure, cardiomyocytes
serve as the major source of cytokine secretion, and the
secreted cytokines not only interfere with the function
of the cardiomyocytes, but also recruit cardiac fibroblast
cells, causing fibrosis and eventually heart damage and
infarction [7,8].
Although the effects of inflammation in cardiomyo-

cytes have been examined previously [9,10], the detailed
mechanisms underlying these effects are poorly under-
stood. NF-κB, a key transcriptional regulator of inflam-
mation, has been shown to play a dual role in CVD
through its actions in various cell types of the cardiovas-
cular system. It promotes an anti-apoptotic cardiopro-
tective effect during hypoxia and reperfusion injury by
repressing genes involved in cell death pathways, but
also supports the secretion of detrimental cytokines dur-
ing acute or chronic inflammatory injury, leading to cell
death and fibrosis [11,12]. The specific regulatory effects
of NF-κB on gene expression programs in cardiomyo-
cytes are not well understood.
Cellular functions and processes are largely deter-

mined by carefully orchestrated cell type-specific gene-
expression programs. For example, a recent study has
characterized an extensive estrogen-regulated gene ex-
pression program in breast cancer cells that alters a large
fraction of the transcriptome and promotes a mitogenic
growth program [13,14]. A greater understanding of
the NF-κB-dependent proinflammatory gene expression
program in cardiomyocytes will provide a greater under-
standing of the links between inflammation and impaired
cardiomyocyte function. Non-coding RNAs (ncRNAs)
should be a key component of this analysis since previous
studies have demonstrated key roles for ncRNAs, includ-
ing microRNAs (miRNAs) and long non-coding RNAs
(lncRNAs), in cardiovascular function [15,16]. Further
mapping and characterization of all functional tran-
scripts, including those generated by RNA polymerases I
and III, are necessary for a complete picture of the car-
diomyocyte transcriptome.
In the studies described herein, we have used a com-

bination of genomic approaches, including GRO-seq and
ChIP-seq, to characterize the transcriptome of AC16 im-
mortalized adult human ventricular cardiomyocyte cells
in response to tumor necrosis factor (TNFα). Our stud-
ies shed new light on the regulation of the cardiomyo-
cyte transcriptome in response to a proinflammatory
signal and help to clarify the link between inflammation
and cardiomyocyte function at the transcriptional level.
Results
AC16 cells respond to TNFα stimulation by activating an
NF-κB-dependent signaling pathway
To investigate the molecular aspects of proinflammatory
gene regulation in AC16 cells, we first characterized re-
sponses triggered by stimulation with tumor necrosis
factor alpha (TNFα). We expected TNFα to activate the
NF-κB signaling pathway, as has been reported previ-
ously for macrophages and endothelial cells [17]. To ver-
ify this, we monitored NF-κB activation in AC16 cells
following TNFα stimulation by Western blotting frac-
tionated cell extracts. TNFα induced NF-κB nuclear
translocation, which was blocked by the IKKα/β inhibi-
tor BAY 11–7082 (Figure 1A). TNFα also promoted the
recruitment of NF-κB to chromatin globally, as assayed
by ChIP-seq for the NF-κB p65 subunit (Figure 1B).
Finally, TNFα simulated the expression of known NF-
κB-dependent proinflammatory genes, such as IL6 and
NFKB1 in a manner that was substantially reduced by
BAY11-7082 (Figure 1C). Taken together, these results
demonstrate that NF-κB is essential for the activation of
a set of proinflammatory target genes in TNFα-treated
AC16 cells.

The proinflammatory AC16 transcriptome includes a
diverse array of coding and non-coding transcripts
To better understand the AC16 transcriptome, we used
global run-on coupled with deep sequencing (GRO-seq),
a direct, high throughput genomic method, which maps
the position and orientation of all transcriptionally en-
gaged RNA polymerases across the genome with high
spatial resolution [18]. As such, GRO-seq provides a
sensitive map of all regions in the genome actively tran-
scribed by RNA polymerases I, II, and III (Pols I, II, and
III) [14]. We performed GRO-seq after a short time
course of TNFα treatment (0, 10, 30, and 120 min.;
Figure 2A). When visualized using a genome browser,
the data reveal a sensitive and accurate strand-specific
approach for capturing the immediate transcriptional ef-
fects of TNFα that is more sensitive than Pol II ChIP-
seq (Figure 2B). For example, for the classic inflamma-
tory transcription factor gene NFKB1, GRO-seq reveals
the time-dependent progression of Pol II waves moving
from the 5′ to 3′ end of the transcription unit during
the TNFα-treatment time course (Figure 2B), informa-
tion that can be used to determine rates of transcription
(~3 kb per minute in the case of NFKB1; [19]). More-
over, GRO-seq also reveals the expression of a divergent
transcript generated from the NFKB1 promoter, as well
as bi-directional enhancer transcripts (eRNAs) originat-
ing ~50 kb upstream of the NFKB1 promoter, which
may mark functional enhancers for NFKB1 (Figure 2B).
To identify all transcripts in the proinflammatory

AC16 transcriptome, including previously unannotated
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Figure 1 TNFα stimulation of AC16 cells activates the NF-κB signaling pathway. A) Western blot of the NF-κB p65 subunit, snRNP70
(a nuclear marker), and β-tubulin (a cytoplasmic marker) using cytoplasmic and nuclear fractions from control and TNFα-treated AC16 cells
(25 ng/ml for 30 min.) with and without the IKKα/β inhibitor BAY11-7082 (5 μM pretreatment for 1 hour). B) Metagene representation showing
the average ChIP-seq read density of the NF-κB p65 subunit as a function of distance from the TSSs (± 4 kb) of upregulated protein-coding genes
(defined by GRO-seq). The line shading indicates the control (grey) and TNFα-treated (black) conditions. C) RT-qPCR analysis of IL6 (left) and NFKB1
(right) mRNA expression in control and TNFα-treated AC16 cells (25 ng/ml TNFα for 30 or 180 minutes). The bar colors indicate the control (grey)
and BAY11-7082-treated (black) samples. Each data point represents the mean + SEM for three independent biological replicates.
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transcripts, we combined GRO-seq with a bioinformatics
approach called groHMM, which uses a two-state hid-
den Markov model to identify active transcription units
genome-wide [13]. Using this approach, we identified
29,695 transcripts that are expressed in AC16 cells dur-
ing at least one time point during the course of TNFα
treatment (see Methods for details). To ascertain the po-
tential functional role of each transcript, we compared
the genomic locations of the identified transcription
units with existing genomic annotations. We found that
approximately half of the transcription units discovered
in our GRO-seq data can be mapped to annotated re-
gions, including genes encoding proteins, long non-
coding RNAs (lncRNAs), microRNAs (miRNAs), tRNAs,
snRNAs, and repeat elements (Figure 2C), many of
which are relevant to cardiac biology (e.g., the mRNA
CFLAR, the lncRNA MALAT1, the microRNA 21 precur-
sor MIR21; Additional file 1). The remaining transcription
units map to genomic loci that were previously unanno-
tated, but may harbor important genetic information and
support important functions within the TNFα response in
cardiomyocytes (Figure 2C). We categorized these unan-
notated transcription units based on their orientation and
location relative to annotated genes, including divergent,
antisense, and intergenic (Figure 2D). The intergenic tran-
scripts include a category of short, bidirectionally tran-
scribed eRNAs, as we have described previously [20].

AC16 cells rapidly and dynamically reorganize their
transcriptomes in response to TNFα
To investigate the effects of TNFα on the AC16 tran-
scriptome, we analyzed changes caused by TNFα treat-
ment in further detail. We used edgeR, a program that
determines differential expression of replicated count
data considering biological and technical variability [21],
to identify transcription units whose expression changes
during the time course of TNFα treatment. This analysis
revealed that a large fraction (~18%) of expressed tran-
scripts is regulated in response to TNFα in a surprisingly
rapid manner (Figure 3A and B). The onset of regula-
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tion is evident as early as 10 minutes after treatment in
many cases (~6% of transcripts; Figure 3B), similar to
what we have observed previously following estrogen
stimulation in MCF-7 cells [13]. By 30 minutes, the
majority of regulated transcripts have reached their
maximal change, with most reflecting decreased expres-
sion (Figure 3B and C). Interestingly, the majority of
genes (both up- and down-regulated) returned to
near-homeostatic levels 120 minutes post-treatment
(Figure 3C). This temporal pattern follows a similar
time scale as the oscillating patterns of activation and
nuclear localization of NF-κB previously observed [22].
These changes are most likely explained as a direct
readout of NF-κB’s presence on chromatin.
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When analyzing the response of individual classes of
transcripts, we found that small non-coding RNAs,
lncRNAs, divergent RNAs, and antisense RNAs are up-
and down-regulated with similar ratios and kinetics as
protein-coding transcripts (Figure 3C). Conversely, inter-
genic and enhancer transcripts are enriched for upregu-
lation (p < 4 × 10-25; Fisher’s exact test) at every time
point of TNFα treatment, which is consistent with their
putative gene activation function (Figure 3C). Overall,
these analyses reveal a dynamic regulation of the AC16
transcriptome by TNFα that fits with the logic of a pro-
inflammatory stress response: broad repression of tran-
scription, with rapid and robust activation of a selected
set of target genes. This pattern of regulation is distinct
from the mitogenic transcriptional response that we
have characterized previously [13,14].

GRO-seq reveals different dynamics for the TNFα-dependent
activation and repression of transcription
GRO-seq affords the opportunity to examine the dynamics
of transcription on a short time scale. To examine the dy-
namics of Pol II in response to TNFα, we focused on the
time-dependent redistribution of Pol II at upregulated and
downregulated RefSeq genes. Metagene analyses showing
the average GRO-seq signal mapped to ± 4 kb around the
transcription start sites (TSSs) of all genes of interest re-
veal distinct Pol II dynamics for upregulated and
downregulated genes (Figure 4A). For genes upregulated
upon TNFα treatment, Pol II rapidly increased and re-
leased into the gene body, with a limited time spent at
promoter-proximal pause sites, which is consistent with
previously characterized effects of the TNFα/NF-κB
signaling pathway on transcriptional elongation [19]. The
activation occurred as early as 10 min., was maximal at
30 min., and was partially attenuated by 120 min.
(Figure 4A, top row). In contrast, for genes downregu-
lated upon TNFα treatment, an accumulation of
promoter-proximally paused Pol II was evident prior to
TNFα treatment and was only reduced after 30 min. of
TNFα treatment. A reduction in gene body Pol II, how-
ever, was evident as early as 10 min. following TNFα
treatment. The levels of promoter-proximally paused Pol
II and gene body Pol II returned to basal levels after
120 min. (Figure 4A, bottom row). Interestingly, Pol II
shows different dynamics during an acute TNFα-
dependent transcriptional response in AC16 cells than it
does during a rapid estrogen-dependent mitogenic re-
sponse in MCF-7 breast cancer cells. Specifically, estro-
gen upregulated genes show a greater induction of
promoter-proximally paused Pol II in response to the es-
trogen stimulus, suggesting a greater effect on Pol II
loading or initiation than elongation [13,19]. These re-
sults highlight the distinct gene activation mechanisms
mediated by NF-κB and ERα. Pol II ChIP-seq shows a
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pattern of Pol II dynamics consistent with those observed
by GRO-seq for both up- and downregulated genes
(Figure 4B). In addition, ChIP-seq shows the induced
binding of NF-κB at the promoters of upregulated genes,
but not downregulated genes, suggesting NF-κB depend-
ence for TNFα-mediated upregulation, but not downreg-
ulation (Figure 4C).

α-Amanitin identifies Pol I, Pol II, and Pol III activity across
the AC16 transcriptome
Three different RNA polymerases produce the mamma-
lian cell transcriptome: Pol I transcribes a large transcript
from each of the ribosomal DNA (rDNA) loci, which is
later cleaved into 18 s, 5.8 s, and 28 s rRNAs, accounting
for 50% of the total synthesized RNAs in the cell [23]; Pol
II synthesizes the precursor RNAs for mRNAs and most
lncRNAs, microRNAs and snRNAs; and Pol III transcribes
the 5 s rRNAs, tRNAs, and other small RNAs closely asso-
ciated with housekeeping functions [24]. Although the
regulation and function of Pol II has been well studied,
and recent mapping of the localization of the Pol III tran-
scription machinery genome-wide has shed some light on
its transcription profile [25-27], many questions remain
regarding the coordination of Pol I, II, and III activities.
For example, which polymerase controls synthesis of novel
unannotated transcripts? How are Pol II- and non-Pol II-
transcribed regions distributed across the genome?
With appropriate mapping techniques, GRO-seq al-

lows the detection of RNA polymerases density on tRNA
genes and rRNA genes [13]. Whereas tRNA genes have
enough sequence variation to allow unique mapping of
GRO-seq reads, rRNA genes do not. Thus, we created a
single reference rRNA gene to which all rRNA reads are
mapped, yielding an average response across all rRNA
genes [13]. Although transcription of 20 tRNA genes is
rapidly and transiently upregulated in response to TNFα
(Figure 5A and B), transcription of the remaining tRNA
and rRNA genes, on average, is largely unaffected (Figure 5A
and C).
To obtain a greater understanding of the AC16 tran-

scriptome and to investigate coordination among the
different RNA polymerases in TNFα-induced inflamma-
tory responses in cardiomyocytes, we used α-amanitin to
distinguish between the activities of Pol II (sensitive to
the concentration of α-amanitin used) and Pol I/III (not
sensitive). Nuclei isolated from AC16 cells were incu-
bated on ice with α-amanitin for 15 min. prior to the
run-on reaction that generates the short bromouridine-
labeled transcripts for detection by GRO-seq. Since the
final read density of each gene is normalized to the total
reads obtained in each condition, non-Pol II transcripts
are relatively enriched due to the loss or reduction of
Pol II transcripts in the α-amanitin-treated condition
(Figure 5D). As expected, we observed a relative
enrichment of GRO-seq signals from rDNA repeats (Pol I)
and tRNA genes (Pol III), as well as a reduction of the
GRO-seq signal from annotated RefSeq genes (mostly
Pol II) (Figure 5E, F, and G). This pattern serves as a
validation of the reliability of our approach in mapping
Pol II and non-Pol II transcripts.
Next, we compared the GRO-seq reads at uniquely

mapped transcripts between α-amanitin- and vehicle-
treated nuclei to determine which types of transcripts
were produced by Pol II or Pol I/III (“non-Pol II tran-
scripts”). These results indicate that most of the recently
defined types of long non-coding transcripts, such as
lncRNAs, eRNAs, divergent RNAs, and antisense RNAs
are transcribed by Pol II (Figure 5H; Additional file 2),
whereas annotated short non-coding transcripts are dis-
tributed between the Pol II and non-Pol II categories
(Figure 5I). For example, the majority of small nucleolar
RNAs (snoRNAs) and small cytoplasmic RNAs
(scRNAs) are transcribed by Pol II, whereas small nu-
clear RNAs (snRNAs) are transcribed by both Pol II and
Pol III, as expected (Figure 5I).

Characterization of the Pol I/III transcriptome in AC16 cells
To further characterize the non-Pol II transcriptome in
AC16 cells, we mapped 739 non-Pol II transcripts from
GRO-seq data generated ± α-amanitin (Figure 5J). We
assume that most are transcribed by Pol III, since Pol I
mainly controls transcription from the rDNA repeats, al-
though we did not confirm this experimentally. This set
of non-Pol II transcripts includes mainly tRNAs, rRNAs,
some snRNAs, and transcripts generated from SINE
repeat elements, as well as 172 novel, previously unan-
notated transcripts (Additional file 3). The lengths of
the majority of the 739 primary non-Pol II transcripts
are <400 nucleotides, which indicates that they are short,
non-coding RNAs (Figure 5K). These transcripts origin-
ate mostly from intergenic regions and, to a lesser extent,
intronic regions. Only a few transcripts were mapped to
the exons of genic regions, concentrated in the 5′ or 3′
UTRs (Figure 5L; Additional file 3).
As expected, a large fraction of the non-Pol II tran-

scripts that we identified overlap with the Pol III ma-
chinery (49% and 39% respectively), as indicated by
ChIP-seq of the Pol III subunit RPC155 or the Pol III
transcription factor TFIIIC (ENCODE data from K562
cells) (Figure 5M), further verifying our ability to identify
Pol III transcripts. Many of the transcripts also overlap
with CTCF binding sites (33%), which suggests an
insulator-like function related to the genes encoding
these transcripts. Interestingly, with exception of the
aforementioned upregulated tRNA genes (Figure 5B),
the expression pattern of the rest of the non-Pol II tran-
scripts remained fairly constant across the time course
of TNFα treatment [data not shown; edgeR failed to
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Figure 5 Pol I, II, and III transcription in AC16 cells in response to TNFα. AC16 cell nuclei were treated with α-amanitin for 15 min. prior to
GRO-seq analysis. The final read density for each gene was normalized to the total reads obtained in each condition. A) Effect of TNFα on the
fraction of GRO-seq reads mapped to rDNA repeats (Pol I; green line), RefSeq genes (Pol II; red line), and tRNA genes (Pol III; blue line) over the
time course of TNFα treatment. B) Heatmap showing the expression of 20 tRNA transcripts upregulated during a time course of TNFα
treatment. C) Browser track representation of GRO-seq reads mapped to rDNA repeats (GenBank U13369.1) in 1 kb bins over a time course of
TNFα treatment. D) Scheme for the GRO-seq experiments with α-amanitin showing the expected effects on Pol I, II, and III transcription.
E) Relative change in GRO-seq reads at rDNA repeats in control and α-amanitin-treated AC16 nuclei. F and G) Metagene representations of the
average number of GRO-seq reads distributed around tRNA (F) and RefSeq (G) gene TSSs in control and α-amanitin-treated AC16 nuclei. H)
Fraction of different types of uniquely mapped transcripts transcribed by Pol II or other RNA polymerases, as revealed by α-amanitin treatment.
I) The number of annotated, short, non-coding transcripts transcribed by Pol II or other RNA polymerases, as revealed by α-amanitin treatment.
J) Metagene representations of the average GRO-seq read distributions ± 4 kb around the TSSs of 739 non-Pol II transcripts identified using
α-amanitin. K) Histogram showing the length distribution of all 739 non-Pol II transcripts from (J). L) Pie chart showing the genomic distribution
of the genes encoding all 739 non-Pol II transcripts from (J). M) Metagene representations of the average ChIP-seq read distributions ± 500 bp
around the TSSs for RPC155 (Pol III subunit) in K652 cells (left), TFIIIC in K562 cells (middle), and CTCF in human cardiomyocytes (HCM) (right)
relative to the TSSs (± 500 bp) of the identified non-Pol II transcripts.
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(See figure on previous page.)
Figure 6 Enhancer transcripts in AC16 cells originate from NF-κB-dependent and NF-κB-independent genomic loci. A) Genome browser
tracks showing read distributions for GRO-seq, Pol II ChIP-seq, and p65 ChIP-seq at the promoter and distal enhancers of the IL8 gene. The
blue-shaded genomic region shows an NF-κB-independent enhancer, whereas the green-shaded genomic region shows a NF-κB-dependent
enhancer. A schematic of the IL8 gene annotation is shown and the length scale is indicated. B) Flowchart of enhancer classification in AC16 cells
based on genomic location, eRNA production, length of the transcribed regions, overlap with NF-κB binding, and TNFα-mediated regulation. C)
Metagene representations of the average ChIP-seq read distributions for p300 in adult human heart (left), H3K4me in fetal human heart (middle),
and H3K27ac in human skeletal muscle myoblasts (HSMM) (right) for all 1,146 enhancers identified by GRO-seq, shown relative to the midpoint of
overlap of the bidirectionally transcribed eRNAs (± 4 kb). D) De novo motif analyses of 208 NF-κB-dependent enhancers (left) and 938 NF-κB-
independent enhancers (right) using MEME/STAMP. The top two most enriched motifs for each category are shown. E) Heatmap representations
of TNFα regulation of enhancer transcription for NF-κB-dependent (top) and NF-κB-independent (bottom) enhancers. The color-based scale
represents GRO-seq reads at the indicated time points scaled to the read density at time zero. F) Metagene representations of the average
GRO-seq read distributions ± 4 kb around (1) the midpoint of overlap of the bidirectionally transcribed eRNAs (top row) or (2) the TSSs of the
nearest neighboring protein-coding or lncRNA putative target genes (bottom row) for the following groups of enhancers: (a) TNFα-upregulated
NF-κB-dependent enhancers (left), (b) TNFα-upregulated NF-κB-independent enhancers (middle), and (c) TNFα-downregulated NF-κB-independent
enhancers (right).
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identify statistically significant regulated genes at any
time point of TNFα treatment with a false discovery rate
(FDR)-corrected q value threshold (q < 0.001)]. Thus,
during the TNFα-induced inflammatory response, tran-
scriptional regulation occurs mostly for Pol II tran-
scripts, but not to a great extent for Pol I and Pol III
transcripts.
GRO-seq identifies enhancers in TNFα-stimulated
cardiomyocytes
Recent studies have shown that transcription factor
binding sites are focal points for the recruitment of Pol
II and the production of characteristic short, mono- or
bi-directional transcripts called enhancer RNAs (eRNAs)
[13,20,28-31]. For example, at the proinflammatory gene
IL8, we observed two sites of TNFα-induced eRNA pro-
duction about 15–20 kb upstream of the TSS (Figure 6A).
Both sites showed TNFα-dependent accumulation of
GRO-seq and Pol II ChIP-seq signals, while only the
more proximal of the two sites was bound by NF-κB
(Figure 6A). These enhancers and their associated
eRNAs may play an essential role in TNFα-dependent
activation of the nearby IL8 gene.
We have recently developed a computational approach

for identifying functional enhancers based on these pat-
terns of transcription in GRO-seq data [20]. Using this
approach, we identified 1,146 sites of paired intergenic
eRNA production in AC16 cells (Figure 6B). Metagene
analyses of ChIP-seq data from adult human heart, fetal
human heart, and human skeletal muscle myotubes
(HSMM) for the 1,146 putative enhancers showed ex-
pected patterns of enrichment for well characterized en-
hancer features, such as p300, H3K4me1, and H3K27ac
(Figure 6C). Remarkably, the putative enhancers identi-
fied in AC16 cells by GRO-seq match well with enhan-
cer features in the ChIP-seq data from related, but
distinct, cell types.
MEME-based motif analyses [32,33] of the putative
NF-κB and non-NF-κB enhancers defined by GRO-seq
revealed enrichment of different DNA sequences, which
were assigned to specific transcription factors using
STAMP [34]. The NF-κB enhancers were highly enriched
for the RELA/NF-κB motifs (Figure 6D, left panel) and
NF-κB p65 binding (Additional file 4), as expected, as
well as AP-1 and FOS motifs (Figure 6D, left panel). The
latter is consistent with previous demonstrations that
AP-1 augments the NF-κB regulatory program [35].
Interestingly, both NF-κB and AP-1 are activated during
heart failure [36]. The non-NF-κB enhancers were
enriched in motifs for the transcription factors Sp1,
Krüppel-like factor 4 (KLF4), SMAD3, and ZNF143
(Figure 6D, right panel). Other motifs are consistent with
previous literature as well. For example, Sp1 has consist-
ently been found in searches for cardiac transcription
factors and is associated with the regulation of many car-
diac genes [37-39], KLF4 is a critical transcriptional regu-
lator of stress responses in cardiomyocytes [25-27],
Smad3 is a key mediator of cardiac inflammation and fi-
brosis [40], and ZNF143 is critical for heart development
in zebrafish [41].
Signal-regulated expression of eRNAs is a common

theme [13,20,29,30], an effect that we observed with the
AC16 enhancers (Figure 6E). Specifically, our analyses
revealed that 114 out of 208 (~55%) NF-κB binding site
eRNAs are regulated by TNFα, with almost all upregu-
lated, whereas only 169 out of 938 (~18%) non-NF-κB
binding site eRNAs are regulated by TNFα, with two-
thirds upregulated (Figure 6B, E, and F). Thus, the
non-NF-κB binding site enhancers may represent a class
of constitutive enhancers that control housekeeping
functions in AC16 cells.
To further investigate the potential gene regulatory

functions of the predicted NF-κB and non-NF-κB en-
hancers in AC16 cells, we assayed transcription levels
by GRO-seq at the enhancers and their nearest
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Figure 7 The TNFα-induced transcriptional response in AC16 cells reveals a functional link between inflammation and cardiomyocyte biology.
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annotated neighboring putative target genes with and
without TNFα treatment (Figure 6F). We analyzed separ-
ately (1) upregulated NF-κB enhancers (left), (2) upreg-
ulated non-NF-κB enhancers (middle), and (3)
downregulated non-NF-κB enhancers (right). Interest-
ingly, transcription of the enhancers and target genes
were well correlated (i.e., upregulation of enhancer tran-
scription was correlated with an upregulation of target
gene transcription, whereas downregulation of enhancer
transcription was correlated with a downregulation of
target gene transcription) (Figure 6F). These results pro-
vide further support for the functionality of the NF-κB
and non-NF-κB enhancers predicted by GRO-seq.
The TNFα-induced transcriptional response in AC16 cells
reveals a functional link between inflammation and the
biology of cardiomyocytes
To relate the transcriptome changes to biological pro-
cesses, we performed gene set enrichment analyses and
gene ontology analyses on both TNFα up- and downregu-
lated protein-coding genes identified by GRO-seq in the
AC16 cell transcriptome (Figure 7A; Additional file 5).
The biological functions associated with the up- and
down-regulated gene sets are closely related to cardiac
function. For example: (1) motor protein and myosin-
related muscle functions are directly related to the elec-
trophysiology of heart muscle [42], (2) fibroblast prolif-
eration and endothelial-to-mesenchymal transition
contribute to cardiac fibrosis [7,43]; and (3) mitochon-
drial function and lipid oxidation are closely related
to normal cardiac physiology [44-46]. These dynamic
transcriptome changes reflect the time-dependent shift-
ing of biological processes in cardiomyocytes in re-
sponse to TNFα (Figure 7A). Interestingly, genes related
to muscle function and inflammation are upregulated
immediately, whereas genes related to mitochondrial
function and metabolism are downregulated first and
upregulated later in the time course (Figure 7A). These
results highlight the sequential transcriptional responses
that underlie shifting cellular responses in cardiomyo-
cytes in response to TNFα treatment.
We augmented this analysis using a database from the

Cardiovascular Gene Ontology Annotation Initiative
project, which contains more than 4,278 genes critical
for cardiac physiology and pathology. A large fraction of
both up- and downregulated genes are in the cardiac-
associated gene list (Figure 7B) and ~20% are regulated
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Figure 8 TNFα induced transcriptional responses in AC16 cardiomyocytes result in corresponding changes in mRNA and protein levels
with similar, but delayed, kinetics. A) Western blots of c-Fos, c-Jun, the NF-κB p50 subunit, and snRNP70 (a loading control) from whole cell
extracts of control and TNFα-treated AC16 cells (25 ng/ml of TNFα for the indicated treatment times). The assays were repeated three times.
B) Scatter plots showing the concentration of secreted cytokines determined using a Bio-rad Bio-Plex cytokine assay, including IL-6, IL-8, and
MCP-1 as indicated in control and TNFα-treated AC16 cells (25 ng/ml of TNFα for the indicated treatment times). Each data point represents the
mean ± SEM for three independent biological replicates. C) Scatter plots showing the level of transcription (by GRO-seq), mature mRNA (by
RT-qPCR), and protein (by Western blotting or Bio-Plex cytokine assay) for FOS, JUN, NFKB1, IL6, IL8, and CCL2, as indicated, in control and
TNFα-treated AC16 cells (25 ng/ml of TNFα for the indicated treatment times). Each data point represents the mean ± SEM for two (GRO-seq) or
three (RT-qPCR, Western, Bio-Plex cytokine assay) independent biological replicates.
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by TNFα treatment (Figure 7C). Interestingly, 166 of the
1,146 enhancers predicted by GRO-seq are located near
genes critical for cardiac physiology (data not shown).
Collectively, our analyses of the TNFα-altered transcrip-
tome indicate that the AC16 cellular state switches from
maintenance of basal housekeeping functions to defense
against inflammatory stress.

TNFα-induced transcriptome changes result in
corresponding alterations in the steady-state levels of
mRNAs and proteins
As expected, the TNFα-induced changes in the AC16
transcriptome result in corresponding changes in mature
mRNA and protein levels in a similar manner, but with
delayed kinetics (Figure 8). For example, the robust up-
regulated transcription of key TNFα target genes (e.g.,
FOS, JUN, NFKB1, IL6, IL8, and CCL2) is followed by
corresponding changes in the steady-state levels of the
cognate mRNAs and proteins, with a delay of approxi-
mately 20 to 100 minutes for mRNA and 120 to 240 mi-
nutes for proteins. These results clearly illustrate how
the dynamically regulated transcriptome alters the cellu-
lar proteome. These results also further support our ob-
servation that AC16 cardiomyocytes secrete cytokines in
response to TNFα stimulation (Figure 8C). These cyto-
kines may play an essential role in the overall effects of
inflammation in cardiac biology.

Role of non-coding RNAs and the TNFα-induced
proinflammatory transcriptome
Protein-coding genes represent only part of the AC16
transcriptome; the functions carried out by the non-
coding transcripts that we identified may also play critical
roles in the inflammatory response in cardiomyocytes.
Discerning the potential functions of ncRNAs can be dif-
ficult due to limited annotations and direct information
available. To overcome these limitations, we performed
gene ontology analyses using the Genomic Regions
Enrichment of Annotations Tool (GREAT), which aids
in predicting the molecular functions, associated bio-
logical processes, and disease associations based on the
genomic region of interest and nearby genomic regions
[47]. As such, GREAT has proven to be a powerful tool
for studying cis-regulatory elements. Using GREAT, we
found that TNFα-induced lncRNAs, eRNAs, and anti-
sense transcripts are enriched in the same biological
processes as the TNFα-induced protein-coding genes
(Additional file 6). For example, both CASP8 and
FADD-like apoptosis regulator (CFLAR) and its antisense
transcript are upregulated upon TNFα stimulation
(Additional file 1A). CFLAR is a crucial component of
the signaling pathway involved in cardiac remodeling and
heart failure [48]. In addition, the lncRNA metastasis-
associated lung adenocarcinoma transcript 1 (MALAT1),
which is predicated to be downregulated in many types of
heart disease by the NextBio-Disease Atlas (http://www.
nextbio.com/b/search/da.nb), is downregulated upon TNFα
stimulation (Additional file 1B). In addition to these anti-
sense and lncRNAs, several primary microRNA tran-
scripts that are associated with cardiac function and
deregulated in pathological conditions of the cardiovascu-
lar system are regulated by TNFα. For example, micro-
RNA-21 (miR-21), an abundant microRNA whose primary
transcript is upregulated by TNFα (Additional file 1C), is
upregulated in many types of heart disease and may be a
useful therapeutic target [49,50]. Moreover, the non-
coding RNA MIRLET7BHG, which is a precursor for five
microRNAs including let-7a3 and let-7b, is downregulated
upon TNFα treatment (Additional file 1D). Let-7 family
members are highly expressed in the heart and are essential
for cardiac function and development [51]. Collectively,
these data suggest that non-coding RNAs are a key compo-
nent of the TNFα-mediated proinflammatory transcrip-
tome in cardiomyocytes.

Discussion
Understanding the proinflammatory cardiomyocyte
transcriptome using AC16 cells as a model
Heart disease remains the primary cause of mortality
worldwide. Understanding the biology and function of car-
diomyocytes is critical to discovering and reducing the
causes of cardiac diseases and preventing the progression
from heart injury to eventual heart failure. A global view of
the proinflammatory cardiomyocyte transcriptome is a key
component of our overall understanding. Our integrated
genomic analyses using AC16 human cardiomyocytes as a
model have helped to identify ~30,000 expressed tran-
scripts under basal and proinflammatory stress conditions,
including protein-coding, as well as a wide variety of non-
coding, transcripts. Our analyses serve as a guide for
studying functionally annotated as well as unannotated
Pol I, II, and III transcripts, and our data are an excellent
resource for understanding the cardiomyocyte transcrip-
tomes and the transcriptomes of related cell types.

Dynamic regulation of the AC16 transcriptome
A large fraction (18%) of the AC16 Pol II transcriptome is
regulated by TNFα, which occurs extremely rapidly, with a
large number of transcripts affected within 10 minutes of
TNFα treatment (Figure 3). This regulation is highly dy-
namic, with the maximum regulation for most up- and
downregulated transcripts occurring after 30 minutes of
TNFα treatment, with a return to basal state at 120 minutes
(Figure 4). Such a dynamic regulatory pattern is consistent
with the oscillatory pattern of NF-κB nuclear translocation
and gene activation [22] and is likely to play a key role in
the signaling outcomes that drive cardiomyocyte biology in
response to TNFα. Unlike a mitogenic growth response,
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which upregulates the expression of Pol I and III tran-
scripts to meet the increased protein synthesis demands
of proliferating cells [13,14], the proinflammatory re-
sponse has little effect on the expression of Pol I and III
transcripts (Figure 5). These differences reflect the dif-
ferent needs of cells responding to mitogenic and stress
signals.
Strikingly, we observed that a large fraction (~80%) of

TNFα-responsive transcription is downregulated fol-
lowing TNFα treatment (Figure 3C). In this regard, the
loss of GRO-seq signal (i.e., active Pol II-mediated tran-
scription) was accompanied by a loss of Pol II protein
on the downregulated genes (Figure 4), as expected.
Little is known about the mechanisms of gene repres-
sion during proinflammatory responses, especially at a
global level. Potential mechanisms of repression in-
clude: (1) active repression associated with the recruit-
ment of transcriptional corepressors to target genes, (2)
release of transcriptional activators, or (3) passive
redistribution of the Pol II transcription machinery to
other highly induced genes. Interestingly, in general,
NF-κB is recruited to TNFα-activated genes, but not
TNFα-repressed genes in response to TNFα treatment
(Figure 4C), suggesting that the gene repression we ob-
served is not due to modulation of NF-κB binding. Other
transcription factors may play a role in downregulation;
for example, motif analyses of the downregulated gene
promoters revealed a significant enrichment of transcrip-
tion factor Sp1 binding sites (data not shown).

A functional link between inflammation and
cardiomyocyte function at the transcriptional level
The temporal regulation of gene expression in AC16
cells in response to TNFα, as reflected in our GRO-seq
analyses, serves as a transcriptional readout of the se-
quential shift in cellular responses during the time course
of treatment (Figure 7A). The upregulated and downreg-
ulated biological responses are closely related to cardiac
function and indicate a shift from a basal cellular state to
a proinflammatory stress-defense state. The transcripts
driving these biological responses include those encoding
proinflammatory mediators (e.g., NFKB1, IL8) and cell
death-related factors (e.g., TNF, CFLAR, APLF), which
are induced during the acute proinflammatory re-
sponse. In addition, the expression of transcripts critical
for maintaining normal cardiomyocyte function (e.g.,
TCF21, CALM1) is disrupted by TNFα treatment. Co-
regulated transcripts may share a similar regulatory
mechanism or be functionally related. For instance, we
identified TNFα-regulated microRNA precursors, which
are further processed into several critical cardiac-
associated microRNAs (e.g., mir-21 and let-7 family
members) that target mRNAs required for cardiac func-
tion [49-51].
Conclusions
Collectively, our studies show how cells reorganize their
transcriptomes to respond to proinflammatory signals,
doing so in a manner that is distinctly different than re-
sponse to other cellular signals (e.g., mitogenic; [13]).
The dynamic transcriptome changes that we observed
reflect the time-dependent shifting of biological pro-
cesses in cardiomyocytes in response to TNFα (Figure 9).
Moreover, our results suggest that proinflammatory
stimulation is sufficient to capture many of the hall-
marks of cardiovascular disease, suggesting a central role
for the NF-κB pathway in heart disease.

Methods
Cell culture and treatments
AC16 human adult ventricular cardiomyocyte cells [52]
were purchased from the American Type Cell Culture
(ATCC). The cells were maintained in DMEM F-12 sup-
plemented with 12.5% fetal bovine serum. TNFα was
purchased from PeproTech (cat. no. 300-01A) and the
IKKα/β inhibitor BAY-11-7082 was purchased from Cal-
biochem (cat. no. 196870). For TNFα treatments, the
cells were grown to 75% confluence, switched to serum-
free medium for 24 hours, and then treated with TNFα
(25 ng/ml) for the indicated time. For experiments with
BAY-11-7082, the cells were pretreated with the inhibi-
tor (5 μM) or DMSO vehicle for 1 hour prior to treat-
ment with TNFα for 30 minutes.

Antibodies
The antibodies used were as follows: NF-κB p65 (Abcam;
cat. no. ab7970), Pol II (Santa Cruz; cat. no. SC-899 and
SC-900, mixed in a 1:4 ratio), β-tubulin (Abcam; cat. no.
ab6046), SNRP70 (Abcam; cat. no ab51266), c-Fos (H-125,
Santa Cruz; cat. no. sc-7202), c-Jun (H-79, Santa Cruz; cat.
no. sc-1694), and NF-κB p50 (Abcam; cat. no. ab7971).

Cell fractionation, extraction, and western blotting
For the cytoplasmic and nuclear extraction experiments
shown in Figure 1A, AC16 cells were seeded at ~3 × 106

cells per 15 cm diameter plate and treated as described
above. After collecting the cells, extracts of the cytoplas-
mic and nuclear fractions were made according to the
protocol provided with the Sigma CelLytic™ NuCLEAR™
Extraction Kit. Specifically, the cells were swollen in iso-
tonic buffer [10 mM Tris–HCl, pH 7.5, 2 mM MgCl2,
3 mM CaCl2, 0.3 M sucrose, 1 mM DTT, and 1x Roche
Complete Protease Inhibitor Cocktail (RCPIC)] on ice
for 15 minutes and lysed by the addition of 0.6% IGE-
PAL CA-630 detergent with vortexing. The lysates were
centrifuged and the supernatants were collected as the
cytoplasmic fraction. The crude nuclear pellet was
washed once with isotonic buffer, resuspended in extrac-
tion buffer (20 mM HEPES, pH 7.9, 1.5 mM MgCl2,
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Figure 9 TNFα signaling results in RNA polymerase II-dependent transcriptional outcomes and downstream biological effects in human
cardiomyocytes. TNFα signaling activates an NF-κB-mediated transcriptional program in AC16 cardiomyocytes. Integrated genomic analyses
capture transcriptome alterations for all expressed Pol I, II, III transcripts in inflammatory cardiomyocytes. Pol II transcripts are the main drivers of
the rapid and dynamic transcriptome changes, whereas non-Pol II transcripts show limited responses to TNFα . The Pol II dependent globally
transcriptome changes include both protein coding and non-coding transcripts, which orchestrate the subsequent biological effects of
inflammation on cardiomyocytes.
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0.42 M NaCl, 0.2 mM EDTA, 25% v/v glycerol, 1 mM
DTT, and 1× RCPIC), and vortexed vigorously for 20 mi-
nutes at 4°C. The resuspended nuclear material was then
centrifuged and the supernatant taken as the nuclear ex-
tract. For each fraction under the indicated conditions,
40 μg protein was analyzed on an 8% polyacrylamide-
SDS gel and transferred to a nitrocellulose membrane.
Western blotting was performed with the appropriate
primary and secondary antibodies.
For the whole cell extraction and Western blotting

experiments shown in Figure 8, AC16 cells were seeded
at ~1 × 106 cells per 10 cm diameter plate and treated as
described above. After collecting the cells, whole cell ex-
tracts were made in lysis buffer [50 mM Tris–HCl,
pH 7.9, 150 mM NaCl, 1% NP-40, 0.5% Na deoxycholate
(DOC), 1% SDS, 1 mM DTT, and 1x Roche Complete
Protease Inhibitor Cocktail (RCPIC)] on ice for 30 mi-
nutes. The cell lysates were sonicated by using a Biorup-
tor UC200 at the high setting for a 5-minute cycles of
30 seconds on and 60 seconds off to release the chroma-
tin bound proteins. The lysates were centrifuged and the
supernatants were collected as the whole cell extracts. 20
μg protein was analyzed on an 12% polyacrylamide-SDS
gel and transferred to a nitrocellulose membrane. West-
ern blotting was performed with the appropriate primary
and secondary antibodies.
Bio-plex cytokine assay
AC16 cells were seeded at ~1 × 105 cells per well in 6-
well plates and treated as described above. The cell cul-
ture supernatants were collected and BSA was added as a
carrier protein to a final concentration of 0.6%. The su-
pernatants were centrifuged at 1,000 × g for 15 minutes
at 4°C and 10,000 × g for 10 minutes at 4°C to remove
cells and cell debris, respectively. The supernatants were
assayed on a custom designed Bio-Plex Pro™ cytokine
assay chip from Bio-rad to quantify the secretion of IL-6,
IL-8 and MCP-1 according to the manufacturer’s instruc-
tions and run on a Bio-Plex 200 reader.
RNA isolation and RT-qPCR
AC16 cells were seeded at ~1 × 105 cells per well in 6-well
plates and treated as described above. After collecting the
cells, total RNA was isolated using TRIzol Reagent (Life
Technologies) according to the manufacturer’s protocol.
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Total RNA was reverse transcribed using oligo (dT)
primers and M-MLV reverse transcriptase, and was then
subjected to real-time quantitative PCR (qPCR) using
gene-specific primers:

� NFKB1_Fwd: 5′-CAGTGGTGCCTCACTGCTAA-3′
� NFKB1_Rev: 5′-GGACAACGCAGTGGAATTTT-3′
� IL6_Fwd: 5′-ATTCTGCGCAGCTTTAAGGA-3′
� IL6_Rev: 5′-GAGGTGCCCATGCTACATTT-3′
� TBP_Fwd: 5′-ATGTTGAGTTGCAGGGTGTG-3′
� TBP_Rev: 5′-CCCAGATAGCAGCACGGTAT-3′

All target gene expression was normalized to TBP ex-
pression. Each experiment was conducted with a mini-
mum of three biological replicates.

Chromatin immunoprecipitation-sequencing (ChIP-seq)
ChIP
ChIP was performed as described previously [53,54] with a
few modifications [55]. AC16 cells were seeded at ~3 × 106

cells per 15 cm diameter plate and treated as described
above. The cells were cross-linked with 1% paraformalde-
hyde in PBS for 10 minutes at 37°C and quenched in
125 mM glycine in PBS for 5 minutes at 4°C. The cells
were then collected and lysed in Farnham lysis buffer
(5 mM PIPES pH 8.0, 85 mM KCl, 0.5% NP-40, 1 mM
DTT, and 1x RCPIC). A crude nuclear pellet was collected
by centrifugation, resuspended in lysis buffer (1% SDS,
10 mM EDTA, 50 mM Tris–HCl, pH 7.9, 1 mM DTT,
and 1x RCPIC), and incubated on ice for 10 minutes. The
chromatin was sheared at 4°C by sonication using a Bior-
uptor UC200 at the high setting for four 5-minute cycles
of 30 seconds on and 60 seconds off to generate chroma-
tin fragments of ~300 bp in length. The soluble chromatin
was diluted 1:10 with dilution buffer (20 mM Tris–HCl,
pH 7.9, 0.5% Triton X-100, 2 mM EDTA, 150 mM NaCl,
1 mM DTT and 1x RCPIC) and pre-cleared with protein
A agarose beads. The pre-cleared supernatant was used in
immunoprecipitation reactions with antibodies against the
factor of interest or with rabbit IgG as a control. The
immunoprecipitated material was washed once with low
salt wash buffer (20 mM Tris–HCl, pH 7.9, 2 mM EDTA,
125 mM NaCl, 0.05% SDS, 1% Triton X-100, 1 μM aproti-
nin, and 1 μM leupeptin), once with high-salt wash buffer
(20 mM Tris–HCl, pH 7.9, 2 mM EDTA, 500 mM NaCl,
0.05% SDS, 1% Triton X-100, 1 μM aprotinin, and 1 μM
leupeptin), once with LiCl wash buffer (10 mM Tris–HCl,
pH 7.9, 1 mM EDTA, 250 mM LiCl, 1% NP-40, 1% so-
dium deoxycholate, 1 μM aprotinin, and 1 μM leupeptin),
and once with 1x Tris-EDTA (TE). The immunoprecipi-
tated material was eluted in elution buffer (100 mM
NaHCO3, 1% SDS) and was then digested with proteinase
K and RNase H to remove protein and RNA, respectively.
The immunoprecipitated genomic DNA was then
extracted with phenol:chloroform:isoamyl alcohol and pre-
cipitated with ethanol.
ChIP-seq library preparation
The immunoprecipitated DNA was purified further
using the MinElute PCR Purification Kit from Qiagen.
After purification, 50 ng of ChIPed DNA for each condi-
tion was used to generate libraries for sequencing, as
previously described [56], with some modifications.
Briefly, the DNA was end-repaired and a single “A”-base
overhang was added using the Klenow fragment of E.
coli DNA polymerase. The A-modified DNA was ligated
with Illumina sequencing adaptors using the Illumina
TruSeq DNA Sample Prep Kit. The ligated DNA (250 ±
25 bp) was size-selected by agarose gel electrophoresis
and extraction, amplified by PCR, and purified using
AmPure beads (Beckman Coulter). The final libraries
were subjected to QC (size, purity, adapter contamin-
ation) and sequenced using an Illumina Hiseq 2000 per
the manufacturer’s instructions.
ChIP-seq data analyses
NF-κB p65 and Pol II ChIP-Seq data in control and
TNFα-treated AC16 cells were generated in the experi-
ments described herein. In addition, existing datasets
were downloaded from the NCBI’s GEO (Gene Expres-
sion Omnibus) database as listed below, and analyzed:

� GSM807734 HumanAdultHeart_acCBP-p300_ChIP-
seq [57]

� GSM706848 Fetal_Heart.H3K4me1 [58]
� GSM733755 Bernstein_HSMM_H3K27ac [59]
� GSM1022657 UW_ChipSeq_HCM_CTCFRep1 [60]
� GSM1022677 UW_ChipSeq_HCM_CTCFRep2 [60]
� GSM935372 Harvard_ChipSeq_K562_RPC155_std

[59]
� GSM935343 Harvard_ChipSeq_K562_TFIIIC-

110_std [59]

The ChIP-seq reads were aligned to the hg19 human
reference genome using the Bowtie software package
[61]. Mapped reads were further converted to (1) “bed”
files for later Metagene and read-density analyses and
(2) “wiggle” files counting reads in non-overlapping 200-
bp windows across the genome for presentation as gen-
ome browser tracks by using the BEDTools software
package [62].

Global run-on-sequencing (GRO-seq)
Isolation of nuclei
AC16 cells were seeded at ~3 × 106 cells per 15 cm
diameter plate and treated as described above. The cells
were washed three times with ice-cold PBS, swollen
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osmotically, and collected in ice-cold lysis buffer
[10 mM Tris–HCl, pH 7.4, 0.5% NP-40, 3 mM CaCl2,
2 mM MgCl2, 1 mM DTT, 1x RCPIC, and SUPERa-
se•In™ (Ambion)] and centrifuged at 500 × g for 5 min
at 4°C. The cells were then resuspended in 1.5 ml of lysis
buffer and pipetted up and down through a narrow tip
opening 20 times to release the nuclei. The nuclei were
washed twice with a large volume of lysis buffer, and the
washed nuclear pellets were resuspended in freezing buf-
fer (50 mM Tris–HCl, pH 8.3, 40% glycerol, 5 mM
MgCl2, 0.1 mM EDTA), counted, and stored in 100 μl
aliquots containing 5 × 106 nuclei.

GRO-seq library preparation
GRO-seq libraries were generated from two biological
replicates of AC16 cells under the indicated treatment
conditions, as previously described [18], but with limited
modifications described previously [13]. The TNFα time
course GRO-seq libraries were sequenced using an Illu-
mina Genome Analyzer (GAIIx). For the α-amanitin ex-
periments, the isolated nuclei were treated with 1 μg/ml
α-amanitin (Sigma, cat. no. A2263) for 15 minutes on
ice prior to the run-on reaction. The libraries generated
from α-amanitin-treated nuclei were amplified with
indexed primers containing barcodes according to the
Illumina TrueSeq small-RNA library prep kit, then se-
quenced using an Illumina Hiseq 2000.

GRO-seq data analyses
GRO-seq data were processed and mapped using a com-
putational pipeline described previously [13], with limited
modifications. Briefly, all reads longer than 32 bp were
aligned to the hg19 human reference genome (including
autosomes, X chromosome, and a complete copy of rDNA
repeats) using the SOAP2.21 software package [63].

Transcript calling
Unbiased transcript calling was performed using an al-
gorithm based on a two-state hidden Markov model as
described previously [13]. A shape parameter value of 5
was used for the non-transcribed-state emission prob-
ability and a value of 200 was used as the negative log of
the transition probability from the transcribed state to
the non-transcribed state. To map the relatively smaller
non-Pol II transcripts more accurately in the α-amanitin
GRO-seq datasets, values of 5 and 10, respectively, were
used. In order to capture non-Pol II transcripts more
effectively, the control signal was subtracted from the α-
amanitin signal using a running maximum of window-
size three (25 bp) and adding the baseline of the mean
positive signal of the control. Transcripts were then
called using an algorithm based on a two-state hidden
Markov model as described above.
Functional definitions of called transcripts
Called transcripts were assigned to one of the following
eight functional classes, according to the rules enumerated
below. For all annotations, the following sources were
used: RefSeq, GENCODE release 11, ENSEMBLE,
lincRNAsTranscripts, repeat masker tracks (obtained
using the UCSC genome browser; [64]), and mirBase 18
[64,65].

(1) Protein-coding transcript. A transcript with more
than 20% of its sequence overlapping any well
annotated protein-coding gene.

(2) Non-coding transcript. A transcript overlapping
an annotated non-coding RNA gene, such as those
encoding a miRNA, tRNA, snRNA, or lncRNA,
without any restrictions on the size of the transcript
or the quality of the overlap. By the standard
definition, lncRNAs are non-protein-coding
transcripts equal to or longer than 200 nucleotides
in the mature (processed) form, whereas short
ncRNAs are non-protein-coding transcripts shorter
than 200 nucleotides in the mature (processed) form.

(3) Intergenic transcript. A transcript that does not
overlap with an annotated gene. Examples are likely
to include: (i) novel unannotated protein-coding and
non-coding genes, (ii) enhancer transcripts, or (iii)
post poly (A) transcription for some well-annotated
Pol II genes with low expression levels.

(4) Enhancer transcripts (eRNAs). A pair of short
(< 9 kb) bidirectionally transcribed intergenic
transcripts that do not significantly overlap
annotated transcripts [20]. We call those that
overlap an NF-κB binding site (i.e., ±1000 kb from
the center of an NF-κB p65 peak as defined by
ChIP-seq) “NF-κB binding site eRNAs” and those
that do not overlap an NF-κB binding site “non-
NF-κB binding site eRNAs”. Putative target genes for
the identified enhancers marked by the eRNAs were
defined by searching for the nearest protein-coding
or lncRNA gene in either direction.

(5) Divergent transcript. A transcript that overlaps
the 5′ promoter driving expression of a detected
primary transcript, such as an mRNA or a
lncRNA. A divergent transcript was only included
if (1) >10% of the transcript overlapped the
proximal region of a promoter (± 500 bp relative
to the TSS) driving expression of a primary
transcript >1 kb in size on the opposite strand
and (2) the transcript was <50% the size of the
primary transcript, which effectively excluded
divergent enhancer-transcript pairs.

(6) Antisense transcript. A transcript that runs
antisense to a protein-coding gene or lncRNA gene
and has >20% of its sequence overlapping >20% of
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an annotated protein-coding gene or lncRNA gene
on the opposite strand.

(7) Repeat transcript. A transcript with more than
50% of its sequence overlapping genomic regions
identified in the RepeatMasker track in the UCSC
Genome Browser.

(8) Other genic transcript. A transcript that has a
poor match to existing annotations, but cannot be
unambiguously classified as “unannotated” or
“intergenic”. Transcripts in this category overlap any
segment of a gene annotation on either strand, but
shows <20% matching to the annotation. Examples
in this category may include: (1) genes with
promoter proximal RNA Pol II pausing, but very
low levels of transcription in the gene body, (2)
divergent transcripts from internal start sites
(antisense), (3) intronic enhancer transcripts, or (4)
short cryptic transcripts of unknown function.

Determining regulation by TNFα
Regulation in response to TNFα treatment was deter-
mined using the edgeR software package [21] with a
false discovery rate (FDR)-corrected q value threshold
of < 0.001, as described previously [13].

Other genomic data analyses
Metagene analyses
Metagene analyses were performed to illustrate the dis-
tribution of average GRO-seq and ChIP-seq read dens-
ities ±5 kb surrounding fixed genomic landmarks (e.g.,
TSSs, the midpoint of paired eRNAs, center of ChIP-seq
peaks) using the metagene functions in our GRO-seq
package, as previously described [13,20,66].

Motif-finding analyses
De novo motif analyses for a 1 kb region around the
center of the overlap of paired eRNAs were performed
using MEME [33] with a “–zoops” setting (zero or one
occurrence per sequence) and a motif size between 8
and 15. The outputs of MEME were matched to known
motifs using STAMP [34] with default settings.

Gene ontology analyses
Gene ontology (GO) analyses were performed using the
Genomic Regions Enrichment of Annotations Tool
(GREAT), version 2.0.2 [47], with the following associ-
ation rule: Basal + extension: 5000 bp upstream, 1000 bp
downstream, 1,000,000 bp max extension, curated regu-
latory domains included.

Gene set enrichment analyses
Gene Set Enrichment Analysis (GSEA), version 2.0.12
[67], was used to identify all enriched GO terms at each
TNFα treatment time point using the 0 minute condition
as a control with a set of GO terms from humans (http://
download.baderlab.org/EM_Genesets/September_02_2011/
Human/symbol/GO/Human_GO_bp_no_GO_iea_symbol.
gmt). For ranked inputs to GSEA, we used pre-ranked
gene lists based on edgeR differential analysis after filtering
out gene sets whose size was greater than 500 or less than
25. Specifically, significantly regulated genes (FDR < 0.1%)
were placed at the top or bottom of the list and ordered
by descending or ascending fold changes, respectively.
Less significantly regulated genes (FDR ≥ 0.1%) were
placed in the middle of the list and ordered by ascending
or descending p-values.

Hierarchical clustering and heatmaps
Hierarchical clustering was performed using the results
of the GSEA. GO terms with the top ten Normalized
Enrichment Scores (NESs) were selected and combined
from both the upregulated and downregulated GO terms
in each time point, compared to the 0 min treatment
condition. Heatmaps were generated using the heat-
map.2 function in the gplots package in R with default
parameters. Inputs for the heatmaps included (1) nor-
malized GRO-seq signals (median-centered and scaled
relative to the 0 min time point for expression analyses;
e.g. Figure 3B) and (2) NESs (e.g., Figure 7A). For the
latter, heatmaps comparing later to earlier time points
(e.g., 10 min vs. 30 min, or 30 min vs. 120 min) were
generated in a similar manner, but using different edgeR
outputs for the comparisons.

Data access
The GRO-seq and ChIP-seq data sets described herein
are available from the NCBI Gene Expression Omnibus
(GEO) (http://www.ncbi.nlm.nih.gov/geo/) using acces-
sion number GSE51225.

Additional files

Additional file 1: GRO-seq identifies non-coding transcripts relevant
to cardiac biology whose expression is regulated by TNFα [Related
to Figure 2]. Genome browser track representations of GRO-seq read
density distributions for different TNFα-regulated cardiac-related transcripts.
Scale bars and annotations are shown. The DNA strands are indicated.
(A) CFLAR and CFLAR-AS; (B) MALAT1; (C) mir-21 precursor (MIR21); (D)
MIRLET7BHG.

Additional file 2: Enhancer transcription is inhibited by α-amanitin
[Related to Figure 5]. Nuclei isolated from AC16 cells were incubated on
ice with α-amanitin for 15 min. prior to the run-on reaction and were then
subjected to GRO-seq analysis. The plots are metagene representations of
the average GRO-seq read distributions ± 4 kb around the midpoint of
overlap of bidirectionally transcribed eRNAs.

Additional file 3: Genome browser views of GRO-seq and ChIP-seq
data for non-Pol II genes [Related to Figure 5]. Non-Pol II transcription
units in AC16 cells were identified by GRO-seq using α-amanitin. The top
panel in each set shows genome browser tracks of GRO-seq data under
control and α-amanitin-treated conditions, or with TNFα treatment for
30 minutes. The bottom panel in each set shows genome browser tracks

http://download.baderlab.org/EM_Genesets/September_02_2011/Human/symbol/GO/Human_GO_bp_no_GO_iea_symbol.gmt
http://download.baderlab.org/EM_Genesets/September_02_2011/Human/symbol/GO/Human_GO_bp_no_GO_iea_symbol.gmt
http://download.baderlab.org/EM_Genesets/September_02_2011/Human/symbol/GO/Human_GO_bp_no_GO_iea_symbol.gmt
http://download.baderlab.org/EM_Genesets/September_02_2011/Human/symbol/GO/Human_GO_bp_no_GO_iea_symbol.gmt
http://www.ncbi.nlm.nih.gov/geo/
http://www.biomedcentral.com/content/supplementary/1471-2164-15-155-S1.pdf
http://www.biomedcentral.com/content/supplementary/1471-2164-15-155-S2.pdf
http://www.biomedcentral.com/content/supplementary/1471-2164-15-155-S3.pdf
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of ChIP-seq data for RPC155 in K562 cells, CTCF in HCM cells, and Pol II in
AC16 cells with and without TNFα treatment. A) a tRNA transcription unit
on Chr1 (tRNA2-GlyCCC). B) a non-Pol II transcription unit located in the
first intron of the protein-coding gene PMF1. C) three intergenic non-Pol
II transcription units on Chr5 (140,084,426 –140,112,361).

Additional file 4: NF-κB-dependent enhancers identified by GRO-seq
and motif analyses are enriched for NF-κB binding [Related to
Figure 6]. GRO-seq was used to identify 208 NF-κB enhancers in AC16 cells,
which are enriched in NF-κB motifs (see Figure 6D). As shown in the graph,
they are also enriched for NF-κB p65 binding + TNFα relative to non-NF-κB
enhancers, as determined by ChIP-seq. The graph is a metagene
representation of the average ChIP-seq read distributions for NF-κB p65
shown relative to the midpoint of overlap of the bidirectionally transcribed
eRNAs (± 4 kb) for NF-κB enhancers and non-NF-κB enhancers ± TNFα.

Additional file 5: Enriched GO terms in gene set enrichment
analyses of TNFα-regulated protein-coding genes [Related to
Figure 7]. To relate transcriptome changes to biological processes in
AC16 cells, we performed gene ontology and gene set enrichment
analyses on TNFα up- and downregulated protein-coding gene sets
identified by GRO-seq.

Additional file 6: Gene ontology analyses of different classes of
transcripts [Related to Figure 7]. Gene ontology analyses of different
classes of transcripts. Due to incomplete availability of annotations or
limited direct functional information, assignment of GO terms to
non-coding transcript can be difficult. We performed gene ontology
analyses using the Genomic Regions Enrichment of Annotations Tool
(GREAT), which aids in the predicting the molecular function, associated
biological processes, and disease associations based on the genomic
region of interest and nearby genomic regions [1]. The table below lists
the top enriched GO biological processes for (A) TNFα upregulated
protein-coding genes and adjacent genomic regions, (B) TNFα
downregulated protein-coding genes and adjacent genomic regions, (C)
TNFα upregulated lncRNA genes and adjacent genomic regions, (D) TNFα
upregulated enhancers and adjacent genomic regions, and (E) TNFα
upregulated antisense RNA genes and adjacent genomic regions. Binom
FDR Q-Val = Binomial false discovery rate Q-value (adjusted p-value found
using an optimized FDR approach; the minimum FDR at which the test is
called significant.). Binom Fold Enrichment = Binomial fold
enrichment (observed/expected).
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