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Abstract

Background: Cooperative binding of transcription factor (TF) dimers to DNA is increasingly recognized as a
major contributor to binding specificity. However, it is likely that the set of known TF dimers is highly incomplete,
given that they were discovered using ad hoc approaches, or through computational analyses of limited datasets.

Results: Here, we present TACO (Transcription factor Association from Complex Overrepresentation), a
general-purpose standalone software tool that takes as input any genome-wide set of regulatory elements and
predicts cell-type–specific TF dimers based on enrichment of motif complexes. TACO is the first tool that can
accommodate motif complexes composed of overlapping motifs, a characteristic feature of many known TF dimers.
Our method comprehensively outperforms existing tools when benchmarked on a reference set of 29 known
dimers. We demonstrate the utility and consistency of TACO by applying it to 152 DNase-seq datasets and
94 ChIP-seq datasets.

Conclusions: Based on these results, we uncover a general principle governing the structure of TF-TF-DNA
ternary complexes, namely that the flexibility of the complex is correlated with, and most likely a consequence of,
inter-motif spacing.

Keywords: Cooperativity, Dimerization, Transcription factor complexes, Dimer motifs, Chromatin accessibility,
Open chromatin
Background
DNA-binding transcription factors (TFs) are central to the
cell’s ability to recognize and decode the gene regulatory
instructions contained in the genome. Their activating or
repressing effect is achieved by binding to so-called motif
instances, which are specific DNA sequence fragments in
the regulatory regions of the genome, often in close prox-
imity to the regulated gene. This binding was traditionally
studied in isolation, despite the fact that many well-studied
TFs were known to bind cooperatively to DNA by forming
well-defined dimers or (in some cases) higher-order com-
plexes. Important examples of such direct cooperativity
include the p53 homotetramer [1], the NF-κB heterodimer
[2], various bHLH dimers [3], SOX2–POU5F1 (SOX2–
OCT4) dimerization in embryonic stem cells [4] and, more
recently, AR–FOXA1 dimerization in prostate cancer
cells [5]. In all these cases, the genomic binding sites
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of cooperating TFs form well-defined rigidly spaced
motif complexes, i.e. motif pairs with fixed relative
orientation and spacing. This is in contrast to indirect
cooperativity, i.e. fuzzily spaced co-binding of any TF
pairs, which can be inferred by several existing bioin-
formatics approaches [6-9].
The list of known DNA-binding TF dimers and multi-

mers has expanded rapidly – we recently compiled from
the biochemical literature a list of 25 such complexes
that have experimental support [10]. An updated and
more complete list containing 29 TF complexes is shown
in Figure 1. Concomitantly, numerous studies have used
in silico analysis to computationally predict TF dimers.
Since the goal of these studies was to predict specific tern-
ary complexes of TFs with DNA, they scanned for pairs of
TF-binding motifs enriched at a fixed relative orientation
and spacing in regulatory regions. We previously devel-
oped one such method [10] that exploited the abundance
of DNase-seq datasets available from the ENCODE con-
sortium [11]. Others have used DNase I hypersensitivity
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TF complex DI deMbuPfitom ecneuqeS

1. SOX−OCT (canonical) 22344693

2. SOX−OCT (compressed) 22344693

3. SOX−OCT (plus3) 22344693

4. HNF1−HNF1 2460858

5. p53−p53−p53−p53 8475074

6. SMAD−SMAD 21724602

7. TCF−RUNX 17158875

8. ETS−RUNX 20019798

9. AR−FOXA1 21572438

10. EBF1−EBF1 20876732

11. HNF4α−HNF4α 18829458

12. bHLH−bHLH 17148476

13. AR−AR, GR−GR or PR−PR
steroid response elements (SREs)

10598584

14. p50−p65 (NF-κB) 9450761

15. ER−ER
estrogen response element (ERE)

15036253

16. IRF−IRF
interferon-stimulated response element (ISRE)

7687740

17. ETS−AP-1 16272134

18. ETS−IRF
ETS−IRF composite element (EICE)

22992523

19. SOX9−SOX9 17264118

20. VD3R−VD3R
vitamin D3 response element (VDRE)

1648450

21. TR−TR or RXR−TR
thyroid hormone response elements (TRE)

1648450

22. RAR−RAR
retinoic acid response element (RARE)

1648450

23. bHLH−GATA 9214632

24. STAT−STAT 7708771

25. AP-1−IRF
AP-1−IRF composite element (AICE)

22992523

26. ETS-1−ETS-1 12034715

27. SOX2−PAX6 15558474

28. GATA−GATA
GATApal

8628290

29. GABPα−CREB 23050235

Figure 1 Known dimeric DNA-binding transcription factor complexes, manually compiled from the existing biochemical literature. For
the complexes predicted in UW DNase-seq data (Figure 2B), their sequence motifs identified by TACO are shown. The remaining motifs were
compiled as spacing alterations of TACO predictions or juxtaposed TRANSFAC monomers.
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data on a smaller scale [12], as well as TF ChIP-seq data
[13,14] and also sets of promoter or enhancer regions
[15,16] to define the regulatory elements of interest.
Currently, two software tools exist for performing the
motif dimer enrichment analysis described above: SpaMo
[13] and iTFs [12]. One important drawback of these tools
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is that they cannot assess enrichment of motif pairs that
are so close that they overlap, even though such overlap is
common [10]. We previously developed a mathematical
framework for TF dimer prediction that accommodated
motif overlap, and applied it to a set of DNase-seq pro-
files [10]. Here, we introduce TACO (Transcription factor
Association from Complex Overrepresentation), a soft-
ware tool that generalizes this approach. A major advance
of the current work is that we have now encapsulated the
algorithm into a user-configurable standalone tool. An-
other major improvement is that TACO is universally
applicable to regulatory element annotations from any
source, rather than being restricted to DNase-seq datasets.
TACO also incorporates a novel motif clustering protocol
(see Methods) and standardized output formats.
We applied TACO to 152 DNase-seq datasets from

two sources in order to assess the consistency of the
predicted dimers. We also compared TACO to SpaMo
and iTFs, by benchmarking the three algorithms on the
set of 29 known dimers. To demonstrate the robustness
of TACO, we further applied the method to 94 ChIP-seq
datasets from K562 cells.
We previously noted that TF dimers are mostly rigidly

spaced and compact, and hypothesized that compactness
explained rigidity [10]. Here, we use the expanded set of
dimer predictions to test this hypothesis. Consistently
with this hypothesis, we uncovered a significant correl-
ation between the rigidity and compactness of predicted
TF dimers.
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Figure 2 Data sources, comparison of TF dimer predictions and dime
of TF dimer predictions obtained using UW and Duke DNase-seq data. The
the set of known DNA-binding TF dimers manually compiled from the existin
algorithms. SpaMo and iTFs were evaluated both with and without motif trim
shown as a function of false positive rate; Area Under Curve (AUC) is indicated
Results
Consistency of DNase-seq-based TF dimer prediction
The ENCODE Project Consortium [11] provides multiple
types of whole-genome open chromatin profiles, including
data from DNase-seq experiments performed at the
University of Washington (UW, track wgEncodeUwDnase)
and Duke University (Duke, track wgEncodeOpenChrom-
Dnase). In order to obtain a comprehensive set of TF
dimer predictions, and also assess the robustness and
generality of our method, we ran TACO separately on both
the UW and Duke collections.
For either of the data sources (UW or Duke), we con-

sidered all DNase-seq datasets from cell types under
normal conditions (no treatment) that were not embar-
goed as of Jan 2013. We merged replicates and clustered
cell types according to the similarity of their DNase-seq
profiles, which resulted in 44 and 26 cell type clusters in
UW and Duke, respectively (Figure 2A). Either of the
data sources covered approximately 4% of the genome.
Application of TACO to these two sets of genomic

regulatory regions yielded 247 and 110 predicted TF di-
mers, respectively, of which 66 were shared (Figure 2B).
Note that we did not expect complete overlap, since the
93 unclustered cell types from UW and the 59 from Duke
shared only 15 cell types in common. After cell type
clustering, the latter 15 contributed to 14 of the 44 UW
cell types and 11 of the 26 Duke cell types. We also
compared predicted TF dimers with a list of 29 known TF
dimers manually compiled from the existing biochemical
False positive rate
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TACO (untrimmed)
AUC = 0.84

iTFs (trimmed)
AUC = 0.49

iTFs (untrimmed)
AUC = 0.25

SpaMo (trimmed)
AUC = 0.47

SpaMo (untrimmed)
AUC = 0.27

r prediction algorithms. (A) DNase-seq data sources. (B) Comparison
Venn diagram illustrates the overlap between the two sets and also
g biochemical literature (Figure 1). (C) Comparison of dimer prediction
ming. Note that TACO does not require motif trimming. Sensitivity is
.
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literature (Figure 1; Additional file 1: Table S1). Note that
this is an updated version of the gold-standard set used in
[10]. Notably, we found that DNase-seq data from both
UW and Duke were predictive of most of the known
dimeric complexes.

TACO outperforms existing dimer prediction methods
We compared TACO with the two other dimer prediction
methods, SpaMo [13] and iTFs [12] using the 29 known
dimers as a benchmark set of true positives (Figure 1;
Additional file 1: Table S1). Henceforth, we tested 25 dis-
tinct motif pairs underlying the 29 known dimers, and as
a control we included a set of 1000 random motif pairs
(see Additional file 2). All the tools were applied to each
of the 44 cell-type–specific UW DNase-seq datasets. Sen-
sitivity was defined as the fraction of the 29 known dimers
detected at any given p-value threshold. False-positive rate
was defined as the fraction of the random motif dimers
detected at the same threshold (Figure 2C).
SpaMo and iTFs were evaluated both with and without

trimming of uninformative positions at motif edges.
Motif trimming was performed as in [13] and [12]. As ex-
pected, both of these tools performed better with trimmed
motifs. Notably, with motif trimming, iTFs performed mar-
ginally better than SpaMo (AUC= 0.49 vs. AUC = 0.47)
despite the fact that it was not designed to predict rigidly
spaced TF dimers [12]. Ultimately, TACO (AUC= 0.84)
clearly outperformed the other tools; note that we did not
run TACO with trimmed motifs, since TACO is able to
handle motif overlap. We also found that TACO is robust
to the motif sensitivity threshold chosen (Additional file 3:
Figure S1). Notably, TACO and SpaMo completed the
benchmarking analysis reasonably fast (2.7 and 6 hours on
a single CPU machine, respectively; TACO may use mul-
tiple CPUs). However, iTFs could only complete the job in
a feasible time when running on a cluster.
Comparing the three tools by applying them to the 26

cell-type–specific Duke DNase-seq datasets yielded com-
parable results, with TACO (AUC= 0.74) again outperfor-
ming the two other tools (Additional file 4: Figure S2A).
Combining the predictions from both DNase-seq data
sources gave even better performance (AUC = 0.86;
Additional file 4: Figure S2B).

Expanding the cooperativity landscape with additional
DNase-seq datasets
We expected that the known instances of direct TF
cooperativity would tend to coincide with the most sta-
tistically significant TACO predictions, as was the case
in our previous work based on UW DNase-seq data
alone [10]. Focusing on the top 10 predictions derived
from Duke data (Figure 3), we found 6 known interactions
[1,4,17-22], the remaining 4 being novel predictions.
Strikingly, while the known SOX9 homodimer [18] was
detected as the 2nd ranked prediction, we also found two
novel SOX homodimer motifs, ranked 5th and 10th
respectively. The novel dimeric motifs are almost identical
to the known SOX9 motif complex, except that the spa-
cing between the monomer binding sites is increased or
decreased by a single basepair. All three dimers were
found to be specific to a cluster of melanoma (skin cancer)
cell lines, consisting of Colo829 and Mel_2183. Interest-
ingly, SOX9 is downregulated as melanocytes progress to
melanoma, and its overexpression in melanoma cell lines
inhibits tumorigenicity [23]. Our discovery of three dis-
tinct SOX9 homodimer binding modes in melanoma
provides one candidate molecular mechanism for the bio-
logical role of this TF in melanoma formation.
Another novel prediction, GATA–SMAD dimer ranked

6th, is in line with physical and functional interaction be-
tween GATA3 and SMAD3 reported by [24]. However, we
cannot rule out the alternative explanation, namely that
this novel prediction is a variant of the known GATA–E-
box dimer [21], ranked 7th, with only a half-site of palin-
dromic E-box motif being bound in this case.
The final novel prediction in Figure 3, GATA–GATA,

ranked 8th in Figure 3, was found specific to K562 cell
line. GATA is known to be a pioneer factor [25], and has
been reported to bind cooperatively to a “GATApal” palin-
dromic composite motif: ATCWGATAAG [26]. Our pre-
dicted dimer involves a converging pair of GATA motifs,
as opposed to the diverging motifs in GATApal. By exten-
sion, we therefore call this prediction “GATAcpal”.

ChIP-seq data extend the scope of TACO
To demonstrate the ability of TACO to incorporate regu-
latory element annotations from multiple sources, we ap-
plied the algorithm to 127 replicates from 94 ChIP-seq
experiments in K562 cells [11]. For each experiment, we
downloaded from Factorbook [27] the top 5 motifs found
in ChIP-seq peaks using MEME [28].
We used TACO to scan for motif complexes that con-

tained at least one of the 5 motifs discovered in the re-
spective dataset. The partner motif in the complex could
be from the TRANSFAC database or from the entire set
of motifs discovered in all K562 datasets. In total, our
analysis yielded 81 predicted TF dimers, of which the
top 10 are shown in Figure 4. Ranked 1st is the known
ETS–RUNX dimer [14], which was found in ChIP-seq
peaks for PU.1, a transcription factor from the ETS
family.
The 2nd ranked prediction, found in ChIP-seq peaks for

NRSF (REST), actually represents a full-length, mono-
meric REST motif [29]. It was predicted by TACO as a
dimeric motif complex because “HudsonAlpha/NRSF:
motif3”, the third-ranked motif discovered by MEME
within REST ChIP-seq peaks, is actually only a fragment
of the full-length REST motif, and the remaining fragment



Prediction Dimeric motif Previous studies

1. HPDE6-E6E7:NHEK:pHTE:RWPE1, HMEC
(various epithelial cells)

1602 + 220 = 1822 instances

p−value: 4.98 × 10−254

p53 homotetramer
(ubiquitous)

Friedman et al. 1993
McLure and Lee 1998p53 decamer p53 decamer

2. Colo829:Mel_2183
(skin cancer cells)

2110 instances

p−value: 2.73 × 10−225

SOX9−SOX9 homodimer
(chondrocytic cells)

Genzer and Bridgewater 2007

SOX SOX

3. H1-hESC:H7-hESC:H9ES:iPS:iPS_CWRU1:iPS_NIHi11:iPS_NIHi7
(embryonic stem cells)

383 instances

p−value: 3.23 × 10−101

OCT−SOX heterodimer
(embryonic stem cells)

Ambrosetti et al. 1997
Chen et al. 2008OCT SOX

4. HepG2:Huh-7:Huh-7.5
(liver cancer cells)

3146 instances

p−value: 4.99 × 10−92

HNF4α−HNF4α homodimer
(HeLa and pancreatic cells)

Lu et al. 2008

HNF4, COUP-TF HNF4, COUP-TF

5. Colo829:Mel_2183
(skin cancer cells)

1304 instances

p−value: 3.22 × 10−88

N/A

SOX SOX

6. K562
(leukemia cells)

461 instances

p−value: 1.90 × 10−64

N/A

SMAD GATA

7. K562
(leukemia cells)

274 instances

p−value: 1.61 × 10−62

E-box−GATA heterodimer
(leukemia cells)

Wadman et al. 1997

E-box GATA

8. MCF-7:T-47D
(breast cancer cells)

568 instances

p−value: 1.64 × 10−62

N/A

GATA GATA

9. GM12878:GM18507:GM19238:GM19239:GM19240
(B lymphocytes)

731 instances

p−value: 2.17 × 10−62

IRF homotypic dimer
(ubiquitous)

Tanaka et al. 1993

IRF IRF

10. Colo829:Mel_2183
(skin cancer cells)

988 instances

p−value: 9.74 × 10−54

N/A

SOX SOX

Figure 3 Top 10 predicted motif dimers in Duke DNase-seq data, ranked by p-value. Left column: for each prediction, the enriched cell
type, number of motif complex instances in cell-type−specific hypersensitive sites and p-value are indicated. Middle column: below each dimer
motif, binding sites for individual motifs are indicated. Only the structure of the cluster seed is shown. For clarity, we have manually interpreted
the motif annotations. Right column: literature citation on predicted TF dimer.
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is very similar to the motif for nuclear receptors such as
GR and PR.
The 4th ranked prediction is the known GATA–E-box

motif complex [21], which was also identified in the
above-described analysis of Duke DNase-seq datasets
(ranked 7th in Figure 3). Here, it is overrepresented in
ChIP-seq peaks for the E-box-binding factor TAL1. Not
surprisingly, among the top 5 motifs found in these
ChIP-seq peaks, there is an E-box motif “Stanford/
TAL1_(SC-12984): motif4”. The top 5 motifs also include
the GATA motif “Stanford/TAL1_(SC-12984): motif2”.
Such secondary TF motifs have been frequently reported
in addition to the canonical ones [27]. However, the bio-
physical interpretation of such secondary motifs is usually
unclear. They could be a consequence of tethered binding,
functional cooperativity or actual dimerization. These
diverse mechanistic explanations can be distinguished
more easily with the help of TACO spacing analysis. In
this case, it is clear that the secondary GATA motif at
TAL1 ChIP-seq peaks is a consequence of GATA–TAL1
heterodimerization on DNA.

Dynamic landscape reveals low TF dimer reuse across cell
types
The vast majority of TF dimers predicted in DNase-seq
data were found specific to a single cell type only (87%
or 215/247 in UW, 89% or 98/110 in Duke). Out of the
32 remaining dimers in UW, 29 were predicted in
exactly two cell types (Figure 5) and usually found to be
reused between related cell types (e.g. prostate cancer
LNCaP and breast cancer MCF-7). Note that these pre-
dictions originated from disjoint sets of genomic regions
(i.e. cell-type–specific hypersensitive sites), so the predic-
tions in different cell types are independent. A similar
trend of low TF dimer reuse was observed in Duke
DNase-seq data (Additional file 5: Figure S3).
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Figure 5 Dynamic landscape of predicted TF dimers across cell types. Each column of the heatmap represents a motif dimer predicted in
UW DNase-seq data in more than one cell type. Dimers predicted only in a single cell type are not shown. Color intensity indicates the motif
complex enrichment p-value in the given cell type. Rows and columns were clustered using complete linkage method with binary metric.

Prediction
Dimeric motif

dataset-specific ChIP-seq motifs (motif1 to motif5) and partner motifs from TRANSFAC or other ChIP-seq datasets

1. HudsonAlpha/PU.1

5291 instances

p−value: 4.02 × 10−768 HudsonAlpha/PU.1: motif2

Kid3
CBF (core binding factor)
AP-3
AML1a
HNF4, COUP

2. HudsonAlpha/NRSF

936 instances

p−value: 2.17 × 10−295

PUR1
GR

PR, GR
T3R

MEIS1
HudsonAlpha/NRSF: motif3

3. HudsonAlpha/SIX5, HudsonAlpha/ETS1

373 instances

p−value: 1.00 × 10−139 HudsonAlpha/SIX5: motif4
HudsonAlpha/ETS1: motif3

p300
MYB
AML2
AP-3

4. Stanford/TAL1_(SC-12984)

1039 instances

p−value: 6.98 × 10−137 Stanford/TAL1_(SC-12984): motif4
NMYC

GATA
GATA-3
Stanford/TAL1_(SC-12984): motif2
UChicago/eGFP-GATA2: motif1

5. Stanford/TAL1_(SC-12984)

1001 instances

p−value: 1.18 × 10−136

Smad4
Smad3

GR
YY1

SMAD
Stanford/TAL1_(SC-12984): motif2

6. Stanford/SMC3_(ab9263)

1492 instances

p−value: 5.14 × 10−132

AP4
Kid3
ING4

SREBP
CBF (core binding factor)

Stanford/SMC3_(ab9263): motif3

7. HudsonAlpha/SP2_(SC-643), Yale/c-Fos,
Stanford/NF-YA, Stanford/NF-YB

197 instances

p−value: 6.53 × 10−105

Yale/c-Fos: motif4
Yale/c-Fos: motif4

HudsonAlpha/SP2_(SC-643): motif2
Yale/c-Fos: motif2
HudsonAlpha/SP2_(SC-643): motif2
Stanford/NF-YA: motif4
Stanford/NF-YB: motif2

8. UW/CTCF

455 instances

p−value: 1.29 × 10−100 UW/CTCF: motif2

YY1
WT1
GKLF
Kid3
TTF-1 (Nkx2-1)

9. HudsonAlpha/PU.1, HudsonAlpha/SP2_(SC-643)

1183 instances

p−value: 1.09 × 10−98 HudsonAlpha/PU.1: motif2
HudsonAlpha/GABP: motif2

AP-1
STAT1
HudsonAlpha/SP2_(SC-643): motif4
Yale/c-Fos: motif4

10. Yale/Rad21

811 instances

p−value: 1.95 × 10−97

C/EBPbeta
Kid3

SREBP2
C/EBP

YY1
Yale/Rad21: motif1

Figure 4 Top 10 predicted motif dimers in K562 ChIP-seq peaks, ranked by p-value. Left column: for each prediction, the names of
enriched ChIP-seq datasets, followed by the number of motif complex instances and p-value in most significantly enriched dataset. Right column:
below each dimer motif, the locations and names of underlying individual motifs are indicated for the top 5 overrepresented motif complexes.
Red motifs correspond to the TF immunoprecipitated in an enriched ChIP-seq dataset, whereas blue motifs originate from TRANSFAC or other
ChIP-seq datasets. For clarity, the red lines were drawn only once if the corresponding motif was shared across all 5 complexes.
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Association between rigidity and compactness of TF dimers
Notably, the analysis of overrepresented motif complexes
in ChIP-seq peaks yielded multiple long-range interac-
tions (spacing >15 bp), which were not discovered in our
previous analyses of DNase-seq data (Figure 6). Most
dramatically, we observed that in two such cases, ranked
40th and 41st, up to 5 motif spacings were significantly
overrepresented. Both of these predictions involved
NF-Y homodimers, as did yet another of the predictions
(Additional file 6: Figure S4A). Of the 9 predicted NF-Y
homodimers, 5 were direct repeats, 3 were divergent
palindromes and 1 was a convergent palindrome. The 5
different spacings for the NF-Y direct repeat were broken
up into two clusters one turn apart, and therefore phased
to be on the same side of the DNA double helix. Another
relatively widely spaced (>5 bp) interaction mentioned
earlier, GATA–E-box, similarly permitted flexible spacing
(Additional file 6: Figure S4B).
In order to quantify a potential association between

rigidity and compactness of TF dimers, we aggregated
TACO predictions derived from K562 ChIP-seq data
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Figure 6 Wide range of motif spacings for TF dimers predicted
in K562 cells. Predicted dimers that varied only in their spacing
(same motif pair and orientation) were grouped together and
ranked by the p-value of the most significant spacing. For each such
group of dimer predictions in K562 ChIP-seq peaks, we show the
motif complex enrichment p-value as a function of motif spacing.
Spacings to the left of the red line correspond to overlapping motifs.
into groups that varied only in their motif spacing (see
Methods), as in Figure 6. We then found Pearson cor-
relation coefficient of r = 0.51 between the number of
enriched complexes for a motif pair and their average
motif spacing (Figure 7, upper left). The difference in
average motif spacing calculated within the prediction
groups, compared between completely rigid motif com-
plexes (single-spacing) and flexible complexes (more than
one spacing) was found highly significant (p = 4.07e-06,
Mann–Whitney U test). Thus, we see a highly significant
correlation between the rigidity and compactness of
predicted TF dimers.
In order to test the generality of the abovementioned

correlation, we applied the same approach to the com-
bined set of DNase-seq dimer predictions, obtained
using UW or Duke data. Again, we observed a positive
Pearson correlation of r = 0.53 between the number of
predicted complexes for a motif pair and their spacing.
However, we noticed that four of the complexes in this
case dominated the correlation coefficient by virtue of
having outlier values for the motif spacing; their motif
spacing was more than 5 interquartile ranges above the
third quartile. When these four data points were dis-
carded, the correlation coefficient dropped to r = 0.14
(Figure 7, upper right). However, we still observed sig-
nificantly larger average motif spacing among flexible
complexes as compared to the completely rigid com-
plexes (p = 0.014).
We further tested whether a more quantitative meas-

ure of dimer flexibility would also support the above
findings on the structural properties of TF dimers. Con-
sistently, we found that the average motif spacing also
correlates with the standard deviation of motif spacings
for a motif pair (Figure 7, lower left and right). In this
case, the Pearson correlation coefficients were r = 0.45
for K562 ChIP-seq dimers and r = 0.47 for combined
DNase-seq dimers (r = 0.26 after outlier removal). In
summary, we found that the rigidity and compactness of
motif complexes are consistently correlated, by multiple
measures in two different data types.

Discussion
Typically, TFs bind to only a very small fraction of their
motif matches in the vast human genome. It is thought
that the remaining motif matches remain unbound be-
cause they lie in closed chromatin [11]. This model should
not apply to pioneer factors, since they have the ability to
bind closed chromatin. It is therefore not clear how do
pioneer factors achieve binding specificity. We previously
discovered multiple potential homo- and heterodimeric
complexes involving FOXA1, and hypothesized that this
pioneer factor could achieve binding specificity by exploit-
ing a multiplicity of dimeric binding modes [10]. The
pioneer factor GATA may constitute yet another example



Figure 7 Positive association between average motif spacing and flexibility of motif dimers. Left column: predictions in K562 ChIP-seq
peaks, right column: combined predictions from UW and Duke DNase-seq data. Upper row: sunflower plots show the number of predicted motif
spacings for a group of dimer predictions as a function of the average of their motif spacings. In case of data points occurring more than once,
their count is indicated by the number of petals (orange lines). Lower row: sunflower plots show the standard deviation of predicted motif spacings as
a function of average motif spacing. The Pearson correlation coefficients are shown for all plots.
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of this phenomenon, given its multiple known and newly
predicted dimeric binding modes (GATA–E-box, GATA-
pal, GATAcpal).
We have so far assumed that the existence of a preferred

motif spacing for a TF pair is indicative of dimeric bind-
ing. However, there is one other possible explanation that
must be kept in mind. It has been shown that Smad4 di-
mers can bind cooperatively to DNA even in the absence
of direct physical contacts [30]. The authors of this study
suggested that DNA conformational changes induced by
TF binding could be a mechanism for cooperative binding
of specific Smad4 homo- and heterodimers. It is conceiv-
able that some of our predicted TF pairs might cooperate
via allosteric changes in DNA structure rather than direct
protein-protein contacts.
We previously showed that TF dimers were both rigid

and compact, and hypothesized based on qualitative struc-
tural arguments that their rigidity was a consequence of
their compactness [10]. Such a causal relationship could
arise for two reasons. Firstly, TF pairs binding widely
spaced motifs are likely to form protein-protein contacts
via their DNA-distal domains, or even via intervening
cofactors. Such a configuration would in general be
more flexible than direct physical contact between the
DNA-binding domains. Secondly, a widely spaced complex
might also gain flexibility from the greater deformability of
the long stretch of intervening DNA. The widely spaced
complexes found in K562 cells provided us with an oppor-
tunity to test the above hypothesis. Our results indicate
that TF dimers that bind widely spaced motif pairs are sig-
nificantly more flexible in their spacing, thus providing
statistical support for a causal relationship between com-
pactness and rigidity (Figure 7). While our analysis pro-
vides the first evidence, further biochemical experiments
are required to explore this relationship in greater detail.
In cases of very high inter-domain flexibility, as is perhaps

true of NF-Y, even the relative orientation of individual mo-
tifs may vary. The NF-Y complex contains three proteins,
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NF-YA, NF-YB and NF-YC, of which only NF-YA forms
specific contacts with DNA [16]. Thus, the NF-Y “dimer”
motifs we identified are likely to be bound by pairs of such
trimers, i.e. hexamers. It is possible that inter-trimer con-
tacts are mediated not by the DNA-binding NF-YA sub-
unit, but by the DNA-distal NF-YB or NF-YC subunits.
Interestingly, the NF-Y motif was recently reported to
form well-defined complexes of fixed spacing with E-box,
E2F and TATA-box motifs at promoters genome-wide
[16], suggesting that the ternary complexes identified here
are not the only cooperative interactions involving NF-Y.
The same study also showed that NF-Y was unusually
adept at binding genomic regions that showed no activat-
ing or repressive histone marks, suggesting that the TF
acts as a pioneer factor. This is again consistent with our
previous hypothesis that pioneer factors derive their DNA
binding specificity from multiple dimeric binding modes.
Although the TF dimers predicted by TACO are gen-

erally rigidly spaced, it is conceivable that this reflects to
some extent an ascertainment bias of the algorithm.
Dimers with highly flexible spacing would be harder to
detect by this method, if they resulted in only weak en-
richment of motif pairs at any given spacing. Similarly,
the fact that all of the 29 known TF dimers we extracted
from the literature are rigid or semi-rigid could also be
questioned; one could hypothesize that existing biochem-
ical assays for detecting cooperative dimerization on DNA
are somehow biased against flexibly spaced dimers. How-
ever, we are not aware of any experimentally validated
instances of TF dimers that can bind cooperatively with
highly flexible motif spacing. Notably, in a recent study,
even though the algorithm used to predict TF dimers
permitted some flexibility in the spacing, all of the experi-
mentally validated dimers turned out to be rigid, i.e. they
bound with high affinity only at a single motif spacing
[12]. Thus, the evidence so far is strongly weighted
towards rigid or semi-rigid TF dimers.

Conclusions
We have demonstrated the generality and consistency of
TF dimer predictions made by TACO by applying the
algorithm to 152 DNase-seq datasets and 94 ChIP-seq
datasets from the ENCODE Project. Moreover, we
showed that TACO clearly outperforms existing dimer
prediction tools when benchmarked on the set of 29
known dimers. Based on all TACO predictions, we found
that TF dimers that bind widely spaced motif pairs are sig-
nificantly more flexible in their spacing. Overall, we expect
TACO to be widely applicable, since thousands of regula-
tory element datasets will be available in the near future.
We also anticipate its application to regulatory annota-
tions from assay types other than those discussed here,
since the algorithm allows a great deal of flexibility in data
type and mode of analysis.
Methods
Overview of the method
Our approach builds on the comprehensive model of motif
co-occurrence constructed in [10]. The method is based
on analysis of motif complex enrichment within regulatory
regions specific to individual cell types. To detect overrep-
resentation, we compare the occurrence frequency of a TF
complex in the target dataset (cell-type–specific open chro-
matin regions, for example) to the frequency of the same
complex in the union of all input datasets across all
cell types.
Given a motif complex, i.e. a specific orientation and

spatial arrangement of two motifs, we define motif spa-
cing as the number of intervening base pairs between
the proximal edges of the two contributing motifs (nega-
tive values indicate motif overlap). By default, all the
possible motif complexes within 50 bp spacing are
screened for enrichment, in each target dataset separ-
ately. The p-values are calculated from Bernoulli schema
and Bonferroni-corrected.

Identification of dataset-specific predictions
We use DNA sequence motifs as models of TF binding
specificity. In the default setting, we consider all possible
pairs of the motifs provided. For each pair of motifs we
test all possible compact motif complexes (all relative
orientations and, by default, motif spacing of at most
50 bp) for enrichment in each of the target datasets. It
should be noted that TACO can seamlessly handle the
statistics of overlapping motif pairs, a property not
shared by existing algorithms. This is an important fea-
ture, since a sizeable fraction of known TF dimers bind
overlapping motif pairs [10].
To quantify enrichment, we count the number of

motif complex instances in each target dataset, and com-
pared it against the number of instances in the back-
ground model. The background model is based on the
control dataset, defined as the union of all regulatory
regions from all cell types. The enrichment is calculated
taking into account the difference in motif co-occur-
rence frequency between foreground (target) and back-
ground (control) datasets [10].
Motif databases very often contain multiple motifs for

the same TF, or very similar motifs for different TFs. For
this reason, a single underlying TF-TF interaction often
results in the detection of multiple, highly similar motif
complexes by TACO. We therefore cluster the over-
represented motif complexes, taking into account their
similarity (measured by Euclidean distance) and overlap
of their genomic instances, as described below.

Clustering of overrepresented motif complexes
We rank the overrepresented motif complexes by p-value
in ascending order (i.e. starting from the most highly



Jankowski et al. BMC Genomics 2014, 15:208 Page 10 of 12
http://www.biomedcentral.com/1471-2164/15/208
enriched complex). Let us denote them by R1, …, RN. In
order to cluster the complex Rn, we loop through k = 1, …,
n–1 and iteratively check if Rn is similar to Rk, as de-
scribed below. If any of the comparisons yields a positive
result, we immediately merge Rn into the cluster contain-
ing Rk. If the complex Rn cannot be incorporated into any
of the existing clusters, a new cluster is created, with Rn as
the cluster seed. In particular, the most enriched overrep-
resented motif complex, i.e. R1, gives rise to the first
cluster.
To compare Rn to Rk, the following three tests are

performed. If any of the three tests results in a positive
outcome, the two complexes are deemed to be similar.

Test 1: motif complex identity
The first test is attempted only if Rk is the cluster seed of a
previously established cluster. If Rn and Rk share the same
motif complex, then Rn is joined by motif complex identity
to the cluster of Rk. It occurs when the same motif com-
plex is found overrepresented in different target datasets.

Test 2: dimer motif similarity
The second test is attempted only if Rk is a signature
motif complex, i.e. the cluster seed or joined by motif
complex identity to its cluster. Let ED2(Rn, Rk) be the
squared Euclidean distance between the dimer motifs for
complexes Rn and Rk. The simplest motif similarity crite-
rion would be to impose a threshold on ED2. However,
our approach allows highly specific motifs (those with
high information content) to be further apart in Euclid-
ean space, and still be considered similar. We therefore
employ a distance threshold that is an affine function of
the information content. If ED2(Rn, Rk) < α ∙ IC(Rk) + β,
where α and β are user-provided parameters, and IC(Rk)
is the information content of the dimer motif for Rk,
then Rn is joined by dimer motif similarity to the
cluster of Rk.

Test 3: overlap of genomic instances
The third test is attempted only if Rk is a signature motif
complex or joined by dimer motif similarity. Let C12

(Rn∩Rk) be the number of their overlapping genomic
instances (note that only overlaps conforming to the most
common relative spatial arrangement of Rn and Rk are
counted). Intuitively, we would like to capture the number
of excess instances of Rn that are not also instances of Rk.
As described in detail in [10], the enrichment p-value

of Rn is calculated as the probability of observing at least
C12(Rn) successes in N12(Rn) trials of the Bernoulli process
with probability of success f12 ∙ (b12(Rn)/b12), where C12(Rn)
is the actual number of Rn instances in the target dataset,
N12(Rn) is the number of all its possible occurrences in the
target dataset, b12(Rn) is the probability of observing Rn in
the control dataset, and f12 and b12 are the probabilities of
observing the pair of motifs constituting Rn within a rea-
sonable range of structures in the target and control data-
set, respectively. The success probability of this Bernoulli
process combines two components: the “base” probability
b12(Rn) of observing the motif complex Rn in the control
dataset, and the factor f12/b12 accounting for the enrich-
ment of the underlying motif pair (i.e. motif complexes
regardless of their spacing) in the target dataset.
Now we introduce E12(Rn) =N12(Rn) ∙ f12 ∙ (b12(Rn)/b12)

as the expected number of instances of Rn following
from the null model. Consequently, the number of
excess instances over the null model now amounts to C12

(Rn)–E12(Rn). If C12(Rn∩Rk) ≥ γ ∙ (C12(Rn)–E12(Rn)), where
γ is a user-provided parameter, then Rn is joined by
overlap of genomic instances to the cluster of Rk.

Implementation and applicability
TACO is a standalone C++ software tool. Its mandatory
inputs are: reference genome sequence (FASTA format)
and a list of TF motifs or a motif database. Accepted
motif formats include TRANSFAC [31], JASPAR [32],
SwissRegulon [33] and MEME [28] output. Moreover, a
collection of genome-wide sets of regulatory regions
should be provided (BED format). TACO can handle input
regulatory region datasets of two kinds: strongly cell-
type–specific or weakly cell-type–specific. Each input
dataset should be declared as strongly or weakly specific
(these two kinds can be provided simultaneously). In our
previous work [10], and also in this study, DNase-seq
datasets were processed according to the strongly specific
paradigm. In contrast, ChIP-seq datasets considered here
were treated as weakly specific.
Strongly and weakly cell-type–specific datasets are trans-

lated using different approaches into target datasets for TF
dimer prediction. Regulatory regions of strongly specific
datasets are intersected with each other, and only the non-
overlapping (unique) portions are retained as target re-
gions. In contrast, the weakly specific datasets are directly
used as target datasets, without modification. The union of
all input regulatory regions is used as a control dataset in
order to build the null model of motif complex occurrence.
The open chromatin datasets which could be used

include publicly available DNase-seq data from the EN-
CODE Project [11]. The input datasets can be provided
as multiple replicates per cell type, to be merged by
TACO within each cell type. In this way, closely related
cell types, e.g. with similar genome-wide DNase I hyper-
sensitivity profiles, may be merged as well.
The scope of the analysis may be narrowed down by

screening for enrichment only in a subset of the target
datasets. Moreover, instead of scanning for enrichment of
all possible motif pairs, one or both of the motifs forming
the motif complex can be fixed by the user. Below we pro-
vide three typical use cases for TACO.
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Prediction of overrepresented motif complexes in a collection
of DNase-seq datasets
All possible motif complexes are screened for enrichment
in all cell-type−specific open chromatin regions. As stated,
such analysis follows the concept of [10]. Alternatively,
only some of the datasets could be screened, with the
remaining open chromatin datasets contributing only to
the control set.
Prediction of overrepresented motif complexes in ChIP-seq
peaks
The motifs of immunoprecipitated TFs are supplied, and
all motif complexes with all possible partner motifs from
the database are screened for enrichment in ChIP-seq
peaks. This approach has previously been used by [13].
The collection of ChIP-seq peaks should be large enough
to provide a representative control set. For example, all
publicly available ChIP-seq datasets from the ENCODE
Project for a given cell type could be used.
Analysis of cooperative interactions between a given pair of
TFs with known motifs
Some TF dimers allow for multiple spacings, and are
overrepresented only in certain datasets (see Results).
Given a pair of motifs of interest, all possible motif com-
plexes are screened for enrichment in all datasets.
Execution time and output
One of our priorities while developing TACO was to
make the analyses computationally tractable. Compre-
hensive analyses using two sources of DNase-seq data,
described in the Results section above, where we took as
input 964 vertebrate TF affinity motifs from TRANSFAC
Professional [31], requires the testing of 2.57 billion
hypotheses. TACO completes this task in approximately
6 hours, using 16 cores of a 3.33 GHz machine and up
to 11 GB of memory.
As output, TACO provides a multidimensional view of

overrepresented cell-type–specific motif complexes. First,
TACO clusters the enriched motif complexes as described
above, and treats each cluster as a single predicted TF
dimer. For each overrepresented motif complex within a
cluster, the locations of all its genomic occurrences are
reported. We also provide the position weight matrices
inferred by counting nucleotide frequencies at each pos-
ition within its genomic instances. Moreover, TACO also
provides statistics that can be used to visualize the distri-
bution of enrichment p-values using a Q-Q plot, and to
generate spacing plots as in Figure 6.
The source code for TACO is freely available under

the GNU GPL license, along with examples and docu-
mentation, at http://bioputer.mimuw.edu.pl/taco/.
Analysis of motif spacing flexibility
We defined motif spacing to be the number of interven-
ing nucleotides between the proximal basepairs of the
two motifs. In order to make the definition robust, we
calculated motif spacing on the basis of trimmed motifs.
Motif trimming was implemented as in [13], by eliminat-
ing flanking columns with information content less or
equal 0.25 bit from both sides of the individual motifs.
Note that motif trimming was only used to calculate motif
spacing; TACO did not require motif trimming.
To characterize the flexibility of TF-TF-DNA complexes,

we grouped together TACO predictions that could have
arisen from multiple spacings of the same TF dimer. In
other words, we grouped together predicted motif com-
plexes that shared the same pair of motifs in the same
orientation, and varied only in their motif spacing. In the
case of DNase-seq data, we only grouped predictions aris-
ing from the same dataset (for example, UW DNase-seq in
GM12878 cells). Note that motif complexes within a group
were constrained to all have the same left-right ordering of
the individual motifs.
Availability and requirements
Project name: TACO (Transcription factor Association
from Complex Overrepresentation)
Project home page: http://bioputer.mimuw.edu.pl/taco/
Operating system(s): Unix-like, such as Linux and Mac
OS X
Programming language: C++
Other requirements: R or standalone R math library
License: GNU GPL
Any restrictions to use by non-academics: None
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