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Abstract

canine models of retinal degenerative disease.

and, with few exceptions, also in the prcd-mutants.

gRT-PCR, rcd1, xlpra2

Background: Although more than 246 loci/genes are associated with inherited retinal diseases, the mechanistic
events that link genetic mutations to photoreceptor cell death are poorly understood. miRNAs play a relevant role
during retinal development and disease. Thus, as a first step in characterizing miRNA involvement during disease
expression and progression, we examined miRNAs expression changes in normal retinal development and in four

Results: The initial microarray analysis showed that 50 miRNAs were differentially expressed (DE) early (3 vs. 7 wks)
in normal retina development, while only 2 were DE between 7 and 16 wks, when the dog retina is fully mature.
miRNA expression profiles were similar between dogs affected with xlpra2, an early-onset retinal disease caused by
a microdeletion in RPGRORF 15, and normal dogs early in development (3 wks) and at the peak of photoreceptor
death (7 wks), when only 2 miRNAs were DE. However, the expression varied much more markedly during the
chronic cell death stage at 16 wks (118 up-/55 down-regulated miRNAs). Functional analyses indicated that these
DE miRNAs are associated with an increased inflammatory response, as well as cell death/survival. gRT-PCR of
selected apoptosis-related miRNAs (“apoptomirs”) confirmed the microarray results in xlpra2, and extended the
analysis to the early-onset retinal diseases rcd1 (PDE6B-mutation) and erd (STK38L-mutation), as well as the slowly
progressing prcd (PRCD-mutation). The results showed up-regulation of anti-apoptotic (miR-9, —19a, =20, —21, —29b,
—146a, —155, =221) and down-regulation of pro-apoptotic (miR-122, —129) apoptomirs in the early-onset diseases

Conclusions: Our results suggest that apoptomirs might be expressed by diseased retinas in an attempt to
counteract the degenerative process. The pattern of expression in diseased retinas mirrored the morphology and
cell death kinetics previously described for these diseases. This study suggests that common miRNA regulatory
mechanisms may be involved in retinal degeneration processes and provides attractive opportunities for the
development of novel miRNA-based therapies to delay the progression of the degenerative process.
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Background

The visual process begins in highly specialized photore-
ceptors (PRs), which are neurons with a complex struc-
ture and a unique ability to convert light photons into
electrochemical messages. After the initial quantal light
absorption by the rhodopsin visual pigments, a signal is
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generated in the PR and subsequently transmitted through
two different synaptic pathways in the outer and inner
plexiform layers. The information is then conveyed to
higher visual centers by the ganglion cell axons. To sub-
serve this role, a large number of genes are involved in PR
specification, differentiation, and maintenance [1]; and
mutations in many of these genes impair PR function and
viability. Indeed, of the 246 loci that are associated with
retinal degeneration in humans, in 206 the disease-
causative genes have been identified [2]. Several genes
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have also been associated with retinal degeneration in
animals [3], and at least 24 mutations in 18 genes re-
lated to canine retinal degenerations have been identi-
fied [4].

Although the number of identified genetic mutations
underlying different forms of retinal degeneration is sys-
tematically growing, the molecular events and key compo-
nents that link specific mutations to PR degeneration
remain poorly characterized. Multiple pathways, both
pro-apoptotic and pro-survival, are associated with PR de-
generation [5-9]. Furthermore, epigenetic mechanisms, in-
cluding miRNA regulation, also play an essential role in
the control of the complex visual processes during eye
development and disease [10]. miRNAs are small (~20-
25 bp), endogenous, non-coding single-stranded regula-
tory RNA molecules that regulate various cellular func-
tions, including differentiation, proliferation, and cell
death/survival (reviewed by [11]). They are expressed in
all living organisms in tissue- and developmental stage-
specific manner, and are responsible for individual
phenotypical variations. miRNAs silence gene expres-
sion via cleavage, degradation, and/or translational in-
hibition of their downstream target mRNAs (reviewed
for mammalian miRNAs by [12]). Each miRNA has the
potential to regulate multiple different mRNA targets
simultaneously, while a given mRNA target might simi-
larly be targeted by multiple miRNAs (reviewed by
[13]). The number of known mature miRNAs is cur-
rently 30,424 in 193 species and approximately 2,580
have been discovered in humans [14]. Of these, 349 have
been linked to 163 different diseases [15].

Recently, the use of miRNA-microarray analysis in
several tissues has enabled the identification of altered
miRNA transcriptomes during development/aging and
disease, including profiles of pathologically altered miR-
NAs in the eye and retina (reviewed by [16]). Also, it
has been shown that miRNA pathways control import-
ant steps during the developmental timing of retinogen-
esis [17], and appear to regulate neuronal differentiation
[18]. The use of other technologies (i.e. deep sequen-
cing) has also provided very comprehensive profiles of
miRNAs and revealed a complex expression pattern of
small RNA in the mouse retina and RPE/choroid [19].
Of particular interest are “apoptomirs” [20], miRNAs
that have been shown in many studies to be relevant
mediators of cell death signaling [21-23]. Assessment of
disease-related miRNAs in human retinal diseases obvi-
ously is limited by the availability of appropriately staged
tissues from patients having the same disease and causa-
tive gene mutation. Notably however, the dog has been
widely recognized as an ideal model for a variety of hu-
man retinal disease studies, as canine inherited retinopa-
thies result from mutations in disease gene homologues
and exhibit comparable phenotypic features, including age
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of onset and progression [4]. Some models have the ad-
vantage of an early and predictable disease course, making
the time window for experimentation very short and easily
comparable. As such, they are an ideal system in which to
determine if miRNAs are associated with PR death and if
their involvement is dependent on the specific mutation
driving disease.

To identify potential miRNAs associated with PR de-
generation, we used the four following canine models:
X-linked progressive retinal atrophy 2 (xlpra2), rod cone
dysplasia 1 (rcdl), early retina degeneration (erd), and
progressive rod-cone degeneration (prcd) that have muta-
tions in RPGR, PDE6B, STK38L, and PRCD, respectively.
The progression and histopathology in xlpra2, rcdl, and
erd are comparable, and characterized by a fast degener-
ation of the PR cell layer and decreased number of PRs
[24-27]. The first two models have mutations in genes that
cause human inherited blindness, while no equivalent hu-
man disease for erd has been reported yet. In contrast,
pred is a post-developmental, slowly progressive disease
where human patients and animal models show disease
variation in the presence of the same mutation [28,29].

For the initial microarray analysis, retinas of dogs af-
fected with xlpra2 were compared to normal samples.
To expand the microarray results, we then undertook a
qRT-PCR analysis of the expression of selected apopto-
mirs in the three additional models, rcd1, erd, and pred.

Our results show that although different mutations
trigger the retinal diseases studied, there are commonal-
ities in the miRNA expression pattern that appear to be
associated with the PR cell death kinetics.

Results

miRNA expression profiles of normal and xlpra2 retinas
We used Affymetrix microarrays to generate compre-
hensive miRNA expression profiles of retinas from nor-
mal and xlpra2-mutant dogs. Retinas were examined at
3, 7, and 16 wks of postnatal age, the time points rele-
vant for detection of developmental and degeneration-
related miRNAs [24]. In mutant retinas, the 3 wk time
point (induction phase) is prior to the beginning of apop-
tosis and retinal structure is normal. The execution phase
at 7 wks shows a ~10-15% decrease in PR number and is
associated with the peak of cell death. Lastly, at the
chronic cell death phase (16 wks) the mutant retina shows
a sustained but reduced cell death rate and a persistent
low-grade degeneration with loss of 40% of the PR layer
[24]. A heat map illustrating the expression differences of
all miRNAs present on the microarray in xlpra2-mutants
compared to normals (log2 and FC ratios) at the 3 ages
is shown as Figure 1. Only miRNAs showing FC differ-
ence > +/-2 and a Benjamini-Hochberg (BH)-adjusted
p<0.05 were considered significant, and they are de-
tailed in Additional files 1, 2, and 3. The BH procedure
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Figure 1 Heat map representation of all miRNAs present on the microarray. The heat map illustrates the expression differences of all
miRNAs on the microarray between xlpra2-mutants vs. normals at the 3 tested ages (3, 7, and 16 wks). miRNAs are listed from the highest to the
lowest fold change difference at 16 wks. The x-axis shows the ages, while the y-axis displays the different miRNAs. The map contains log2
intensity/fold change ratios that are color coded with red corresponding to up-regulation and blue to down-regulation.

was applied to control the false discovery rate, which is
the proportion of “discoveries” (significant results) that
are actually false positives.

Age-dependent miRNA expression changes during
development in normal and xlpra2 retinas-within group
comparisons

To properly assess the potential variation in miRNA ex-
pression within each experimental group, we first charac-
terized the miRNA expression profile during development
of normal retinas by comparing the 3, 7, and 16 wks time
points. While the retina is still developing at 3 wks, it
reaches structural maturation at 7 wks, and at 16 wks it is

considered fully developed [26]. Results showed that miR-
NAs in normal retinas were differentially expressed (DE)
at 7 vs. 3 wks (27 up-/23 down-regulated) and 16 vs. 3
wks (42 up-/52 down-regulated) (Additional file 1) thus
identifying developmentally regulated differences that
occur when the retina is developed (7 and 16 wks) or early
in differentiation (3 wks). In contrast, there were limited
expression differences between the 16 and 7 wk time
points (1 up-/1 down-regulated) (Additional file 1). Thus
our results suggest that changes in miRNA expression
parallel the structural development of the normal dog ret-
ina, with major changes occurring between 3 wks and
later time points, and minimal differences occurring
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between 16 and 7 wks when the retina is fully mature. Al-
though changes in miR-122 expression were not statisti-
cally significant due to high variation between biological
replicates, it showed the largest FC differences among all
miRNAs, being highly down-regulated at 7 compared to 3
wks (FC = -13.2) and 16 wks (FC = -29.6).

In parallel, we examined miRNA expression during
development in xlpra2-mutant retinas. A total of 37 (21
up-/16 down-regulated) DE miRNAs were identified at
7 vs. 3 wks, 22 (14 up-/8 down-regulated) at 16 vs.
7 wks, and 56 (38 up-/18 down-regulated) at 16 vs. 3 wks
(Additional file 2). Interestingly, while the 2 DE miRNAs
(miR-363 and -187) in normal retinas between 16 and 7
wks were not DE in xlpra2 at the same ages, 19 DE miR-
NAs between 7 and 3 wks (miR-17-5p, —18, —18a, —18b,
—-29a, —-29b-2-star, —29c-star, —34b, —34c, —106a, —106b,
-129, -130b, -133a, -133b, -133c, -133d, -211, -363),
and 21 between 16 and 3 wks (miR-28, —29a, —29b, —-29b
-2-star, -29c, —29c-star, -34b, -34c, -34c-3p, -92a-
1-star, -130b, —135a-star, -187, -212, —221, -222, -222a,
-326, -363, -431, —551a) were DE in both normal and
xlpra2 within group comparisons. The identification
of these common DE miRNAs indicates that similar
mechanisms occur in normal and xlpra2 retinas until
structural maturation is completed. At later time points,
miRNA profiles in mutant retinas are more variable sug-
gesting that miRNA-related mechanisms that may com-
promise retinal function are activated between these
phases of the disease.

miRNA expression changes between normal and
xlpra2-mutant retinas

To identify miRNAs that are associated with the xlpra2-
disease process, we directly compared miRNA expres-
sion profiles of xlpra2 and normal retinas at 3 disease
phases: induction-3 wks, execution-7 wks, and chronic
cell death-16 wks. No differences in miRNA expression
were found at 3 wks, and only 2 miRNAs were up-
regulated in xlpra2-mutants at 7 wks (Additional file 3).
Yet at the 16 wk time point, 173 (118 up-/55 down-
regulated) miRNAs were DE in xlpra2 compared to nor-
mals (Additional file 3). Of the 2 DE miRNAs identified
at 7 wks, only miR-155 was also DE at 16 wks. A graph-
ical illustration of all the DE miRNAs at 16 wks is shown
in the heat maps, which illustrate the up- (Figure 2A)
and down- (Figure 2B) regulated miRNAs at 16 wks,
and their expression patterns at the earlier time points
in the disease. Some highly up-regulated miRNAs (e.g.
miR-146a, —-19a, -21, -101) at 16 wks in xlpra2 vs.
normals also showed high fold change at early ages,
although they were not statistically significant (Figure 2A).
Of interest was the irregular expression pattern of
miR-122 in xlpra2 compared to normals; although
not significant, this miRNA showed the lowest FC
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differences at 3 and 16 wks, while it was increased at
7 wks (Figure 2B).

These results demonstrate that whereas miRNA ex-
pression differences were minimal during either the
induction or execution phases of the disease, i.e. 3 and
7 wks, a substantial number of altered miRNAs were
identified during the chronic cell death phase. This sug-
gested that miRNAs would not be the initiators of the
PR degeneration process but instead may represent co-
effectors and/or arise in response to retinal disease
progression.

Functional grouping and target analysis of the DE
miRNAs at 16 wks

To further assess the potential functional significance of
DE miRNAs during the chronic cell death phase of the
diseases, we investigated the relationships and common
biological functions of the 173 DE miRNAs using the
Ingenuity Pathway Analysis (IPA) database. The 7 net-
works that were significantly associated with the DE
miRNAs at 16 wks were: (1) Cancer, Reproductive Sys-
tem Disease, Endocrine System Disorders (23 up- and 3
down-regulated miRNAs, see Additional file 4 for a
graphical representation); (2) Connective Tissue Disor-
ders, Inflammatory Disease, Inflammatory Response (11
up- and 10 down-regulated miRNAs); (3) Reproductive
System Disease, Connective Tissue Disorders, Inflamma-
tory Disease (13 up- and 5 down-regulated miRNAs); (4)
Endocrine System Disorders, Reproductive System Dis-
ease, Metabolic Disease (9 up- and 6 down-regulated
miRNAs); (5) Reproductive System Disease, Cancer, Re-
spiratory Disease (8 up- and 7 down-regulated miRNAs);
(6) Cancer, Gastrointestinal Disease, Hereditary Disorder
(14 up-regulated miRNAs); (7) Endocrine System Disor-
ders, Reproductive System Disease, Connective Tissue
Disorders (13 up-regulated miRNAs) (Additional file 5).
Identified genes and node molecules of particular interest
are those with known functional relevance in the retina
and/or are related to apoptosis, a hallmark of our disease
models. These include NFkB, PARP, pro-inflammatory cy-
tokines (network 1, Additional file 4), CREBI (network 2),
DICERI (network 3), PAX6 (network 4), E2F1, tretinoin,
VIM (network 5), BIRCS, SIRT1, tretinoin (network 6),
IL21, Vegf (network 7).

The 5 IPA biological functions showing the highest
association with the misregulated miRNAs were identi-
fied and summarized in Additional file 6. Although the
DE miRNAs were related to general diseases/disorders
including the inflammatory response, of particular
interest were DE miRNAs associated with cellular de-
velopment, cellular growth and proliferation, cell cycle,
cell death and survival, and cell-to-cell signaling and
interaction. These data suggest involvement of the DE
miRNAs in the chronic cell death phase and therefore
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Figure 2 Heat map representation over time of the DE miRNAs at 16 wks. The heat map illustrates the fold change differences identified by
microarray analysis between xlpra2-mutant and normal retinas at all three ages (3, 7, and 16 wks) for the up-regulated (A) and down-regulated (B)
miRNAs at 16 wks. miR-183 and miR-122 were also tested by qRT-PCR, therefore they were also included in spite of their expression differences being
not statistically significant. miRNAs are listed from the highest to the lowest fold change difference at 16 wks. The x-axis shows the time points, while
the y-axis displays the DE miRNAs at 16 wks. The map contains log2 intensity/fold change ratios that are color coded with red corresponding to
up-regulation and blue to down-regulation. Apoptomirs that were selected for gRT-PCR analysis are boxed and marked in bold.
J

in the progression of the disease. The results also
indicate that the DE miRNAs might be related to the
inflammatory response, which has been shown to be
relevant during retina degeneration in several diseases
[30-32].

Finally, to identify potential target molecules that might
be directly affected by over-expression of miRNAs, we
determined in silico common targets of the highly up-
regulated miRNAs at 16 wks (FC > 5, Additional file 3). A
total of 35 genes were identified (Table 1), including
CREBI, one of the genes in IPA network 2 that was
already associated with the DE miRNAs (Additional
file 5).

gRT-PCR analysis of selected apoptomirs to validate the
microarray data and expand the results to additional
canine models

Based on the functional analyses and phenotypical evi-
dence of PR cell death, we used qRT-PCR of 11 selected
DE apoptomirs to validate the microarray results
(Figure 2). The main functions of the selected apopto-
mirs were anti-apoptotic (miR-9, -19a, -20, -21, -155,
-183, -221), pro-apoptotic (-122, -129), or miRNAs
with dual anti- and pro-apoptotic properties (-29b,
-146a) (for references see Additional file 6). In addition,
we characterized changes in apoptomir expression in
additional canine models: rcdl, erd, and prcd. Although
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Table 1 Common gene targets of all the up-regulated (FC > 5) miRNAs identified at 16 wks
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Gene target symbol

Definition

NCBI accession sequences

FBXO28

F-box protein 28

BBX Bobby sox homolog (Drosophila)

SPRED1 Sprouty-related, EVH1 domain-containing protein 1

MMAA Methylmalonic aciduria (cobalamin deficiency) type A (mitochondrial)
ST8SIA4 ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 4

KCNK10 potassium channel, subfamily K, member 10

uspPoy Ubiquitin specific peptidase 9, Y-linked

ALGTT Asparagine-linked glycosylation 11, alpha-1,2-mannosyltransferase homolog (Yeast)
DIEXF Digestive organ expansion factor homolog (Zebrafish)

RORA RAR-related orphan receptor A

PHACTR2 Phosphatase and actin regulator 2

SNTB2 Syntrophin, beta 2 (dystrophin-associated protein A1, 59 kDa, basic component 2)
BCATT Branched chain amino-acid transaminase 1, cytosolic

PAGT Phosphoprotein associated with glycosphingolipid microdomains 1
CREB1 cAMP responsive element binding protein 1

PTART Protein prenyltransferase alpha subunit repeat containing 1

TFCP2L1 Transcription factor CP2-like 1

SLCIA2 Solute carrier family 1 (glial high affinity glutamate transporter), member 2
ACVR2B Activin A receptor, type IIB

ST8SIA3 ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 3

UBN2 Ubinuclein 2

ADCY1 Adenylate cyclase 1 (brain)

DNAH14 Dynein, axonemal, heavy chain 14

SSR1 Signal sequence receptor, alpha

FUT9 Fucosyltransferase 9 (alpha (1,3) fucosyltransferase)

SCAI Suppressor of cancer cell invasion

CDK6 Cyclin-dependent kinase 6

TNRCEB Trinucleotide repeat containing 68

LOC728264 Homo sapiens cDNA FLJ44517 fis, clone UTERU3002667

CBX5 Chromobox homolog 5

NSLT Kinetochore-associated protein NSL1 homolog

KSR2 Kinase suppressor of ras 2

NEAT1 Nuclear paraspeckle assembly transcript 1

SH3TC2 SH3 domain and tetratricopeptide repeats 2

TSIX X (inactive)-specific transcript, antisense

NM_015176; AK303381
NM_020235; NM_001142568
NM_152594

NM_172250

NM_005668

NM_021161; NM_138317
NM_004654

NM_001004127

NM_014388; AK314061
NM_002943; NM_134260
NM_014721; NM_001100164
NM_006750

NM_005504; AK128527
NM_018440

NM_004379; NM_134442
NM_001099666

NM_014553; AL137740
NM_004171; U01824
NM_001106; BC096245
NM_015879

NM_173569

NM_021116

NM_001373

NM_003144; CR599599
NM_006581

NM_173690; NM_001144877
NM_001259; NM_001145306
NM_015088; NM_001024843
AK126481

NM_012117; NM_001127321
NM_015471; AK303250
NM_173598

NR_028272

NM_024577; AB075865
NR_003255

The complete list of DE miRNAs identified at 16 wks between xlpra2 and normal retinas is shown in Additional file 3. The 35 common gene targets are reported

with their symbols, definitions, and NCBI accession numbers.

there is no observed peak of cell death in the prcd dis-
ease, PRs begin to degenerate first in the inferior and
then in the superior region of the retina after 25 wks, at
which time the ERG is altered. This disease is of par-
ticular interest for epigenetic control because human
and animal patients show phenotypical variations in the
presence of the same mutation, both in severity and in
affected retinal regions (superior/inferior) [33]. Thus,

the identification of miRNAs as prcd modulators that
influence the disease phenotypes is relevant to provide
insights into this specific disease mechanism.

Expression changes of apoptomirs during
development-within group analysis

We initially analyzed the expression of apoptomirs during
development in normal retinas. miR-155 was up-regulated
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at 3 compared to 7 and 16 wks, while miR-129 and miR-
29b showed the opposite trend. miR-122 was highly up-
regulated at 16 wks compared to the other two ages, and
was down-regulated at 7 vs. 3 wks. Other down-regulated
miRNAs included miR-21 at 16 vs. 7, and miR-19a, -20,
-221, -146a at 16 vs. 3 wks (Figure 3). In the xlpra2 mu-
tant retinas, miR-122 was up-regulated at 7 compared to 3
or 16 wks. Expression of additional apoptomirs increased
at later ages, e.g. miR-129 and -29b at 7 vs. 3 wks, and
miR-21, -221, -29b, -146a at 16 wks compared to early
time points (Figure 3).

With few exceptions, the qRT-PCR and the microarray
data within groups were in agreement. Although FC dif-
ferences were similar in both analyses, expression of miR-
122 only achieved statistical significance in the qRT-PCR
analysis. Also miR-21, —29b at young ages, and miR-146a
were found to be DE by qRT-PCR but not microarray
analysis. The BH-adjustment of the p-value likely was re-
sponsible for these differences, as it was applied in the
microarray analysis and not in qRT-PCR.

The qRT-PCR results were different during develop-
ment in rcdl, erd, and pred retinas. In rcdl, the expres-
sion of miR-19a, —155, and -183 did not vary in any of
the ages. The remaining miRNAs had a peak of expres-
sion at 7 wks; they were all up-regulated vs. 3 wks and
miR-9, —20, —21, —155 were also up-regulated vs. 16 wks
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(Figure 3). Thus, expression changes in rcdl were simi-
lar to those in xlpra2, although in the latter disease they
appeared to be slightly delayed (i.e. between 16-7 wks);
these differences reflect the more severe and faster dis-
ease course of rcdl. In erd retinas, apoptomir expression
changes were minimal; miR-221 was up-regulated at
11.9-14.1 vs. 6.4 wks, while miR-29b and -146a showed
peaks of expression at 8.3-9.9 and 11.9-14.1 wks, re-
spectively (Figure 3). In prcd inferior and superior ret-
inas, 3 and 5 miRNAs, respectively, were up-regulated at
24 vs. 10 wks. Two of them (miR-183 and -21) were al-
tered regardless of the retinal location (Figure 3).

The miRNA expression profiles reflect the cell death
kinetics and the phenotypical changes observed for the 3
early-onset diseases, which show that rcdl is a very ag-
gressive disease with morphological changes occurring
early in life, while xlpra2 and erd are more moderate.

Expression changes of apoptomirs between mutant and
normal retinas

With the exception of miR-183, all the tested anti-
apoptotic apoptomirs were up-regulated in xlpra2 at 16
wks, and miR-155 also at 7 wks (Figure 4A and B). In con-
trast, the pro-apoptotic apoptomirs (-122, -129) were
down-regulated in xlpra2 at 16 wks, the time period after
the peak of cell death. The expression pattern of miR-122
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Figure 3 Expression changes of DE apoptomirs during development. Significant FC differences as measured by gRT-PCR are reported at 7
vs. 3,16 vs. 7, and 16 vs. 3 wks in normal, xlpra2, and rcd1; at 8.3/9.9 vs. 64, 11.9/14.1 vs. 83/9.9, and 11.9/14.1 vs. 64 wks in erd; and at 24 vs. 10
wks in inferior and superior retinas of prcd-mutants. Bars show SD of biological triplicates. Only DE apoptomirs were displayed.
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Figure 4 Expression changes of apoptomirs between mutant and normal retinas at different ages. FC differences of apoptomirs as
measured by gRT-PCR are shown at 3, 5, 7, 16 wks in xlpra2 and rcd1, as well as 6.4, 83-9.9, 11.9-14.1 wks in erd compared to normals. Selected
apoptomirs belong to different functional groups: A) anti-apoptotic that were DE at later ages: miR-9, —19a, —20; B) anti-apoptotic that were DE
during the course of disease: miR-21, =155, —=221; C) pro-apoptotic: miR-122, —129; D) dual properties, anti- and pro-apoptotic: miR-29b, —146a.
An asterisk indicates statistical significance (p < 0.05; FC > +/-2); bars show SD of biological triplicates. Results for miR-183 are not illustrated
because they were not significant in any of the diseases and ages tested.

was unique; it was down-regulated at 3 wks and up-
regulated at 7 wks in xlpra2 (Figure 4C). The apoptomirs
with dual anti- and pro-apoptotic properties (miR-29b
and -146a) were up-regulated in xlpra2 at 16 wks
(Figure 4D). Comparative results between xlpra2 and
normal retinas showed high concordance between the
hybridization-based microarrays and the amplification-
based technology (qQRT-PCR) and comparable FC differ-
ences in expression were also observed. The only
exception was miR-122, which, as described above,
reached statistical significance only in the qRT-PCR
analysis. Overall, our results suggest that up-regulation
of anti-apoptotic and down-regulation of pro-apoptotic

miRNAs accompany disease progression in the xlpra2-
mutant retinas.

Similar patterns of apoptomir expression were ob-
served in rcdl and erd retinas, especially at 16 wks, and
the magnitude and time course directly reflected the se-
verity and rate of progression of the diseases (Figure 4).
Few apoptomirs were DE at early ages in rcdl; i.e. the
anti-apoptotic miR-20 and the pro-apoptotic miR-122
were down-regulated at 3 wks, while the anti-apoptotic
miR-155 and -221 were up-regulated at 5 wks during the
execution phase of the disease. At 7 wks, up-regulation
was found for miR-155 and -21 in both rcdl and erd,
miR-9, —-146a, —221 only in rcdl, and miR-19a, —-29b only
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in erd. In agreement with the results observed in xlpra2,
notable results for the rcdl and erd at 16 wks included
down-regulation of the pro-apoptotic miR-122 and -129,
and up-regulation of almost all anti-apoptotic miRNAs
(Figure 4). The only exception was that the expression
of miR-221 was not altered in erd but was highly up-
regulated in the other 2 diseases. These results indicate
that the expression of the selected apoptomirs is similar in
the 3 early-onset canine models studied and suggest that
up-regulation of anti-apoptotic and down-regulation of
pro-apoptotic miRNAs may be engaged to counteract the
PR degeneration process.

Expression changes of apoptomirs in the slowly progressive
prcd disease

To determine if the observed changes in apoptomir ex-
pression were specific for early-onset diseases, we analyzed
their expression in prcd, a slowly progressive autosomal
recessive retinal disorder. The qRT-PCR results showed
that 4 miRNAs (up-regulated: miR-9 and -146a; down-
regulated: miR-20 and -21) were DE between 10 wks old
prcd superior vs. normal retinas and that 4 miRNAs
(-19a, —29b, —155, —183) were up-regulated in 10 wks old
pred inferior vs. normals (Figure 5A). These findings indi-
cate that DE miRNAs in pred at the early age were region-
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specific as none of them was DE in both superior and in-
ferior retinas.

An increased number of DE apoptomirs was found in
24 wks old pred vs. 16 wks normals; eight (up-regulated:
miR-9, -20, -21, -29b, -146a, -155, -183; down-
regulated: -122) in the inferior and six (up-regulated:
miR-9, -20, -21, -29b, —146a; down-regulated: —122) in
the superior retina (Figure 5B). In contrast to the 10 wk
time point, the data at 24 wks demonstrated a similar
pattern of expression in superior and inferior retinas in-
dicating a region-independent involvement of apopto-
mirs at this later age.

Several similarities in miRNA expression patterns were
found between prcd and the 3 early-onset diseases. At
10 wks, before PR cell death, DE apoptomirs in the
superior prcd retina were the same as in rcdl at 7 wks
and, with the exception of miR-183, the DE apoptomirs
in the inferior retina were the same as in erd at 8.3-9.9
wks. At 24 wks, when PRs start to die, DE apoptomirs in
the superior and inferior retinas were also DE in xlpra2,
rcdl, and erd at 16 wks, with the exception of miR-21
that was not DE in rcdl (Figure 4). Although pred is
slowly progressive and the phenotype is different from
the 3 early-onset diseases, the expression profiles of the
selected apoptomirs at later ages were similar. Thus, a
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Figure 5 Expression changes of apoptomirs in prcd vs. normal retinas. Values that significantly differ as measured by qRT-PCR are indicated
with an asterisk (*: p < 0.05; FC > +/-2). A) FC differences between either superior or inferior retinas in 10 wks old prcd vs. age and retinal location
matched normals. B) FC differences between either superior or inferior retinas in 24 wks old prcd vs. 16 wks old entire normal retinas.
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common reactive response that causes up-regulation of
anti-apoptotic and down-regulation of pro-apoptotic
apoptomirs appears to be engaged by the PR degener-
ation process in all 4 models.

Expression changes of apoptomirs in RPE/choroid samples
The RPE cell layer nourishes the adjacent retinal visual
cells and, among other functions, serves to transport small
molecules to maintain retinal environment (reviewed by
[34]). Although the RPE cells do not degenerate in these
canine models until many years after the disease onset, we
aimed to determine if the observed expression changes in
apoptomirs were specific to the retina or also were present
in the RPE. To this end, we compared normal, xlpra2,
rcdl, and erd RPE/choroid samples at 7 wks. The results
revealed that miR-20 and -146a were up-regulated in all 3
diseases, miR-19a in xlpra2 and rcdl, while miR-29b ex-
clusively in erd (Figure 6). Of these, only miR-146a in rcd1l
and -29b in erd were also DE in retina at the same age
(Figure 4). These results indicate specific differences in
apoptomir expression at 7 wks in the 2 different cell types,
and do not suggest a key role of RPE cells at this age in
the transport of apoptomirs to the diseased retinas.

gRT-PCR analysis of genes involved in miRNA biogenesis

To determine if the miRNA expression changes corre-
lated with dysregulation of the entire miRNA machinery,
we also examined the age-related expression of DICERI,
XPO5, and DROSHA, three genes that are involved in
miRNA biogenesis. DICERI is also a component of IPA
network #3, which was affected by the DE miRNAs at 16
wks (Additional file 3). The qRT-PCR results showed
little difference in expression; the miRNA processing

Page 10 of 17

enzyme DROSHA was down-regulated in erd retinas at
11.9/14.1 wks and at 7 wks in RPE/choroids, while
DICERI was down-regulated in erd RPE/choroids at 7
wks. As no differences were found between normal and
rcdl or xlpra2-mutants at 3, 5, 7, and 16 wks, or normal
and prcd at 10 and 24 wks, our results support a specific
dysregulation of miRNA biogenesis in erd-mutants at
later ages.

Discussion

miRNA expression profiles in normal and xlpra2 retinas
The ability to monitor significant changes in a large
number of miRNAs simultaneously is a key factor in un-
derstanding their function during aging, and in health
and disease. This is particularly relevant, as populations
of small RNAs have been shown recently to be extremely
complex in mouse retina and RPE/choroid cells [19]. We
used the microarray technology to expand our knowledge
of miRNA-related mechanisms involved in normal PR de-
velopment and degeneration in xlpra2 retinas at three key
time points previously established for the disease [24].

In normal retina development, miRNA-related changes
predominantly occurred between 7—3 wks, with only min-
imal changes found at later time points when the retina
completes development (7 wks) and is structurally and
functionally mature (16 wks) [26]. In xlpra2, miRNA de-
velopmental expression patterns differed, with fewer DE
miRNAs between 7-3 wks and an increased number be-
tween 16—7 wks, suggesting that the altered expression at
later ages is directly related to disease progression.

These results were confirmed by a direct comparison
of the expression profiles of xlpra2 and normal retinas.
No DE miRNAs were found at the induction phase of
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Figure 6 Expression changes of apoptomirs between mutant and normal RPE/choroids. FC differences of apoptomirs as measured by
gRT-PCR are shown between xlpra2, rcd1, and erd-mutants compared to normals at 7 wks of age. Bars show SD of biological triplicates and values
that significantly differ are indicated with an asterisk (*: p < 0.05; FC > +/-2).
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the disease (3 wks), when the mutant PRs are developing
albeit abnormally, only 2 at the execution phase (7 wks),
and as many as 173 at the chronic cell death phase (16
wks). The high number of DE miRNAs identified at this
later time point suggests that the observed PR degener-
ation in our canine model elicits major changes in
miRNA expression and that these molecules might play
a key role late in disease progression. Similar to studies
in mice [35,36], our results also showed unique patterns
of miRNA expression changes that were age- and dis-
ease stage-dependent. This indicates that DE miRNAs
likely have specific functions at different time points in
the disease process, and that miRNA-dependent mecha-
nisms triggered during the chronic cell death phase of
the disease are different from those induced during the
execution phase.

The observed increase in miR-1 expression was also
previously found in the P347S-RHO model [37], rho
knockout, D307-rds, and rds null mutants [38] at com-
parable disease stages. We did not find any changes in
expression of either miR-24a, shown to repress apoptosis
in the developing Xenopus retina [39], or the miRNA-
183/96/182 cluster, which is highly expressed in mouse
retina and RPE/choroid cells [19] and PR, retinal bipolar,
and amacrine cells [35]. This cluster protects the retina
from bright light-induced degeneration [40] and syn-
dromic retinal degeneration [41], and is decreased in
retinas of transgenic P347S-RHO mice [37]. Although it
is difficult to directly compare these results due to differ-
ences in experimental conditions, our results indicate
that miRNA profiles can be quite similar in different ret-
inal diseases, although model, age, and species specific
expression changes also occur.

Target genes of DE miRNAs

Using a bioinformatics approach, we predicted potential
common target genes for the up-regulated (FC >5) miR-
NAs in xlpra2 at 16 wks. We identified a total of 35 genes,
the function of several of which might be related to PR de-
generation. SNTB2 is necessary for eye development in
Drosophila [42], SLC1A2 is a glutamate transporter and
glutamate reduction was observed in Miiller cell in rdl
retina [43], and CDK® is involved in retina degeneration
in mice [44]. While down-regulation of CREB1 has been
related to PR cell death in mouse models of retinal degen-
eration [8], an increase in the levels of native CREB1 has
been reported in the rcdl dog [45]. In addition, phos-
phorylation of CREB1/ATF1 in PRs of human AMD ret-
inas and in those of canine RP models, including rcdl,
erd, and precd during the chronic phase of cell death may
contribute to a pro-survival response [45]. These target
transcript predictions are useful in highlighting the pos-
sible miRNA-dependent regulatory mechanisms that
underlie retinal degeneration in the xlpra2-mutant dogs.
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However, additional experimental studies (for a review
see [46]) will be required to validate the predicted miRNA
target genes and to determine the effect of these miRNAs
on the potential targets in retina.

We previously identified 18 down-regulated transcripts
in xlpra2-mutants at 16 wks of age using custom made
retina-specific microarrays [47]. None of these genes were
among the common 35 predicted targets found in this
study at the same age. This could be due to the particular
composition of the microarrays (e.g. limited availability
and retina-specificity of the genes analyzed), as well as the
low number of DE transcripts found.

Network and functional IPA analyses of DE miRNAs
The IPA software was used to further characterize the
changes in miRNA expression at 16 wks. The results indi-
cated an alteration of networks related to the inflamma-
tory response and to cell death and survival. Inflammation
accompanies many retina degenerative diseases (reviewed
by [32]), including the rd10 mice model of retinitis pig-
mentosa [31]. In the xlpra2 model, retinal inflammation
occurs early during the disease process, and may conse-
quently influence the expression of correlated miRNAs.
Several pathways have been related to PR cell death
and survival [5,9], thus the association of cell death and
survival with the observed miRNA signature is particu-
larly provocative. However, since >70% of vertebrate
miRNAs are predicted to have at least one target related
to cell death/survival, and a single miRNA might regulate
a mixture of anti- and pro-apoptotic genes, one must be
cautious when categorizing a miRNA by its role in apop-
tosis (reviewed by [11]).

Apoptomir expression in normal, xlpra2, rcd1, erd,
and prcd
With this caveat in mind, we selected apoptosis and in-
flammation related apoptomirs for qRT-PCR to confirm
the microarray data and expand the results to 3 additional
retinal diseases and cell types (i.e. RPE/choroid). The se-
lected apoptomirs are all expressed in retina and were
divided into anti-, pro-, or both properties according to
the current literature (Additional file 7). Although this ap-
proach does not provide a comprehensive miRNA profil-
ing in the additional diseases, the results gives interesting
insights and comparison data to better understand the
miRNA-related mechanisms in different canine models.
Apoptomirs regulation during normal canine develop-
ment was in agreement with studies in other species.
We found an increased expression of miR-122 at 16 vs.
3 wks, in agreement with studies in normal adult mice
compared to postnatal at day 4 [48]. Our data also showed
high expression levels of miR-155 early in development,
and low expression of miR-19a and -20 after development
is completed. miR-155 was highly expressed at early
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developmental stages in Xenopus retina [49] and not de-
tected in 3 month old C57BL/6 ] mouse retinas [19], while
during murine development miR-19a and -20 are highly
expressed at early proliferative stages, but barely detect-
able in adult retina [50]. These results indicate that the se-
lected apoptomirs exert a common role during normal
retina development in several species.

The qRT-PCR results also revealed similar patterns of
apoptomir expression at 16 wks in the 3 early-onset
models and at 24 wks in precd, independent of the retinal
region. There is a differential rate of degeneration be-
tween superior and inferior quadrants in prcd, with the
inferior one occurring earlier and being more severe. As
the change from disease to degeneration occurs at >25
wks of age [51,52], our results suggest that disease is
comparable between superior and inferior quadrants in
the 24 wks old retinas analyzed. The similarities in ex-
pression with the other diseases are surprising, as prcd
is a slowly progressive disease and no peak of PR death
is observed. Although this might be due to low expres-
sion levels in normals, these results provide interesting
and unexpected commonalities in the expression of some
apoptomirs in the canine models that are independent of
the phenotype and kinetics of disease. Further studies with
an increased number of miRNAs (e.g. microarrays or
quantitative next generation sequencing) will be helpful to
confirm these initial observations.

The most relevant qRT-PCR finding showed a specific
increase in anti-apoptotic and decrease of pro-apoptotic
apoptomir expression in all disease models, suggesting
that during the chronic cell death phase compensatory
mechanisms are activated in the mutant retinas in an at-
tempt to prevent PR cell death. While these mechanisms
appear insufficient to stop the degenerative process, they
may influence the rate of progression. Expression of add-
itional DE miRNAs identified by microarray analysis rein-
forced this hypothesis: the anti-apoptotic miR-146b, —148a,
and -7 were up-regulated in xlpra2, while the pro-
apoptotic miR-34b was down-regulated. However, a few
exceptions were found; the normally pro-apoptotic let-7
family, miR-15a, and -16 were up-regulated, whereas
the anti-apoptotic miR-210 was slightly down-regulated.
This might indicate that these miRNAs exert a different
function or are involved in the repression of different
genes in retina cells. Further analyses are needed to con-
firm this prediction.

We found up-regulation of miR-29b in old compared to
young normal retinas and in mutants vs. normals during
the chronic cell death phase. This was in agreement with
expression pattern in normal mouse retina and in Nrl~'~
retinas compared to wild type [53]. We also found an in-
creased expression of miR-146a, —155, -9, —21 in mutants.
Up-regulation of miR-146a, -155, and -9 was found in
age-related macular degeneration [54], while miR-146a,
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-155, and -21 were up-regulated in P347S-RHO mutants
[37]. Yet, the expression pattern of miR-29b and -146a,
the apoptomirs with known dual anti- and pro-apoptotic
properties, was similar to that of anti-apoptotic miRNAs
suggesting that in retinal diseases these two miRNAs
might be involved in apoptosis repression.

Expression of genes involved in miRNA biogenesis

Our results indicate that retinas and RPE/choroids of
xlpra2, rcdl, and prcd-mutants have normal expression
patterns of effectors required for miRNA biogenesis, sug-
gesting that the miRNA production machinery is not dir-
ectly responsible for the alteration of the miRNA profiles.
In contrast, DROSHA was down-regulated in both the ret-
ina and RPE/choroids and DICERI in RPE/choroids of erd
mutants, indicating a dysfunctional miRNA metabolism.
Notably, conditional DICER deletion studies in the mouse
visual system lead to multiple retinal phenotypes, includ-
ing increased apoptosis and impaired retinal development,
differentiation, and maintenance (reviewed by [16]). The
relevance of these observations to the erd model, which
showed particular disease-specific features such as con-
comitant PR cell death and proliferation with formation of
hybrid rod/S-cones [27], needs further examination.

Conclusions

In the current study we found a number of DE miRNAs
at the late stage of the xIpra2 disease. We then confirmed
differential expression of selected apoptosis-related miR-
NAs by qRT-PCR and found a similar pattern of expres-
sion in rcdl and to a lesser extent in erd and prcd. These
results showed a general up-regulation of anti-apoptotic
and down-regulation of pro-apoptotic miRNAs, suggest-
ing that these miRNAs might be engaged to counteract
the degenerative processes. Although different mutations
trigger the retinal diseases studied, we observed common-
alities in the miRNA expression pattern that appear to be
associated with the PR cell death kinetics. These findings
are highly significant as they suggest that the use of
miRNAs as targets for future therapeutic design might
be effective in treating the chronic slow cell death phase
of retinal degenerative diseases regardless of the initiat-
ing mutation.

Methods

Tissue samples

Retinal tissues were collected from age-matched normal
and mutant dogs under deep pentobarbital anesthesia,
and the dogs were then euthanatized. The dogs are main-
tained at the Retinal Disease Studies Facility in Kennett
Square, Pennsylvania, and have a common genetic back-
ground but differ primarily at the investigated retinal dis-
ease locus [4]. To avoid fluctuations in gene expression
with time of the day [55], eyes were collected at a single
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time period (noon) as previously reported [47]. The re-
search was conducted in full compliance and strict ac-
cordance with the Association for Research in Vision and
Ophthalmology (ARVO) Resolution on the Use of Ani-
mals in Ophthalmic and Vision Research, and all proto-
cols were approved by the University of Pennsylvania
Institutional Animal Care and Use Committee (IACUC).
All efforts were made to minimize suffering.

Retinal diseases

Four different canine models were studied: a) X-linked
progressive retinal atrophy 2 (xlpra2) is the dog homolog
of X-linked retinitis pigmentosa (XLRP). The disease is
early-onset, affects rods and cones, and is caused by a 2-
bp microdeletion in RPGR exon ORF15 that creates a
frameshift and premature stop in the translated protein
[56]. Although the function of RPGR is not yet entirely
understood, it has been shown that the protein localizes
to the connecting cilium and participates in intraflagellar
protein transport, being essential for PR viability and cilio-
genesis (reviewed by [57]; b) rod cone dysplasia 1 (rcdl) is
an early-onset, autosomal recessive rod disease caused by
a nonsense mutation in the rod cyclic GMP phospho-
diesterase 6 [ subunit (PDE6B) that results in a stop
codon and truncation of the protein by 49 aa [58,59].
Cone PRs are not affected by the mutation, but also de-
generate secondarily; c) early retinal degeneration (erd) re-
sults from a mutation in STK38L that appears to play a
role in early PR development [27,60]. Abnormal develop-
ment and degeneration of rods and cones characterize the
disease and, as an unique feature, concurrent PR apoptosis
or mitosis, and formation of hybrid rod/S-cone cells occur
[27]. STK38L function in PRs is currently unknown, but
recent in vitro studies indicate that STK38L-mediated
Rabin8 phosphorylation is crucial for ciliogenesis [61]; d)
prcd is a post-developmental, slowly progressive auto-
somal recessive disorder [29]. The function of the mutant
gene PRCD is still unknown. Unlike the other three dis-
eases, prcd is characterized by a topographically distinct
pattern of disease distribution. Early and mild PR outer
segment disease is present uniformly across the retina at
10 wks of age, but degeneration begins in the inferior
retina after 25 wks of age and progresses more rapidly
[51,52]. To address these topographic differences, the
globes from prcd-affected dogs were hemisected in the
horizontal plane and the superior and inferior retina was
isolated and analyzed separately.

RNA extraction

Total RNA from neuroretina and retinal pigment epithe-
lium (RPE)/choroid was extracted following standard TRI-
zol procedures (Invitrogen-Life Technologies, Carlsbad,
CA). RNA concentration was assessed with a ND-1000
Spectrophotometer® (NanoDrop Technologies, Thermo

Page 13 of 17

Fisher Scientific, Wilmington, DE), and RNA quality veri-
fied by microcapillary electrophoresis on an Agilent 2100
Bioanalyzer with RNA 6000 Nanochips (Agilent Tech-
nologies, Santa Clara, CA). Only high quality RNA with
RIN >7 and A260/280 ratio >1.9 was used in both micro-
array and qRT-PCR analyses.

Experimental time points and microarray analyses

We initially compared the miRNA expression profiles of
normal and xlpra2 dog retinas at 3, 7, and 16 wks, which
are crucial ages in the progression of this disease [24]. A
minimum of 3 biological replicates/age/group were ana-
lyzed [except for normals (3 and 16 wks) and mutant
(7 wks) where 4 biological samples/age were used] with
miRNA-specific Affymetrix microarrays (GeneChip miRNA
Array) containing a total of 46,228 probes, 7,815 probe sets
among which 177 are canine specific miRNAs.

Microarray target preparation and hybridization
Microarray services were provided by the Penn Micro-
array Facility. All protocols were conducted as described
in the standard Affymetrix Expression Analysis Technical
Manual (Affymetrix Inc., Santa Clara, CA). Briefly, bio-
tinylated cRNA was prepared from 100 ng total RNA; fol-
lowing fragmentation, cRNA was hybridized for 16 h at
45°C on the Affymetrix miRNA-specific arrays. Microar-
rays were then washed at low (6X SSPE) and high
(100 mM MES, 0.1 M NaCl) stringency and stained
with streptavidin-phycoerythrin in an Affymetrix Fluid-
ics Station 400. Fluorescence was amplified by adding
biotinylated anti-streptavidin and an additional aliquot
of streptavidin-phycoerythrin stain. A confocal scanner
(Hewlett-Packard Gene Array Scanner G2500A) was used
to collect fluorescence signal after excitation at 570 nm.

Bioinformatic analyses

Affymetrix command console and expression console
were used to quantitate expression levels for targeted
miRNAs; default values provided by Affymetrix were ap-
plied to all analysis parameters. Border pixels were re-
moved, and the average intensity of pixels within the
75th percentile was computed for each probe. The aver-
age of the lowest 2% of probe intensities occurring in
each of 16 microarray sectors was set as background and
subtracted from all features in that sector. Probe sets for
positive and negative controls were examined in expres-
sion console, and facility quality control parameters were
confirmed to fall within normal ranges. Probes for each
targeted miRNA were averaged, log transformed, and
inter-array normalization performed using the Robust
Multichip Analysis (RMA) algorithm. Unsupervised hier-
archical clustering by sample was performed to confirm
that replicates within each condition grouped with most
similarity, and to identify any outlier samples. A two-way
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ANOVA with Benjamini-Hochberg (BH)-adjusted p < 0.05
and fold change (FC) > +/-2 was applied to generate lists
of statistically significant DE miRNAs in pairwise compar-
isons of replicate averages between conditions. On the
Affymetrix microarrays there are several probes for the
same miRNA that have the same exact sequence, yet a
different nomenclature (different species name) (e.g. cfa-
miR-155, hsa-miR-155, bta-miR-155, mml-miR-155, ...).
Thus, when a miRNA (e.g. -155) represented by several
identical probes was DE, we report in the Results sec-
tion by order of priority the canine (cfa) probe, then the
human (hsa). If none of these were represented, we list
the one with the species name that has the highest FC
difference.

The Ingenuity Pathways Analysis (IPA) database and
web-based analysis software (Ingenuity Systems, Inc.,
Redwood City, CA) [62] was used to identify networks,
biological functions, and functional processes that were
most significantly associated with the set of DE miRNAs
at 16 wks of age.

Furthermore, a target prediction software available on-
line [63] was utilized to predict possible common targets
of the up-regulated (FC > 5) miRNAs at 16 wks that had
homologues in humans. This comprehensive resource of
miRNA target predictions is a development of the mi-
Randa algorithm and uses a compendium of mammalian
miRNAs and the mirSVR regression method for predict-
ing likelihood of target mRNAs [64].

Quantitative real-time PCR (qRT-PCR)

qRT-PCR was used to validate the microarray results of
9 DE apoptomirs, as well as miR-122 and -183, in
xlpra2 and normal retinas at 3, 7, and 16 wks. These
analyses also included the 5 wk time period in both
groups (3 dogs/age/group). The studies were extended
to three additional diseases: a) rcdl at the same 4 time
points; b) erd-mutants at 6.4 wks (n=2) and 8.3-9.9 wks
(n =3) compared to the 7 wks normal and 11.9-14.1 wks
(n=2) compared to the 16 wk old normal; c¢) prcd-
mutant inferior and superior retinas at 10 wks compared
to inferior and superior retinas of normal dogs at the
same age, and, as only minor miRNA expression changes
were observed at 24 wks, both 24 wks old inferior and
superior prcd retinas were also compared to 16 wks old
normal entire retinas (3 dogs/age/group).

Lastly, RPE/choroids of normal, xlpra2, rcdl, and erd
dogs at 7 wks were also analyzed to determine if the ob-
served changes were retina-specific or if they also oc-
curred in neighboring cells.

Eleven miRNAs (Additional file 7) were tested by qRT-
PCR with either human or mouse TagMan assays to amp-
lify canine sequences (Applied Biosystems, Foster City,
CA). U43 was used as housekeeping miRNA because its
expression was uniform in all tested dogs in the microarray
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and qRT-PCR analyses. To analyze the expression of 4
genes involved in miRNA biogenesis (Additional file 7),
RNA samples were treated with RNase-free DNase
(Ambion, Austin, TX), and reverse-transcribed using
the High Capacity ¢cDNA Reverse Transcription Kit
(Applied Biosystems). The real-time reactions included
30 ng of ¢cDNA and canine specific TagMan probes.
Glyceraldehyde 3-phosphate dehydrogenase (GAPDH)
was used as housekeeping control because in the tested
diseases it performed most accurately, and with the least
variation between samples [27,47].

All the qRT-PCR reactions were performed in 96 well
plates using an ABI 7500 real-time PCR machine with
the 7500 detection software (v2.0.1, Applied Biosystems).
Comparisons were performed with the AACT method
[65] and statistical significance was verified with an un-
paired t-test (p < 0.05) and FC > +/-2.

Availability of supporting data

The complete microarray data set supporting the results
of this article were deposited in NCBI's Gene Expression
Omnibus [66] following the guidelines of the rationale of
minimum information about a microarray experiment
(MIAME), and are accessible through GEO Series acces-
sion number GSE35205.

Additional files

<
Additional file 1: DE miRNAs in normal retinas at different ages. DE
miRNAs (BH-adjusted p < 0.05 and FC > +/-2) identified by microarray
analysis in normal retinas at 7 vs. 3, 16 vs. 7, and 16 vs. 3 wks of age.
miRNAs are listed from the highest to the lowest fold change difference.

In green, apoptomirs tested by gqRT-PCR with the corresponding p-value
and FC difference.

Additional file 2: DE miRNAs in xlpra2-mutant retinas at different
ages. DE miRNAs (BH-adjusted p < 0.05 and FC > +/-2) identified by
microarray analysis in xlpra2-mutant retinas at 7 vs. 3, 16 vs. 7, and 16 vs.
3 wks of age. miRNAs are listed from the highest to the lowest fold
change difference. In green, apoptomirs tested by qRT-PCR with the
corresponding p-value and FC difference.

Additional file 3: DE miRNAs between xlpra2 and normal retinas.
DE miRNAs (BH-adjusted p < 0.05 and FC > +/-2) identified by microarray
analysis at 7 and 16 wks of age in xlpra2-mutants compared to normals.
miRNAs are listed from the highest to the lowest fold change difference.
In green, apoptomirs tested by gqRT-PCR with the corresponding p-value
and FC difference. No expression differences were found at 3 wks.

Additional file 4: IPA network “Cancer, Reproductive System
Disease, Endocrine System Disorders” significantly affected by DE
miRNAs. Most significantly affected IPA network “Cancer, Reproductive
System Disease, Endocrine System Disorders” identified with 23
up-regulated (marked in red) and 3 down-regulated (marked in green)
miRNAs that were DE by microarray analysis at 16 wks between xlpra2
and normal retinas. The complete list of miRNAs and genes belonging to
this network and the additional 6 significantly affected networks are
detailed in Additional file 5. The figure was adapted from Ingenuity
Systems [62].

Additional file 5: IPA networks associated with the DE miRNAs at
16 wks. The 7 IPA affected networks that were associated with the DE
miRNAs identified at 16 wks between xlpra2 and normal retinas are listed
with the number (in bold in red up- and green down-regulated), all node
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molecules that belong to the network, and the corresponding main
functions. A graphical representation of network 1 is shown in
Additional file 4.

Additional file 6: IPA biological functions associated with the DE
miRNAs at 16 wks. The IPA five most affected biological functions

(p < 0.05) that belong to the categories “Diseases and Disorders” and
"Molecular and Cellular Functions” are reported. The biological functions
are shown with the affected sub-groups (from the lowest to the highest
p-values), p-values, and the corresponding DE miRNAs.

Additional file 7: qRT-PCR assays used to examine the expression
of miRNAs or genes involved in miRNA biogenesis. The miRNA and
gene specific TagMan expression assays (Applied Biosystems catalog #)
used for gRT-PCR are reported with the currently known apoptosis-
related function and selected references [11,16,40,67-871.
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