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Abstract

Background: Gene regulation underlies fungal physiology and therefore is a major factor in fungal biodiversity.
Analysis of genome sequences has revealed a large number of putative transcription factors in most fungal
genomes. The presence of fungal orthologs for individual regulators has been analysed and appears to be highly
variable with some regulators widely conserved and others showing narrow distribution. Although genome-scale
transcription factor surveys have been performed before, no global study into the prevalence of specific regulators
across the fungal kingdom has been presented.

Results: In this study we have analysed the number of members for 37 regulator classes in 77 ascomycete and 31
basidiomycete fungal genomes and revealed significant differences between ascomycetes and basidiomycetes. In
addition, we determined the presence of 64 regulators characterised in ascomycetes across these 108 genomes.
This demonstrated that overall the highest presence of orthologs is in the filamentous ascomycetes. A significant
number of regulators lacked orthologs in the ascomycete yeasts and the basidiomycetes. Conversely, of seven
basidiomycete regulators included in the study, only one had orthologs in ascomycetes.

Conclusions: This study demonstrates a significant difference in the regulatory repertoire of ascomycete and
basidiomycete fungi, at the level of both regulator class and individual regulator. This suggests that the current
regulatory systems of these fungi have been mainly developed after the two phyla diverged. Most regulators
detected in both phyla are involved in central functions of fungal physiology and therefore were likely already
present in the ancestor of the two phyla.
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Background
Gene regulation is of major importance for physiology of
all organisms, and has been intensively studied in fungi.
It ensures that the required genes are switched on and
act under the circumstances they are needed, and allows
fungi to respond to changing conditions. Thirty-seven
classes of regulator proteins have been identified in fungi
[1], such as C2H2 (PF00096) [2], Zn2Cys6 (PF00172) [3],
Fungal Specific transcription factor domain (PF04082),
bZIP (PF00170) [4], Histone-like transcription factors
(PF00808) [5], HLH (PF00010) [6], HSF (PF00447) [7],
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Myb DNA-binding (PF00249) [8], TEA (PF01285) [9]
and GATA (PF00320) [10]. They coordinate many cellular
processes that control growth, survival or reproduction
on particular substrates, under certain conditions, or in
particular environmental niches. Therefore the presence
or absence of specific regulators is intimately linked to
fungal biodiversity.
Analysis of the first available eukaryotic genome indi-

cated a likely diversity of regulators [11]. For example,
a number of Zn2Cys6 regulators known in other fungi
were absent in Saccharomyces cerevisiae [12]. Differences
in regulatory protein repertoire were found particularly
for this class of regulators, which was reduced in number
in Kluyveromyces lactis compared with S. cerevisiae [13],
and considerably expanded in Aspergillus nidulans [14]
and Magnaporthe oryzae [15]. Furthermore, a range of
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functions for fungal Zn2Cys6 regulators lacking yeast
orthologs have been described [16]. With an exponentially
growing number of fungal genome sequences covering all
branches of the fungal tree of life it is now possible to
explore the regulatory diversity of fungi and trace the evo-
lutionary origin of particular regulators. For several spe-
cific regulators their presence in sets of fungal genomes
has been reported. The pentose catabolic pathway in
Aspergillus is regulated by two transcriptional activators,
XlnR and AraR [17]. While XlnR is present in nearly all
tested filamentous ascomycetes, AraR appears to be re-
stricted to the order of the Eurotiales that consists of
Aspergillus, Penicillium and related genera. An even higher
diversity was observed for regulators of galactose catabol-
ism. A subset of the ascomycetes contains the regulator
GalX that appears to be mainly involved in the oxidore-
ductive pathway in Aspergillus niger and A. nidulans
[18,19]. In addition, A. nidulans contains a second
regulator, GalR, that controls genes of the Leloir Pathway
and for which orthologs were not detected in any of the
other studied species [18]. The A. nidulans long chain
fatty acid utilisation regulators FarA and FarB, which
themselves are related in sequence, each have orthologs
widely conserved in filamentous fungi and share a single
common homolog in certain Hemiascomycetes [20]. In
contrast, the short chain fatty acid utilisation regulator
ScfA was very poorly conserved, with possible orthologs
in A. nidulans, Aspergillus fumigatus and Neurospora
crassa [20]. The A. niger extracellular protease regula-
tor PrtT was identified only in certain Aspergilli [21].
Previous genome-wide studies of transcription factors

have focussed on a single transcription factor family
[12,22,23], a single species [24], or the relative represen-
tation of transcriptional regulator classes in the fungal
kingdom [1,25]. The rapid growth in availability of fun-
gal genomes, particularly those of Basidiomycetes, over
the last few years has now yielded wider representation
of genome sequence data across the various lineages of
the fungal kingdom and provides the opportunity for a
more detailed analysis of prevalence of transcription reg-
ulators across fungal genomes. In this paper we com-
pared the distribution of regulator gene classes between
currently available fungal genomes. We analysed the
presence or absence of 64 characterised regulators in
108 fungal genomes to provide a comprehensive evalu-
ation of fungal diversity with respect to regulatory sys-
tems. The regulators we have focussed on are all well
characterised in at least one fungal species and represent
a range of different physiological functions, including 21
regulators involved in development and/or morphology,
19 regulators involved in carbon metabolism, and 13
regulators involved in nitrogen and amino acid metabol-
ism. Many of these regulators perform central functions
in the organisms where they have been initially studied
and therefore provide a good test set for the analysis of
their prevalence and evolution in the fungal kingdom.

Results
Distribution of regulator classes throughout the
fungal kingdom
To determine whether there are major differences in the
relative number of regulators from different classes in
the different fungal phyla, a PFAM analysis of the 37
known fungal transcription regulator-related PFAM do-
mains [1] was performed on 77 ascomycete and 31 ba-
sidiomycete genomes (Additional file 1). A total of 36,636
putative transcription factors were identified (Additional
file 2). Interesting differences in the relative number of
regulators from different PFAM classes could be observed
between the two phyla (Figure 1, Additional file 3). When
comparing Ascomycota and Basidiomycota the main
differences are a much larger expansion of the Zn2Cys6
domain family (PF000172) and the fungal specific transcrip-
tion factor domain proteins (PF04082) in the Ascomycota,
while in the Basidiomycota the C2H2 family (PF00096)
and the CCHC zinc-finger family (PF00098) form a sig-
nificantly higher percentage of the total number of reg-
ulators (Figure 1). This indicates that after these phyla
split different regulatory strategies have developed based
on different regulator classes. Within the Ascomycota,
pezizomycetes contained the highest average amount
(450) of putative regulators compared to saccharomycetes
(210) and taphrinomycetes (122). Moreover, the Zn2Cys6
domain family and fungal specific transcription factor
domain proteins in pezizomycotina were found in higher
proportions than in the saccharomycotina and taphri-
nomycotina indicating the major expansion of these
regulator classes occurred after divergence of the pezizomy-
cotina from the other lineages. Unlike in the Basidiomycota,
the lower abundance of these two families in the sac-
charomycotina and taphrinomycotina is not accom-
panied with a higher abundance of the C2H2 and
CCHC families.
To compare the PFAM distribution of transcription

factors between different fungal species, we used hier-
archical clustering. The 36,636 regulators identified in
the PFAM analysis were clustered, using OrthoMCL
followed by manual curation, into 2,887 non-redundant
orthologous groups (Additional file 4). These ortholog
groups were then used to analyze the distribution of
putative regulators among the PFAM families in fungi. A
clear trend of regulator family distribution could be
detected when species were clustered based on the
transcription factor abundance pattern of the families
(Figure 2). Interestingly, within Ascomycota only pezizo-
mycotina species were clustered as one distinct group, the
other major subdivisions, saccharomycotina and taphrino-
mycotina, were clustered within the Basidiomycota as two



Figure 1 Relative distribution of regulator PFAM family members in different fungal phyla. A: ascomycetes, B: basidiomycetes, C: pezizomycotina;
D: saccharomycotina; E: taphrinomycotina. The description of the PFAM families can be found in Additional file 3. The average number of
transcription factors for each phylum is indicated underneath each pie chart. The number of genomes analyzed in each phylum or subphylum
is indicated in parentheses.
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separate groups next to agaricomycotina. This indicates
that after these phyla diverged, different regulator classes
have been exploited in different lineages.

Prevalence of specific regulators in fungal genomes
A pilot study using bidirectional BlastP analysis to iden-
tify putative orthologs of a subset of chosen regulators
was performed followed by manual curation to deter-
mine the parameters for automated analysis of the
prevalence of regulators in fungal genomes (data not
shown). This automated analysis was used to test for
the presence or absence of orthologs of 64 regulators
(Additional file 5) in the 108 genomes used for the
PFAM distribution analysis above (Additional file 6,
Additional file 7). A cut-off designated for identification
of distant homologs [26] was applied throughout the
survey in order to decrease the false negative rate caused
by the highly divergent sequences of regulators. The re-
sults were then manually curated based on sequence
alignments and phylogeny to remove false positives. An
example is presented for AraR, where GalR was identi-
fied as a false positive (Figure 3).
Although the lowest number of orthologs was identi-

fied in the Basidiomycota, orthologs for five regulators
involved in development and/or morphology (DopA,
SteA, RlmA, MedA, Con7), the carbon catabolite repres-
sor CreA, and the general expression activators HapB,
HapC and HapE, are commonly found in basidiomy-
cetes. Most of these regulators have general functions
for fungal physiology, which explains their common
distribution among fungi. Conversely, orthologs for six
of the seven regulators from Schizophyllum commune
(Fts3, Fts4, Hom1, Hom2, Gat1, C2H2) were only de-
tected in basidiomycetes, while the other (WC2) also
had orthologs in filamentous ascomycetes. Interestingly,
no basidiomycete orthologs were detected for any of
the transcriptional activators involved in plant biomass
utilization (XlnR, AmyR, InuR, AraR, GalR, GalX, RhaR).
All these regulators are members of the Zn2Cys6 class
(Additional file 5), which is particularly expanded in



Figure 2 Hierarchical clustering of fungal species by the abundance of regulators in PFAM families. The difference between species in
abundance of each PFAM family is shown. Values of presence and absence patterns were normalized by z-transformation across PFAM families
and coloured so that green indicates the value is below the median for that PFAM family, whereas red indicates the value is higher than the
median. The brighter the green, the lower the abundance across species, whereas the brighter the red, the higher the abundance across species.
The largest PFAM class for each species is marked by the white dot in the corresponding colour square.
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ascomycetes compared to basidiomycetes (Figure 1).
Indications for similar regulation systems related to
plant biomass degradation have been found in transcripto-
mics studies of basidiomycetes [27-33]. However, the ab-
sence of orthologs for the ascomycete regulators suggests
that these regulators have developed after the split from
the ascomycetes, and the underlying molecular mecha-
nisms may differ.
The overall low number of regulators for which an

ortholog could be found in the basidiomycetes fits with
the general PFAM distribution (see above) in which clear
differences were found in the expansion of the different
PFAM families between ascomycetes and basidiomy-
cetes. This suggests a smaller regulatory repertoire in
the ancestral fungus, which has undergone significant
evolution since the basidiomycetes and ascomycetes
separated.
The ascomycete yeast genomes also lack a significant

number of the regulators, in particular those involved in
plant biomass degradation and those involved in develop-
ment. As most yeasts are not able to degrade plant bio-
mass, nor go through developmental changes, this fits
well with their physiology. Interestingly, there is a division
into two groups with respect to the presence of CreA
orthologs. Saccharomyces lacks this regulator, but instead
has MIG1, which is the functional homolog of CreA, des-
pite low sequence similarity. MIG1 orthologs were not
found in any of the other tested fungi (Additional file 7).



Figure 3 Example of phylogenetic identification of false orthologs. Neighbor-Joining tree of the AraR homologs using Aspergillus nidulans XlnR
as an outgroup. The genes marked in yellow were maintained in the comparison. AN10550 was manually removed, as it clearly did not fall into
the same cluster as the other genes. In fact, this gene is GalR, which is unique to A. nidulans. The gene identifiers can be found in Additional file 7.
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The most diverse profiles can be seen for the filament-
ous ascomycetes. Regulators that are particularly poorly
conserved in this group include two involved in develop-
ment and/or morphology (AbaA, BrlA, mainly limited to
Aspergilli and Penicillium), seven involved in carbon
metabolism (AraR, GalX, GalR, ScfA, InuR, AlcR, AceII),
one involved in nitrogen metabolism (AmdR), the iron
homeostasis regulator SreA, the unfolded protein re-
sponse regulator HacA and the aflatoxin biosynthesis
regulator AflR, but many other differences can be ob-
served. While the presence of some of these regulators
appears to be evolutionarily related (present in nearly
all species of a certain fungal clade) others are more
dispersed through the ascomycete tree of life, suggesting
that the regulator was present in their common ancestor
but has been lost in specific species of different lineages.
Present in nearly all of the filamentous Ascomycetes

(with a cut-off of three genomes missing the regulator)
are eleven regulators involved in development and/or
morphology (DopA, RosA, SteA, RlmA, MedA, DevR,
Hsf2, Con7, StuA, WC2, VeA), four involved in carbon
metabolism (FacB, FarB, AceI, AmdX), seven involved
in nitrogen metabolism (UaY, LeuB, CpcA, NirA, AreB
alpha, Nut1, NmrA), the His-Asp phosphorylation sig-
nalling regulator SrrA, the CCAAT-binding complex
components HapB, HapC and HapE, the sulphur meta-
bolic regulator MetR, and the penicillin biosynthesis
regulator PenR2, providing a core set of transcriptional
regulators that control most aspects of physiology.
For some transcription factors, multiple homologs were

identified in the same species. In those cases where
manual curation did not allow elimination of the add-
itional copies, they were retained in the output data set
(Additional file 3, Additional file 4, Additional file 6
and Additional file 7). We do not assume that the
different copies will have the same function, although
they are likely involved in similar processes. Functional
analysis of these proteins will be needed to reveal their
biological role.

Discussion
Genomic studies of fungal transcription regulators have
generally focused on a single transcription factor class in
a particular species (e.g. [12,22,23]), or on the transcrip-
tion factor complement within one species (e.g. [15,23]).
However, analyses of transcription factor families have
been conducted across a range of fungal genomes ([1,25]).
One study identified 37 PFAM families of transcription
factors represented in 62 fungal genomes, and revealed
the Zn2Cys6 zinc binuclear cluster and the fungal-specific
transcription factor domain as the two largest fungal tran-
scription factor classes [1]. Another study focussed on
identification of transcription factors in 62 fungal genomes
using the Fungal Transcription Factor Database (FTFD)
phylogenomics pipeline, and determined the proportion
of transcription factors amongst total predicted proteins
[25]. Analysis of transcription factor family distribution
revealed species-specific differences [25]. The aim of our
study was to perform an inventory of the presence of reg-
ulators in the fungal kingdom, employing the expanded
set of genome sequences that have become available in
the last five years. Our analysis of the distribution of regu-
lator classes indicated differential expansion of certain
regulator types in ascomycetes and basidiomycetes, con-
sistent with the development of many regulatory systems
from a more limited ancestral set of regulators after the
divergence of the two major fungal phyla. In ascomycetes,
the Zn2Cys6 and fungal-specific domain regulators over-
whelmingly predominated. This is consistent with previ-
ous identification of these two regulator classes as the
most abundant fungal-specific regulators in a smaller set
of mostly ascomycete fungal genomes [1]. The C2H2 zinc
finger class comprised a smaller but major regulator class
in the ascomycetes. Further analysis revealed a greater
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relative abundance of the Zn2Cys6 and fungal-specific
domain regulators in the pezizomycotina than in the sac-
charomycotina and taphrinomycotina. In basidiomycetes,
the C2H2 and CCHC classes showed a relative expansion
and, with the Zn2Cys6 and fungal-specific domain regula-
tors, comprise four similarly abundant major regulator
classes. The differential expansion of regulator families in
the fungal phyla and sub-phyla suggests that evolution of
many regulators occurred after the divergence of these
groups. The regulator distribution observed in our ana-
lysis showed some differences compared with the previ-
ously reported distributions in FTFD [25], most likely
due to our expanded dataset. However, the abundance
of Zn2Cys6 and C2H2 domain regulators reported in
FTFD are compatible with our results.
As regulators play a major role in fungal physiology,

their presence or absence may provide options and im-
pose limitations on the natural habitat of fungal species.
Analysis of the presence of individual transcription fac-
tors demonstrated that regulators with a central role in
fungal physiology are most commonly found throughout
the fungal tree of life, while regulators with more spe-
cific roles are less commonly present. This makes sense,
as the loss of central regulators is likely to cause a sig-
nificant competitive disadvantage for a species, unless
transcriptional network functions are maintained by
transcriptional rewiring. In contrast, the more specific
regulators and the regulons they control will only be
essential or advantageous in particular habitats.
As the characterised query regulators for our tran-

scription factor presence/absence analysis were mainly
from ascomycete fungi, it is not surprising that a relatively
low number of orthologs was found in the genomes from
basidiomycetes. Regulation of gene expression is poorly
studied in these fungi compared with ascomycetes, but
our data suggests that many of the regulatory systems
have developed after the split of these two phyla. Interest-
ingly, differences in the presence and absence of regulators
were also found in closely related species. While it cannot
be fully excluded that this can be due to gaps in the
genome sequence or errors in gene annotation of spe-
cific genomes, this does suggest that changes in the
regulatory systems have also occurred more recently.
Examples of this are the GalX/GalR system for regula-
tion of galactose catabolism [18] and the protease regu-
lator PrtT [21], which was shown to differ significantly
between the Aspergilli, and the specific presence of the
cellulose regulator AceII [34].
While the absence of a particular regulator may ac-

company loss of an entire regulon and therefore an al-
tered metabolic or developmental capability, its absence
could indicate transcriptional rewiring of the regulatory
mechanism. Conversely, presence of a regulator ortholog
also does not necessarily indicate conserved function.
Recent studies have shown that transcription regulatory
mechanisms can display considerable plasticity across
species. For some regulons the regulator components
are conserved but exhibit functional reassignment and
rewired circuitry, resulting in rearrangements of tran-
scriptional networks [35]. Other regulons share a con-
served overall strategy but include additional regulator
components to integrate additional regulatory signals, or
show transfer of regulation from one regulator to an-
other, or rewiring via evolution of combinatorial interac-
tions between transcription factors [36-38]. The array of
transcriptional rewiring possibilities indicates that while
the absence of a particular transcription factor ortholog
suggests regulatory differences or the loss of regulons,
the presence of orthologs may, but does not necessarily
indicate conserved function. Therefore functional ana-
lysis is required to determine the role of each transcrip-
tion factor in each species.

Conclusion
We have conducted an inventory of the thirty-seven
PFAM transcription factor classes across 108 genomes
of the two major fungal phyla and shown differential ex-
pansion of transcription regulator classes between the
ascomycetes and the basidiomycetes, with the largest
expansion of Zn2Cys6 and fungal-specific domain regu-
lators in the pezizomycotina. We also analyzed the pres-
ence profiles for 64 known regulators in these 108
genomes and found that regulators with central func-
tions in fungal physiology were more commonly present
than those with more specialised roles. The increasing
number of fungal genome sequences and functional ana-
lyses will provide better insight in the evolution of regu-
latory systems and in particular the 1000 fungal genome
project [39] will add to this as it aims to cover the
breadth of the fungal kingdom.

Methods
Pilot experiment
A bidirectional BlastP analysis was performed using as
query the amino acid sequences of 48 selected regula-
tors. To manually curate the results, alignments of the
hits for each query regulator were performed using
MUSCLE [40] and manually corrected in MEGA4 [41].
Phylogenetic trees were generated with MEGA4 using
three algorithims: Maximum Parsimony, neighbor join-
ing and minimum evolution. The stability of the clades
was tested with 1000 bootstrap replicates. The results of
the manual curation were used to define the parameters
for the automated analysis of a larger set of genomes.

Large-scale genome study
108 completed fungal genomes were extracted from the
JGI fungal program [42], Broad Institute of Harvard and
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MIT [43], AspGD [44,45] and NCBI genbank [46] (data
version March 2013). Pfam-A HMM model was down-
loaded from the Pfam database [47]. Regulator-related
domains were identified in each fungal genome in
HMMerv. 3.0 [48] using the trust cutoff. Genome scale
protein ortholog clusters were detected according to
[49], using inflation factor 1, E-value cutoff 1E-3, per-
centage match cutoff 60% as for identification of distant
homologs [26]. The all-vs-all BlastP search required by
OrthoMCL was carried out in a grid of 500 computers
by parallel fashion. The orthologs clusters were then
curated manually by expert knowledge and literature
search. Manual curation was aided by aligning the amino
acid sequences of the hits for each query together with a
suitable outgroup by MAFFT [50,51], after which neigh-
bor joining trees were generated using MEGA5 with
1000 bootstraps. Genes that were clearly separated from
the query branch in the trees were removed from the
results. An example of this is given for AraR in Figure 3.
Putative regulators containing more than one PFAM domain
were assigned to the cluster based on the number of copies
of domains found and/or the length of aligned area to the
domain. PFAM families in 108 genomes were clustered by
mismatch distance using Genesis [52]. The dendrogram was
drawn by the complete linkage method using Genesis. A
z-transformation of data was performed across families in
order to generate the color scheme for visualization.

Availability of supporting data
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