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Abstract

Background: At later stages of folliculogenesis, the mammalian ovarian follicle contains layers of epithelial
granulosa cells surrounding an antral cavity. During follicle development granulosa cells replicate, secrete hormones
and support the growth of the oocyte. In cattle, the follicle needs to grow > 10 mm in diameter to allow an oocyte
to ovulate, following which the granulosa cells cease dividing and differentiate into the specialised cells of the
corpus luteum. To better understand the molecular basis of follicular growth and granulosa cell maturation, we
undertook transcriptome profiling of granulosa cells from small (< 5 mm; n=10) and large (> 10 mm, n=4)
healthy bovine follicles using Affymetrix microarrays (24,128 probe sets).

Results: Principal component analysis for the first two components and hierarchical clustering showed clustering
into two groups, small and large, with the former being more heterogeneous. Size-frequency distributions of the
coefficient of variation of the signal intensities of each probe set also revealed that small follicles were more
heterogeneous than the large. IPA and GO enrichment analyses revealed that processes of axonal guidance,
immune signalling and cell rearrangement were most affected in large follicles. The most important networks were
associated with: (A) Notch, SLIT/ROBO and PI3K signalling, and (B) ITGB5 and extracellular matrix signalling through
extracellular signal related kinases (ERKs). Upstream regulator genes which were predicted to be active in large
follicles included STAT and XBP1. By comparison, developmental processes such as those stimulated by KIT, IHH and
MEST were most active in small follicles. MGEA5 was identified as an upstream regulator in small follicles. It encodes
an enzyme that modifies the activity of many target proteins, including those involved in energy sensing, by
removal of N-acetylglucosamine from serine and threonine residues.

Conclusions: Our data suggest that as follicles enlarge more genes and/or pathways are activated than are
inactivated, and gene expression becomes more uniform. These findings could be interpreted that either the cells
in large follicles are more uniform in their gene expression, or that follicles are more uniform or a combination of
both and that additional factors, such as LH, are additionally controlling the granulosa cells.
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Background
An ovarian primordial follicle is composed of an inactive
oocyte surrounded by granulosa cells all enclosed by a
basal lamina. Once activated the follicle grows by enlarge-
ment of the oocyte and replication of the granulosa cells
from about 24 cells to 50 million cells in the cow [1]. Dur-
ing growth, a fluid-filled antrum or cavity also develops in
the middle of the follicle [2] and bovine follicles need to
enlarge to over 10 mm in diameter, principally by antrum
expansion, to be capable of ovulation. Ovulation occurs
only once per oestrous cycle. However, instead of one
primordial follicle growing to the necessary size and then
ovulating, many follicles commence growth during the
course of the cycle. The vast majority of these growing fol-
licles become atretic leaving in cows only one, or occa-
sionally two, follicles to ovulate. The process of follicle
growth during a cycle is not random either, since two or
three groups or waves of follicles emerge from a pool of
follicles of approximately 5 mm in diameter during each
oestrous cycle [3,4]. During these maturational waves, fol-
licles continue to enlarge over several days until one fol-
licle that is growing faster and is hence larger than the
others gains dominance [5,6]. Thus a deviation in the size
of follicles occurs when they are around 7-8 mm in diam-
eter [7]. As the larger dominant follicle continues to ex-
pand further, the smaller follicles in the wave undergo
atresia. If the wave is at the end of a cycle the dominant
follicle ovulates and a new cycle is initiated. In earlier
waves the dominant follicle also eventually undergoes atre-
sia and another wave then ensues.

During growth of the follicle, the granulosa cells undergo
a number of maturational changes. Early in follicle devel-
opment they secrete the hormone inhibin and later at
the pre-ovulatory sizes, oestradiol. The cells also ex-
press follicle-stimulating hormone receptors soon after
follicle activation and then during the course of domin-
ance they additionally express luteinising hormone re-
ceptors (LHCGR). The process of dominance is not well
understood largely because it is not possible to trace the
cellular changes that occur within a follicle in real time
in order to relate the events preceding development to
future outcomes, such as predicting whether an individ-
ual follicle will become dominant or subordinate. An-
other recent approach compared identical-sized follicles
before deviation into dominant and subordinate follicles
and analysed gene expression [8]. In that study a firm
hypothesis was investigated and it was found that folli-
cles with the highest level of CYP11AI, encoding the
rate limiting enzyme for progesterone synthesis, also
had the highest level of CYPI9A1, encoding the rate-
limiting enzyme for oestradiol synthesis [8]. It also had
the highest expression level of three genes (LAMB2,
COL4A1, HSPG?2), encoding components of an unusual
basal lamina matrix, focimatrix (abbreviated from focal
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intra-epithelial matrix) [8]. It was concluded that since
these five genes continue to be further up regulated in
dominant and preovulatory-size follicles and because the
expression levels of these genes were correlated with each
other, that focimatrix production and CYPI1A1 expression
might be important in a follicle gaining dominance [8].

Focimatrix develops as aggregates of basal lamina material
deposited between the granulosa cells and contains the al
and o2 chains of collagen type IV, laminin al, B2 and y1
chains, nidogen-1 and -2, perlecan, collagen type XVIII and
usherin, but not versican [9]. These components are similar
to those found in the follicular basal lamina at the stage of
follicular development when focimatrix is first observed
[10,11]. Focimatrix initially appears in bovine follicles greater
than 5 mm in diameter, and the amount of focimatrix in-
creases with increasing follicular size [9]. This first appear-
ance of focimatrix occurs as follicles emerge in a growth
wave, and prior to emergence of the dominant follicle.

The aim of this study, therefore, was to identify the
important processes occurring at the key stages of antral
follicle development at the time 1) prior to follicles en-
tering a wave and 2) prior to ovulation, by gene expres-
sion array profiling. In order to gain a greater knowledge
of the mechanisms responsible for granulosa cell matur-
ation and selection of dominant follicles there have been
several transcriptome analyses of bovine granulosa cells
[12-17]. Evans and colleagues [12] examined dominant
and subordinate follicles (some of which were atretic) by
two-color hybridisation on a self -generated array contain-
ing approximately 1,300 putative genes. Serial Analysis of
Gene Expression (SAGE) tags were examined in follicles
of a larger size (8 mm) around the time of deviation for se-
lection of the dominant follicle [13]. Skinner et al. [14] iso-
lated healthy antral follicles at three different sizes, and
used pooled follicle RNA to hybridise to individual arrays.
Liu et al. [15] was also interested in selection of the dom-
inant follicle using a two color array, but did not separate
the granulosa and thecal compartments for analysis. Sub-
ordinate, dominant and preovulatory follicles have also
been examined by RNA-seq and the effects of lactation ex-
amined on gene expression pathways [16]. More recently,
Christenson et al. [17] also used microarray analysis to in-
vestigate gene expression in bovine antral follicles before
and after the LH surge. Only in one of these studies were
comparisons made between small follicles, less than 5 mm
in diameter, and larger follicles, but the analysis may have
been compromised by a lack of statistical power (n = 2/
group). Smaller follicles represent those before focimatrix
is expressed and before follicles have entered a wave.
Hence we chose to compare these smaller follicles with
larger preovulatory-size follicles; all of which were vali-
dated as healthy. Additionally we ensured that the isolated
granulosa cells were devoid of any potentially contaminat-
ing theca cells.
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Results and discussion

Selection of follicles for analyses

To ensure accurate comparisons were made between
granulosa cells from small (3.2 + SEM 0.2 mm in diameter;
n =10) versus large (15.3+0.6 mm; n=4) follicles, only
antral follicles of healthy morphology [18,19] were se-
lected for this study. Confirmation of health stage was also
performed on large follicles showing CYPI9AI expression
assessed by qRT-PCR similar to that observed in healthy
large follicles using microarray analysis (Figure 1) [20]. To
ensure that the isolated granulosa cells were not contami-
nated with any thecal cells the level of CYP17A1 was mea-
sured. CYPI7A1 is expressed exclusively in thecal cells
[21]. No follicles with more than 1% level of expression of
CYP17A1 found in thecal samples were included in the
analysis. Since there were some low yields of RNA, three
of the samples of small follicles were pools of two follicles,
each from the same animal.

Validation of microarray data

To confirm changes in the expression of genes identi-
fied by microarray analysis, quantitative RT-PCR ana-
lyses of CYP19A1 were performed on the same samples.
Similar to that observed in microarray analysis, the ex-
pression of CYPI9AI was significantly increased in
granulosa cells isolated from large follicles compared to
granulosa cells isolated from small follicles (Figure 1).
The microarray analyses also identified genes well known
to be up regulated across the sizes of follicles examined.
Some examples of these include hormone-related genes
CYP11A1I (increased 5.8 fold), HSD3B1 (6.0 fold), LHCGR
(8.8 fold) and INHBA (3.8 fold) and focimatrix genes
COL4A1 (6.8 fold) and LAMAI (5.8 fold) as shown previ-
ously [20,22] (Table 1).

Statistical analyses of gene expression

Granulosa from small healthy follicles were from one of
two groups having either columnar (n=5) or rounded
(n=5) shaped basally-situated granulosa cells as described
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in the Methods. Principal component analysis (PCA) for
the first three components (Figure 2) and hierarchical
clustering (Additional file 1: Figure S1) for the total num-
ber of probe sets (n=24,182) of all arrays in this study
was conducted. Neither of these unsupervised analytical
methods separated the small healthy follicle arrays into
the rounded and columnar groups, and in fact no genes
were shown to be more than 2-fold differentially expressed
between the two subgroups with a Benjamini-Hochberg
False Discovery Rate (FDR) of P < 0.05 by ANOVA. There-
fore, the small healthy follicles were treated as a single
group for further analyses (n = 10) and compared with the
group of large follicles (n=4). It can be clearly seen that
the large follicles clustered comparatively closely together
and differed from the small healthy follicles, which ap-
peared to be more variable across the group. This was also
reflected in the hierarchical clustering analysis (Additional
file 1: Figure S1). Seven hundred and fifty eight probe sets
were found to be differentially expressed between small
and large follicles, when a P < 0.05 and an arbitrary thresh-
old of 3-fold minimum differential expression was applied
(Table 2). These consisted of 579 up-regulated and 179
down-regulated probe sets in large with respect to small
follicles. The fact that substantially more genes were up
regulated than down regulated in large healthy follicles,
could indicate that activation rather than a reduction in
additional pathways occurs as follicles enlarge.

Variability of gene expression

The Coefficient of Variation (SD/Mean X 100 =CV) for
each gene in small and in large follicles in both the
complete probe set and the >2-fold differentially regulated
probe set were calculated. The CV-frequency distribution
plots are shown in Figure 3. The small follicles (Figure 3A)
had more genes that were variably expressed, particularly
for the genes whose expression was >2-fold differentially
regulated between small and large follicles (Figure 3B).
Furthermore, when we repeated the analysis using only
the genes whose signal intensities were in the top 50% on

A

1.2
1.0
08
0.6

04

pg CYP19A1/ ng 188

0.2

0.0 1
Small

Large

Signal intensity

Figure 1 Quantitative RT-PCR analysis of CYP19 expression (A) compared with gene induction profiles observed by microarray analysis
(B). Mean + SEM expression of CYP19 was determined in granulosa cells derived from the 10 small (clear columns) and 4 large follicles
(blue columns) used for the microarray analysis. Microarray signal data were non-log transformed and divided by 10,
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Table 1 Genes which are up regulated in large follicles with respect to small folliclest

Gene symbol Fold change Gene symbol Fold change Gene symbol Fold change
Cell cycle
RASA2 55 TACCT 35 RAD50 3.1
TBCEL 4.8 TOPORS 33 HELZ 3.1
CDK13 43 TRIB2 32
TPR 43 ANAPCS 3.1
Cell morphology
LIMAT 82 FERMT2 42 ARPCIB 33
SLMAP 5.1 TTLL3 39
MYOI1B 5.1 ABLIM1 37
Cytokines, hormones and receptors
IFI30 390 F2RL1 53 THBS3 35
PTHLH 128 DKK3 53 IGFBP6 35
F2R 89 NPR3 52 BMPR2 33
LHCGR 88 LPHNZ2 47 BAI2 33
IGFBP4 73 PGR 4.7 GPR88 32
F3 7.2 TNFAIPSL3 4.7 SCG2 32
OPTN 6.5 GABARAPL1 46 OSBPL8 3.1
IL4R 6.2 STRA6 4.2 T™M2D1 3.1
IL6R 5.7 RYK 4.2 BMPRIA 3.1
GRK5 56 INHBA 38 NRP1 30
NR5A2 55 LGALS3BP 35 GPR173 30
PTGFR 55
Directional cell growth
LRP8 53.6 SLITRK2 5.1 SEMAGA 33
EFNAS 86 PLXNC1 4.8 NINJ1 32
MPP5 7.1 PLXNB2 4.7 ROBOT 3.1
ROBO?2 6.7 *EPHB6 38 ROCK1 3.1
SEMA6GD 6.2 COLECTT 35
Extracellular matrix and synthesis
TNFAIP6 2796 COLT6A1 6.0 VCAN 5.0
SPOCK2 220 LAMAT 58 LEPREL1 49
COL4AT 6.8 PCOLCE 57 Sbc2 38
Intercellular and cell to matrix adhesion
ARHGAP18 20.5 CDH11 46 TSPAN9 34
ITGB5 114 *BST2 44 PARD3B 32
VCAMIT 73 TNS3 36 TSPAN2 30
CSPG4 55 cam2 36 UBQLN1 3.0
ARHGAP17 4.8
lon transport
*TMEM20 43
Protein trafficking
HSP90AAT 7.0 SH3GL2 4.1 RAB7A 33
TMEM27 5.1 scvez 4.0 CLGN 32

GOLGA4 4.6 MLEC 38 CLTC 32
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Table 1 Genes which are up regulated in large follicles with respect to small folliclest (Continued)

TMEM47 45 PLEKHGT 36 FKBP9 3.1
PLEKHA2 4.2 PLEKHB2 35 CANX 3.1
PLEKHH3 4.1 GDI1 34
Proteolysis or inhibition
PRSS23 485 ADAMTS4 4.7 FBXL20 39
PLAT 175 HM13 45 ADAM10 37
ACE2 129 RNF128 45 MYCBP2 34
CPD 11.8 CTSB 44 HERPUDT 33
SERPINAS 1.2 SPG7 42 RNF20 33
ECET 9.5 DERLT 4.1 UBR3 32
ADAM9 84 USP4 4.0 MARCHS5 32
TIMP2 79 UBRT 4.0 FAF2 32
ADAM12 6.6 MARCH6 39 T1C3 3.1
Usp7 6.4
RNA processing
NOL3 6.0 PBRM1 43 LUC7L3 338
CPEB4 5.1 PRPF38B 4.2 PNISR 37
UTP6 48 RBMS 4.0 SYNCRIP 36
CSDET 4.7 TIAT 39 RNASEK 36
CHD1 4.7 CTR9 39 DDX46 34
SF3B1 4.6 HNRPLL 39 DICER1 3.1
RBM25 44
Transcription regulation
TOX 14 ZNF317 38 BRWD1 33
NMI 84 HUWET 38 NOSTRIN 32
NOTCH1 84 TRIM25 37 JARID2 32
TOBI 6.3 CREB3L2 37 ZNF462 3.1
ZNF292 6.0 ADNP 3.7 ANKRD10 3.1
MTPN 57 ZNF609 36 CITED2 3.1
AFF1 55 KLF6 35 MED24 3.1
FOXP2 53 *MLL3 35 GPS2 3.1
D2 4.5 NCOR1 3.5 HMGXB3 3.1
ID3 43 RBFOX2 34 TFCP2 3.1
*SON 4.2 ZNF24 33 CITEDT 3.1
WHSCILT 39
Translation regulation

EIF4G3 74 BZW2 36 EIF2C2 33
EIF4EBPT 73 EIF2C3 34

BZW1 4.2 IREB2 34

Transport

SLC5ATT 156 MAL2 38 SEC63 34
APOA2 12.5 CLIC4 37 STAR 34
SLC39A8 9.1 CPNES 37 TFR2 33
AP2B1 6.8 ATP13A3 36 COPZ1 33

SLC25A28 58 SLC25A12 36 MICU1 3.2
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Table 1 Genes which are up regulated in large follicles with respect to small folliclest (Continued)
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SLC27A3 5.7 SLC26AT1 36 NUP85 3.2
TNPOT 55 AP3S2 36 cYes 32
SLC40A1 53 TMOISF4 35 APOAT 32
ABCBI1 5.1 AP1S2 35 crc 32
ATP6V1A 43 ACBD5 35 STBD1 3.1
RRBP1 42
Other enzymes
ME3 26.7 PTPN13 42 GPX3 32
CYBB 18.1 SCD5 42 PDP1 32
CYP19AT 142 FDFT1 4.1 LARGE 32
NT5E 12.8 UGCG 4.0 MLL5 32
RGN 9.8 DPYSL2 38 EDEM?2 3.1
PYGL 89 PLDT 37 NCEH1 3.1
B3GALT2 6.5 PPAP2B 37 XRN2 3.1
PDSST 6.0 TET2 37 RDHT1 3.1
HSD3B2 6.0 PFKM 37 CHST10 3.1
PPMIK 59 SGSH 36 PTP4A2 3.1
CYPTIAT 58 CcuL3 35 PTPNT1 3.1
PIGS 55 QSOX1 35 MAOA 3.1
IDH3A 5.5 ACSS2 35 CA8 30
CMAHP 4.6 DPYD 34 HECTD1 30
PDPK1 45 MTR 34 PPP2R5E 30
AHCYL2 44 POR 33 cuL1 30
Other signalling
BEX2 9.0 ARHGEF3 48 *PRKAG2 34
PIK3R1 9.0 AMIGO2 4.7 SNTB2 34
DTNA 85 MAP2K4 44 GLGT 33
DACT1 84 NDRG3 44 GNATT 33
ARFGAP3 76 APC 4.0 IER3 33
GADD45B 6.8 PDCD4 4.0 NISCH 33
NDRG4 6.7 BMP2K 38 INSIG2 32
BCAS3 6.0 Ifi2711 3.7 STIMT 32
MIA3 54 ERRFIT 36 BCL2L2 32
MS4A8B 53 ARHGEF6 35 PIP4K2A 3.1
SAFB2 49 FICD 34 KIRREL 30
MAPK6 48
Other

FAMT14A1 18.8 TMEM176A 4.1 ANKRD12 34
DDX26B 9.7 WDFY4 39 *WDFY2 34
LHFPL2 6.8 PSMD4 38 CHCHD10 33
RNF213 59 RHBDD?2 38 MRAP 33
OBSL1 58 *ZNF317 38 TMEM508B 32
USHBP1 52 TMEM1768 3.7 BRWD3 32
RSRC2 5.1 PSAP 37 *OXR1 32
KLHL28 50 LRIG3 37 HIATLT 3.1
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Table 1 Genes which are up regulated in large follicles with respect to small folliclest (Continued)

LINGO2 50 AKAPSL 36 MGARP 3.1
PDLIMA4 50 FAM1268 36 PHF3 3.1
ODF2L 44 RCN3 36 MPV17L2 3.1
BTBD7 43 LRRC2 36 TBC1D5 30
RNF1448B 43 SUSD4 35 Gm16462/ 30
R3HCCT 42 UHRF1BPIL 35 Gm8787

TXNIP 4.1 YPELS 35 VWAT 30
RCAN3 4.1 FAM1748B 34 ZBTB33 30

(>3 fold, P < 0.05) and categorised by function. Genes are listed in descending order of fold change within each category. Significance was determined by
Benjamini-Hochberg post-hoc test for multiple corrections following one way ANOVA.
*indicates genes determined from the Partek analysis based on the Affymetrix annotations which were not assigned identities by IPA.

the array we still observed a shift to increased variation,
thus demonstrating that this property is inherent in the
small follicles rather than possibly due to overall lower
array intensities (Additional file 2: Figure S2). The higher
variability in gene expression in the small follicle granulosa
cells indicates that either the cells in small follicles were less
uniform in their gene expression, or that small follicles were
less uniform or a combination of both. The more variably
expressed genes were up regulated during follicle enlarge-
ment which indicates that the reduction in variability of
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Figure 2 Unsupervised principal component analysis (PCA) of
arrays for small (n =5 rounded phenotypes in yellow and n=5
columnar phenotypes in blue) and large (n =4, in green)
follicles in Partek. The graph is a scatter plot of the values for the
first (X) and second (Y) principal components based on the
correlation matrix of the total normalised array intensity data.

@ Large

gene expression and their up regulation are potentially both
important processes in follicle maturation.

Differentially expressed genes

A list of genes which were differentially regulated between
small and large healthy follicles (758 probe sets, 3-fold dif-
ferentially expressed, P<0.05, gene list and names are
shown in Additional file 3: Table S1) was examined in de-
tail. We were able to identify genes which were well char-
acterised during follicle development, and known to be
differentially regulated between small and large follicles in
our microarray analyses which included LHCGR [23], pro-
gesterone receptor [24], INHBA [25] and the receptor for
the lipid mediator prostaglandin F2a (PTGFR) [26]. In the
list 533 probe sets could be assigned gene identities in In-
genuity Pathway Analysis (IPA) which included those with
homology to multiple probe sets, consisting of 446 anno-
tated genes, of these 352 were up regulated in large folli-
cles (Table 1) and 92 were down regulated (Table 3). This
list was also uploaded to the Gene Ontology Enrichment
Analysis Software Toolkit (GOEAST) program.

Pathway and network analyses

The top ten canonical pathways generated in IPA and sig-
nificant GO terms indicate a trend toward directional cell
growth and extracellular signalling. In particular, the three
most significantly associated IPA canonical pathways are
axonal guidance (Additional file 4: Figure S3), Ephrin A
and Rho GTPase signalling, which are associated with cell
attachment and cytoskeletal rearrangement (Figure 4A). The

Table 2 Numbers of probe sets 2 fold or more
differentially expressed in large healthy follicles with
respect to small healthy follicles*

Fold change Up-regulated Down-regulated Total
> 2 1666 1048 2714
>3 579 179 758
>4 278 67 345

*Significant by FDR with P < 0.05, with ANOVA in Partek using the step-up
Benjamini-Hochberg FDR method for multiple corrections.
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Figure 3 Plots of coefficients of variation (CV) versus their
frequency for granulosa cell cDNA hybridised to Bovine
Genome Affymetrix Expression arrays across replicate samples
per gene for small (n=10) in A and large follicles (n=4) in B.
All genes include all the probe sets present on the array (n=24,128).
2 fold and 3 fold represent all probe sets which were 2-fold (n = 2,780)
or 3-fold (n = 760) differentially regulated between small and large
follicles in Partek.

IL-6 signalling pathway (Additional file 5: Figure S4), associ-
ated with inflammation and acute phase reaction, also con-
tains a number of genes which were activated in large
follicles including IL6R, JNK, PIK3R and TSG6 (or TNFAIP6,
already mentioned). The GO terms enriched for the large to
small follicle comparison are also connected with inflamma-
tion signalling and cell rearrangement (Figure 4B).

The two top networks generated by IPA based on the
dataset above are shown in Figure 5. The network in
Figure 5A shows an emphasis on cytoplasmic mem-
brane receptor signalling centred around Notch and the
ADAM protease genes and axonal guidance through the
ROBO genes and LRP8. There is also considerable
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connectivity associated with PI3K which exerts direct ef-
fects on the cytoskeleton and indirectly protein translation
via EI4EBPI. The other network (Figure 5B) indicates sig-
nificant interaction with extracellular matrix by LAMAI,
LAMC2 and COL4A1 which appear to mainly signal
through the cell surface components /TGBS5, CSPG4 and
CDH11 to ERK pathways. This extracellular matrix path-
way is probably that associated with focimatrix production
that develops as follicles enlarge from 5 to 10 mm in
diameter [9,27].

Genes activated in large versus small follicles

TGF-B signalling

It is well known that TGE-p signalling plays an important
role in follicular development, as reviewed by Knight and
Glister in 2006 [28] and more recently by Myers and
Pangas in 2010 [29]. In our study, three members of the
TGEF-B superfamily, INHBA which helps drive androgen
production from the theca [30] and inhibits production of
ESH by the pituitary [31], and the bone morphogenetic
protein receptor genes BMPRIA and BMPR2, were up
regulated in large follicles (Table 1). The BMP receptor
type II binds GDF-9 and BMP-15, two critical growth fac-
tors for granulosa cells which are secreted by the oocyte at
antral stages [32]. The activation of these genes probably
contributes to follicle growth during the latter antral
stages when androgen production is increased and com-
bines with LH to maintain high oestradiol levels following
the reduction in circulating levels of FSH when a domin-
ant follicle emerges.

Immune/Inflammation signalling

The immunoregulatory receptor genes, IL4R IL6R and
IL20RA and the thrombin and thrombin-like receptors
F2R and F2RLIwere also identified among the list of
genes activated in large follicles (Table 1). Bovine gran-
ulosa cells have been shown to be capable of initiating
an inflammatory response to lipopolysaccharide with
increased expression of IL-6 and IL-8 [33]. Addition-
ally, IL-6 and its receptor have been studied in relation
to cumulus-oocyte complex development, where they
are known to play an active role in expansion and ovu-
lation [34]. The expression of another inflammatory
cytokine IL-4 and its receptor have been shown to
increase in the rat preovulatory follicle [35]. Interest-
ingly, thrombin receptor RNA expression has pre-
viously been reported to be lower in larger follicles
than small [36] as opposed to our study, though the
health of the follicles was unclear in the other study.
These inflammatory pathways identified as significant
in our analysis further confirm that significant signal-
ling through these pathways occurs in the later stages
of bovine antral follicle development.
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Table 3 Genes which are down regulated in large follicles with respect to small folliclest

Gene symbol Fold change Gene symbol Fold change Gene symbol Fold change
Cell cycle

RPRM 5.8

Cell morphology
JAKMIPT 20.8 MYO10 6.8 ACTAT 34
SEPT4 153 MFAP2 46 MYO1D 30

Cytokines, hormones and receptors
KIT 23.1 IL33 36 GPR77 32
ANGPT2 15 PTPRNZ2 36 ANGPTL2 3.1
RYR2 70 SHISA2 35 F2RL2 3.1
PDGFC 4.6 CMTM8 34 SFRP4 30
FGFR2 37 IL20RA 34
Directional cell growth
FEZ1 38 EPHAT 32
Extracellular matrix and synthesis
LAMC2 34 COLTAT 30
Intercellular and cell to matrix adhesion
NEDD9 59 CDH2 4.0 NPNT 32
Protein trafficking
SNX31 6.0 ADCK3 34 MzB1 3.1
cL 49
Proteolysis and inhibition

*PTI 56 LTF 4.0 EPHX1 34
MMP16 4.0 PRSS35 37 TRIM2 33

RNA processing
CPEB1 39

Transcription regulation
MYC 164 FOS 4.0 EMX2 3.1
HOPX 138 FHL2 33 MSX1 3.1
TGIF1 6.1 HEST 32
Transport

SVOPL 86 NUP210 4.7 AQPIT 32
NALCN 6.0 ABCC8 4.7 FXYD6 32
AP3B2 55 STARD10 34 ZP3 32

Other enzymes
GATM 1.1 MANTAT 42 PTGS2 35
CA14 838 ENPP1 4.1 ABAT 35
PAPSS2 7.8 HMOX1 4.1 PFKFB3 32
RASLT1B 6.8 PHGDH 3.7 CYP2C19 3.1
GALNTI13 53 RENBP 36 AKR1C3 3.1
AKRI1B1 45 DDO 36 GYLTLIB 30

Other signalling
MEST 28.7 GUCATA 5.1 *RGS2 34
TNFAIP2 175 HLA-A 44 APBB2 32
IHH 166 *CHRDL1 3.7 BANKT 3.1

CARTPT 14.0 SASHI1 35 *TCRA 30
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Table 3 Genes which are down regulated in large follicles with respect to small folliclest (Continued)

Other
LRRC17 7.1 TIN 36 MMD 3.1
STAC3 39 SELTL3 36 BTNLT 3.1
LRRCT 38 ccoes 32 TMIGD2 30

(> 3-fold, P < 0.05) and categorised by function. Genes are listed in descending order of fold change in each category. Significance was determined by
Benjamini-Hochberg post-hoc test for multiple corrections following one way ANOVA.
*indicates genes determined from the Partek analysis based on the Affymetrix annotations which were not assigned identities by IPA.

IL-8 signaling
Mouse embryonic stem
cell pluripotency
ILK signaling
Hepatic fibrosis/ Hepatic
stellate cell activation
Atherosclerosis signaling
Clathrin-mediated endocytosis signaling
IL-6 signaling
Signaling by Rho family GTPases
Ephrin A signaling
Axonal guidance signaling

0 1 20 3000 05 10 15 20 25 30

Percentage -log (p-value)

M Downregulated in large versus small
W Upregulated in large versus small

B

Positive regulation of receptor recycling
Negative regulation of retinoic

acid receptor signaling pathway
Positive regulation of leukocyte migration
STAT protein import into nucleus
Regulation of systemic arterial

blood pressure by renin-angiotensin
Anatomical structure formation
involved in morphogenesis

Activation of MAPKK activity
Regulation of cell adhesion

Monocyte activation

Wound healing involved

in inflammatory response

0 10 20 30 40 50 60 70 B0 0.0 05 1.0 15 20 25
Percentage -log (p-value)

M Differentially regulated in large versus small

Figure 4 Top ranked canonical pathways generated in Ingenuity Pathway Analysis (A), and enriched GO terms of interest (B),
determined by the GOEAST program, for a set of genes 3-fold differentially regulated with a Benjamini Hochberg False Discovery Rate
P < 0.05 between small and large follicles. A The bar chart on the left represents the percentage of genes from the data set that map to each
canonical pathway showing those which are up regulated (in red) and down regulated (in blue) in large with respect to small follicles. The
pathways are ranked from lowest (top) to highest (bottom) degree of association with genes from the data set by the P-value of a right tailed
Fishers exact t-test. The Benjamini-Hochberg test for multiple comparisons determined that these pathways all had —log P value = 0.23. B The bar
chart on the left represents the percentage of genes differentially requlated from the data set, which map to an enriched GO term of interest
classified as a biological process. The most significant terms from the analysis were not displayed as these were too general and not informative
in terms of specific function. The GO terms were ranked from lowest to highest degree of association with genes from our data set, by the
P-value calculated using the Benjamini-Yuketeli test for multiple comparisons (top to bottom in graph on right).
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Axonal guidance

An interesting subset of the signalling genes active in large
follicles is concerned with directional cell growth and
cellular processes, mainly through the SLIT (SLITRKI)/
roundabout or ROBO (ROBOI, ROBO2) and semaphorin
(SEMAG6A)/plexin (PLXNB2, PLEXNCI) pathways (Table 2
and Figure 5A). ROBO1 and ROBO2, and SLITRK?2 are
part of the SLIT-ROBO pathway, which acts as an
important repulsive cellular guidance mechanism to
control vascular and mesenchymal tissue development
[37]. Whilst follicles do not have a branching struc-
ture, during their growth they are expanding within
a stromal tissue, as branching ducts are required to
do, suggesting that the semaphorin (SEMAG6A)/plexin

(PLXNB2, PLEXNCI) pathway is important in the
process of follicle expansion. Another up-regulated gene
NOTCHI, can similarly affect cell polarity and tissue
structure [38].

In fact, these molecules are known to be present in fol-
licle development in the fetal ovary [39] and adult ovarian
follicle [40,41]. LRP8, an endocytosis and cholesterol
transport participant, was previously found to be more
highly expressed in large versus small antral follicles [42]
and in the dominant follicle compared with the subordin-
ate and preovulatory follicles [43]. LRPS8 is also crucial for
binding ephrins, which are involved with directed growth
and cell migration [44]. Ephrin receptors, including A4
and their corresponding ligands, have been demonstrated
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in human luteinised granulosa cells [45]; but not at earlier
stages. The activation of these genes and subsequent
axonal guidance pathways identified in our arrays indicate
the importance of polarity switching and cell rearrange-
ment as the follicle prepares for ovulation and luteinisa-
tion of granulosa cells. Ovulation requires that the follicle
and cumulus expand and the oocyte migrate to the point
of release facing the ovarian surface, which necessitates
coordinated signalling between mural and cumulus granu-
losa and the oocyte.

Protein trafficking

Molecules involved in protein trafficking constitute another
important group within our up-regulated data set (Table 1),
and some of these participate in cell signalling pathways
through the pleckstrin homology domain binding proteins
PLEKHA2, PLEKHB2, PLEKHGI and PLEKHH3. PLE-
KHA2 is a participant in the phosphoinositidyl-3-phosphate
kinase (PI3K) signalling pathway which is sensitive to
superoxide production [46], possibly as a by-product of
steroidogenesis.

Transcription factors

As the follicle enlarges the granulosa cells mature and
we would expect major changes in the types of molecu-
lar pathways which are active in the granulosa cells. This
is reflected in the high number of transcriptional regula-
tors of developmental processes encoded by genes like
FOXP2, CREB3L2, JARID2, CITEDI1 and CITED2 which
are switched on in large follicles (Table 1). The cAMP-
responsive element binding protein (CBP) p300 interact-
ing transcriptional modulator CITEDI, has been shown
to be activated by FSH treatment of in vitro matured
granulosa cells [47], and CITED2 encodes a factor which
competes with hypoxic inducible factor (HIFla) for
CBPp300 [48], and is important for embryonic develop-
ment of neural tissue [49].

Cell growth

Many of the genes identified in this study encode proteins
responsible for growth and metabolism. Several of these are
known to be involved in follicular development and con-
firm previous studies, such as IGFBP-4 and-6, which were
found to be up regulated in granulosa cells isolated from
large follicles [50] (Table 1). Other genes such as chordin-
like 1, a BMP-4 antagonist [51], have not previously been
associated with follicular development.

Intercellular and matrix adhesion

A number of molecules which create intercellular interac-
tions and/or bind extracellular matrix are also encoded by
genes which are listed in Table 1. Nine extracellular matrix
genes were up regulated in large follicles, and encode pro-
teins including collagen types 4al (COL4AI) and 16al
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(COL16A1), and laminin ol (LAMAI), as well as the pro-
teoglycans, versican (VCAN), CSPG4 and syndecan 2
(SCD2) (Figure 5A). This group also contains the most
highly expressed gene from the entire list, TNFAIP6, al-
most 280-fold higher expressed in large follicles (Table 2
and Additional file 5: Figure S3). The up-regulated mole-
cules which bind matrix or stabilise intercellular attach-
ment, are represented by the tetraspanins 2 and 9
(TSPAN2, TSPANY), the Rho GTPase activating proteins-
17 and -18 (ARHGAPI7, ARHGAPIS), and the well-
known cell surface antigens, integrin 5 ([7GB5) and
VCAM]I, amongst others. Integrin 5 is expressed in ma-
ture follicles in the mouse [52] and it is known that integ-
rins bind extracellular matrix and can mediate cell
migration, replication or apoptosis [53]. VCAMI expression
has not previously been associated with granulosa cells in
follicle development. It is generally expressed in endothelial
cells but can be expressed in other epithelia and promote
adhesion of circulating inflammatory cells [54], and thus
may also participate in the ovulatory process.

Proteolysis and inhibition

There are 13 wup-regulated transcripts that encode
enzymes which collectively encompass a broad range of
proteolytic activities (Table 2) in large follicles. Two highly-
expressed transcripts are encoded by the serine protease
23 (PRSS23) and tissue plasminogen activator (PLAT)
genes. This group includes several members of the ADAM
family of metalloproteases: ADAMY9, ADAMI10, ADAMI2
and ADAMTS4. Three well known protease inhibitor
genes, TIMPI, TIMP2 and SERPINAS, are also abundantly
expressed. Although it is known that ADAMTSI1 plays a
role in matrix remodelling and is important for ovulation
in the mouse [55], horse [56] and human [57] and ADAMS
is regulated by progesterone and luteinising hormone [58],
there is little evidence to date concerning the function of
ADAM metalloproteases 9, 10 and 12 in the ovarian fol-
licle. These three proteases together are capable of degrad-
ing fibronectin and collagen IV, and shed Fas and kit
ligand from epithelial cells in vitro [59] and thus may regu-
late the breakdown of matrix and differentiation of granu-
losa cells prior to ovulation. The inhibitors of matrix
metalloproteases, TIMP 1 and 2 are also critical players in
the breakdown of matrix close to the time of ovulation
[60,61] and can promote progesterone synthesis. An im-
portant feature of future studies will be to comprehensively
map the spatio-temporal expression of these proteins in
the extracellular matrix, and determine the biological effect
of their accumulation.

Genes activated in small versus large follicles

Table 3 shows several important cytokine and receptor
genes which have lower expression in large follicles includ-
ing KIT, PDGFC (Figure 5B), FGFR2, F2RL2, IL33, IL20RA,
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and ANGPT2. Other interesting highly down regulated
genes of various functions include the developmental genes:
MEST (the most down regulated in large follicles, 28-fold),
IHH (also Figure 5B) and MYC, and also JAKMIPI, which
participates in cell polarisation.

Two of the genes mentioned before, KIT [62,63] and
AMH [64], are associated with follicle survival and matur-
ation. The imprinted gene MEST which is mesodermally
expressed in early embryos [65], is also strongly up regu-
lated in small follicles. This developmental gene has been
shown to be highly expressed in oocytes compared with
cumulus cells [66], but not necessarily throughout the
membrana granulosa. IHH, one of the hedgehog-signalling
family genes found here to be up regulated in small follicles,
has been shown to be necessary for proper egg chamber
formation in Drosophila [67], and is hormonally regulated
and associated with co-maturation of the theca interna in
the mammalian ovary [68]. Both IHH and MEST may be
necessary for the maintenance of an immature granulosa
cell phenotype in small follicles. Interestingly, a related
hedgehog family member Sonic Hedgehog Homolog (Shh)
has also been reported to be regulated by heparan sulphate
proteoglycan binding [69]. These molecules exist in abun-
dance within antral follicles in the form of syndecan and
glypican (cumulus cells) [70] and perlecan (between mural
granulosa cells) [27], and it is possible that they may play a
role at this stage of follicle development.

Upstream regulator analyses

IPA Upstream Regulator analysis was used to identify
upstream transcriptional regulators and the results are
shown in Table 4. The validity and usefulness of such
analyses is shown by the identification of known im-
portant pathways or molecules affecting follicle growth
or granulosa cell function such as the gonadotrophin/
protein kinase pathways (with identified upstream regula-
tors including chorionic gonadotrophin, follicle-stimulating
hormone, forskolin, 8-bromo cAMP, bucladesine which is a
cell permeable cAMP analogue, epidermal growth factor
pathway (ERBB2), renin angiotensin system (lorsartan
which is an inhibitor of the angiotensin Type II receptor),
oestradiol (tamoxifen;), leptin (LEPR), inhibin (INHBA),
GATA transcription factors (GATA®6), , VEGE, retinoid ac-
tion (AGN194294 which is an RXR ligand), lipid metabol-
ism (APOE,) and the aryl hydrocarbon (AH) receptor
(tetrachlorodibenzodioxin).

Two molecules which have not been well studied in rela-
tion to follicular development appear to significantly alter
transcription in large follicles: XBPI and STAT4 (Figure 6).
XBP1 is cleaved to an activated form under conditions of
endoplasmic reticulum stress and subsequently stimulates
the expression of a number of chaperones resulting in re-
moval of misfolded proteins and targets them for degrad-
ation [71]. It is predicted to be up regulated, and it is
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possible that radical oxygen species generated by the ste-
roidogenic process may contribute to the misfolding of
proteins [72]. STAT4 is also predicted to be up regulated
in large follicles, and is a mediator of the interleukin -12
immune response [73,74], and further supports the in-
volvement of inflammatory processes detected within the
follicle at this time as indicated by the IPA and GO enrich-
ment analyses.

A new pathway or molecule identified by IPA Upstream
Regulator analyses is MGEAS (meningioma expressed anti-
gen 5) which was down regulated in large follicles (Figure 6).
There is a diverse set of about 600 proteins known to be
post-translationally modified by the addition of O-linked
N-acetylglucosamine (O-GIcNAc) to their serine and
threonine residues by the action of the enzyme O-GlcNAc
transferase (OGT/Sxc) [75]. MGEAS encodes beta-N-acet-
ylglucosaminidase (O-GlcNAcase), whose catalytic activity
removes O-GlcNAc from serine and threonine residues
in proteins [75]. This cycling of O-GIcNAc to post-
translationally modify proteins can therefore regulate the
activity of these proteins. O-linked glycosylation has been
observed in bovine cumulus cells and linked to the avail-
ability of nutrients for the fuel-sensing hexosamine bio-
synthetic pathway [76,77]. The hexosamine biosynthetic
pathway is sensitive to the levels of lipid, glucose and
amine which together supply components of O-GlcNAc.
Flux in nutrients thereby modulates protein activity by
flux in O-linked glycosylation of proteins. Down regula-
tion of MGEAS in large follicles suggests that in small fol-
licles there is decreased O-linked glycosylation of proteins
and indeed increased O-linked glycosylation of proteins
has been observed to be negative for the success of oocyte
maturation [76,77].

Conclusions

In conclusion, substantial changes occur in gene ex-
pression in granulosa cells as follicles enlarge from
small to large antral sizes. Gene expression becomes
less variable, and the processes of axonal guidance, im-
mune signalling and cell rearrangement were most af-
fected in large follicles. Some important networks were
associated with: (A) Notch, SLIT/ROBO and PI3K
signalling, and (B) ITGBS5 and extracellular matrix sig-
nalling through extracellular signal related kinases
(ERKs). Upstream regulator genes which were pre-
dicted to be active in large follicles include STAT4 and
XBP1, whereas MGEAS was predicted to be inhibited.
The latter encodes an enzyme that modifies the activity
of many target proteins, including those involved in
energy sensing, by removal of N-acetylglucosamine
from serine and threonine residues. By comparison,
developmental processes such as those stimulated by
KIT, IHH and MEST were most active in small follicles.



Table 4 Upstream regulators predicted to be activated or inhibited in large follicles compared with small follicles, using the 3-fold differentially-regulated data

set with FDR P < 0.05, on the basis of known interactions compiled in the IPA Upstream Regulator analysis

Upstream regulator Molecule type *Activation **P-value Target genes in the data set
z-score  of overlap
Predicted activated molecules/genes
Tacrolimus Chemical drug 3302 21x107%  ABLIMI, ACTA1, CDK13, COL1AT, CYBB, FOS, ID3, IL33, MYC, PDCD4, PTGS2
STAT4 Transcription regulator 3.300 48x107%  AKAPSL, ARFGAP3, ERRFI1, GLG], IER3, MGARP, PYGL, RCN3, RNF128, SF3B1, WHSCIL1
Chorionic gonadotrophin Hormone 3224 24x10°  ABCBI, AKR1C3, CDH2, CLU, CYP11A1, CYP19A1, F2RL1, HSD3B2, IER3, IGFBP4, IL33, IL4R, INHBA,
[TGB5, LGALS3BP, LHCGR, MTPN, NPR3, NR5A2, NRP1, PFKFB3, PGR, PLAT, PPAP2B, PTGFR, PTGS2,
SFRP4, STAR, TIMP1, TNFAIP6, VCAN
XBP1 Transcription regulator 2.887 15x10°  APBB2, APOA1, ARFGAP3, COPZ1, DERL1, EDEM2, GOLGA4, HERPUD1, HM13, HMOX1,
MYC, RCN3, RRTI, SEC63, VCAMI
FSH Hormone 2.759 18x10*  ACTAT, BCL2L2, BMPR1A, BMPR2, CDH2, CITED1, CYPT1A1, CYP19A1, FOS, GRKS, HSD3B2, IGFBP4,
INHBA, ITGB5, LHCGR, MAPK6, MYC, NOL3, PGR, PLAT, PTGS2, RPRM, STAR, TIMP1, TIMP2, TNFAIP6, TOB1
FOXO3 Transcription regulator 2613 74x107  EIFAEBP1, FGFR2, GABARAPLT, GADD458B, IER3, MYC, SLC40A1, TXNIP
AGN194204 Chemical drug 2.550 24x10°  ANAPCS, BZW?2, CLIC4, FDFTT, IL4R, KLF6, MANTA1, MYC, PDCD4, RCAN3, STIM1, STRA6, TIMP1
Forskolin Chemical toxicant 2444 34x10°  ACTAT, APOAT, ATP6V1A, CARTPT, CDH2, CLU, COLIAT, CYP11A1, CYP19A1, FOS, GRKS, HMOX1, HSD3B2,
ID2, ID3, IGFBP6, INHBA, ITGB5, LARGE, LHCGR, LTF, MYC, NOL3, NT5E, PGR, PLAT, PTGS2, PTHLH, RAB7A,
RPRM, SCG2, STAR, TIMP1, TNFAIP6, TXNIF, VCAN
INHBA Growth factor 2389 32x107  CPNE8, CYPT1A1, CYP19AT, DTNA, INHBA, LHCGR, PRPF38B, STAR, TIMP1
GATA6 Transcription regulator 2377 56x10° BMPR2, CYP11A1, CYP19A1, HSD3B2, LHCGR, STAR
8-bromo-cAMP Chemical reagent 2287 21x10%  APOAT, CLU, CYPT1A1, CYP19AT, FOS, HSD3B2, LHCGR, MYC, PGR, PLAT, PTGFR, PTGS2, STAR, TIMP1, TIMP2
Bucladesine Chemical toxicant 2.166 1.0x10*  CDH2, CLU, CYPT1A1, CYP19AI1, ENPP1, ERRFI1, F3, FOS, GADD458, HMOX1, HSD3B2, IGFBP6,
KIT, MYC, PTGS2, QSOX1, RGN, SCG2, STAR, TIMP1, TIMP2
Vegf Cytokine 2.008 26x10°%  ABCBI, ADAM10, ANGPT2, ANGPTL2, BMP2K, F3, GRKS, HES1, HMOX1, IGFBP4, INHBA, LPHN2,
LRP8, MYC, NOTCH1, NR5A2, NRP1, PPAP2B, PTGS2, PTHLH, TIMP1, TRIB2, VCAM1
Predicted inhibited molecules/genes
LEPR Transmembrane receptor —2.000 72x107 APOAT1, APOA2, CARTPT, COL1A1, COL4A1, FOS, TIMP1
Losartan potassium Chemical drug -2.035 64x10°  AQP1, COL1AI, CYBB, F3, FOS, GRKS, ITGBS, PTGS2, PTHLH, STAR, TIMP1, VCAM1
APOE Transporter —2.035 25x10°  APOAI, CLU, COL1AT, CTSB, CYBB, F2R F2RL1, F3, GPR77, GPX3, HMOX1, IGFBP,
LRPS, MYO1B, NPNT, PPAP2B, PTGS2, TIMP1, VCAM1
Tetrachlorodi-benzodioxin Chemical toxicant -2.038 72x107%  ABCBI, CYP11A1, CYP19A1, FOS, HES1, HMOX1, INSIG2, LHCGR,
MYC, MYOT10, PTGFR, PTGS2, PTPN13, SLC40A1, SPOCK2, STAR
NROB1 Ligand-dependent nuclear receptor -2.092 20x10™  CYPT1AT, CYP19A1, HSD3B2, NR5A2, STAR
Tamoxifen Chemical drug —2.241 45x10°%  CDHI11, CLU, EPHX1, F2R, FHL2, FOS, HES1, IER3, IGFBP4, MYC, PGR, PTGS2, UGCG
MGEA5 Enzyme —2.500 19x10°  ABLIMIT, ACSS2, CMTMS8, CREB3L2, FDFT1, FERMT2, IGFBP4, IL20RA, IL6R, ITGBS,
LPHN2, MYO10, PFKM, PPAP2B, TIMP1, TIMP2
ERBB2 Kinase —3.304 ACTA1, ADAM12, ANGPTL2, ATP6V1A, BEX2, CDH11, CHCHD10, CHST10, CLU, COL1A1, COL4AT1, CULI, CUL3,

DERL1, EIF4EBPI1, F2R, FOS, GPX3, HEST, ID2, IGFBP4, IGFBP6, KIT, LAMC2, MAN1A1, MAOA, MFAP2, MYC, MYO10,

NDRG4, NEDD9, NOTCH1, NPNT, NRP1, PDCD4, PDLIMA4, PFKFB3, PLAT, PTGS2, TGIF1, VCAN

*The bias-corrected z-score is used to infer the activation states of transcriptional regulators. It is calculated from the proportions of genes which are differentially regulated in an expected direction based on the
known interactions between the regulator and the genes present in the Ingenuity database. Those genes with a z-score greater or less than two are considered to be either activated or inhibited respectively.
**The P value of overlap is the calculated statistical significance of overlap between genes from the dataset and genes that are known to be regulated by the upstream regulator using Fisher’s exact test.
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Figure 6 Two upstream regulators of interest, STAT4 (A) and XBP1 (B), which are predicted to be activated and one regulator, MGEA5 (C),
predicted to be inhibited in large follicles based on known interactions with genes in our data set by IPA. Interactions between molecules are
shown as explained in the legend, with focus molecule symbols highlighted in color, based on up (red) or down (green) regulation in large follicles and of
increasing intensity with degree of fold change. The suggested action of the central gene is indicated as up-(red) or down-(blue) regulating with the
degree of confidence increasing with color intensity. Arrowheads at the end of interactions indicate activation, whereas bars indicate inhibitory effects. The
unbroken arrows and the dashed arrows represent direct and indirect interactions respectively, between the genes and the upstream regulators.
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Methods

For these experiments bovine ovaries were collected as
pairs at a local abattoir in South Australia from non-
pregnant Bos taurus cows, within 20 min of slaughter and
transported to the laboratory on ice. Ovary pairs were
macroscopically examined for the presence of a corpus
luteum to exclude ovaries from non-cycling cows, and large
cystic follicles were discarded. Both small (< 5 mm in diam-
eter, n=10) and large (> 12 mm, n =4) follicles were se-
lected randomly from different animals. The follicles were
dissected from each ovary and the diameter measured with
the aid of an ocular micrometer. A portion of each follicle,
approximately 100 mm?®, was removed and fixed in 2.5%
glutaraldehyde in 0.1 M phosphate buffer (pH 7.25) for sub-
sequent classification of health or atresia, and granulosa
cells were collected from the remaining follicle wall. Only
healthy follicles were analysed in this study.

Histological classification of follicles
Following fixation overnight, the portions of each ovary
were rinsed several times with buffer and post-fixed in

2% (v/v) aqueous osmium tetroxide for 1 h at 4°C, as
described previously [78]. For light microscopic exam-
ination of all follicles, 1 pm-thick epoxy sections were
cut using glass knives and a Richert-Jung Ultracut E
ultramicrotome (Leica Microsystems Pty. Ltd., VIC,
Australia), stained with 1% (w/v) aqueous methylene
blue and examined using an Olympus BX50 micro-
scope (Olympus Australia Pty. Ltd, VIC, Australia).
Healthy and atretic follicles were identified as described
previously [18,19] and all healthy follicles, both large
and small, selected for the current experiments had no
dead or dying granulosa cells. The small follicle pheno-
type was sub-classified into two types, rounded or col-
umnar, based on the shape of the basally-situated
granulosa cells [79,80].

Isolation of granulosa cells

Following removal of a portion of tissue for microscopic
examination, each follicle was transferred to a 35 mm
Petri dish containing 1.0 ml Hank’s balanced-salt solution
(HBSS) without calcium or magnesium. The granulosa cell
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layer was removed by gentle rubbing with a glass Pasteur
pipette, previously modified by heat sealing the tip into a
rounded smooth surface. The HBSS containing the granu-
losa cells were centrifuged at 500 x g for 7 min at 4°C, the
medium was removed by aspiration and the cells washed
twice in phosphate-buffered saline. Finally the cells were
resuspended in RNAlater (Ambion, Austin, TX, USA),
and stored at —20°C until required.

RNA isolation

Total RNA was extracted from the granulosa cells of 10
small and 4 large healthy follicles using RNeasy mini kits
(Qiagen). The concentration of the RNA was determined
by spectrophotometric measurement at 260 nm. For
each granulosa cell preparation, 5 pg of RNA was treated
with DNA-free (Ambion) according to the manufac-
turer’s instructions.

Real time RT-PCR

Synthesis of cDNA and quantitative Reverse Transcriptase
Polymerase Chain Reaction (RT-PCR) using plasmid stan-
dards were performed as previously [81] and briefly de-
scribed here. Total RNA (500 ng) was reverse transcribed
with SuperScriptlll (Life Technologies, Carlsbad, Ca, USA)
using random hexamer primers (Geneworks, Thebarton,
SA, Australia) according to the manufacturer’s instructions.
The program Primer Express was used to design primers to
the bovine sequences of ribosomal 18S, CYP17A1 and
CYP19A1 (Table 5). An ABI Prism 7000 Sequence Detec-
tion System (Applied Biosystems, CA, USA) was used for
real time RT-PCR detection with SYBR Green (Eppendorf,
Hamburg, Germany) and 10 pmoles of forward and reverse
primers in a 20 pl reaction. The amplification conditions
are described in Table 5. Plasmid standards were generated
by cloning amplified products into pCR2.1-TOPO vector
(Life Technologies), then transformed into E. coli XL1 Blue
(Agilent Technologies), extracted and purified. These stan-
dards were quantitated by Absorbance at 260 nm and seri-
ally diluted over 3 logs then amplified together with the
diluted sample cDNA in the real time reaction to determine
quantities of RNA expressed as fg/ng 18S ribosomal RNA.

Table 5 Primers and conditions used for quantitative RT-PCR
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Microarray profiling

Following confirmation of the quality of the RNA and
c¢DNA synthesis, hybridisations to GeneChip Bovine Gen-
ome Arrays (Affymetrix, CA, USA) and scanning were per-
formed according to Affymetrix protocols at the Australian
Genome Research Facility (Walter & Eliza Hall Institute of
Medical Research, Parkville, VIC, Australia) as previously
[82] and briefly described below. All samples were analysed
together using the same batch of arrays. In brief, the start-
ing amount of total RNA for each probe preparation varied
between 2 to 5 pg. First-strand cDNA synthesis was per-
formed using a T7-linked oligo-dT primer, followed by sec-
ond strand synthesis. In vitro transcription reactions were
performed in batches to generate biotinylated cRNA tar-
gets, which were subsequently chemically fragmented at
95°C for 35 min. Twenty pg of the fragmented, biotinylated
cRNA was hybridised at 45°C for 16 h to Affymetrix Gene-
Chip Bovine Genome Arrays, which contained 24,128
probe sets representing over 23,000 transcripts and vari-
ants, including 19,000 UniGene clusters. The arrays were
then washed and stained with streptavidin-phycoerythrin
(final concentration 10 pg/ml). Signal amplification was
achieved by using a biotinylated anti-streptavidin antibody.
The array was then scanned according to the manufac-
turer’s instructions. The scanned images were inspected for
the presence of any defect on the array.

Data normalisation and analyses

To minimise discrepancies due to variables such as sam-
ple preparation, hybridisation conditions, staining, or
array lot, the raw expression data was normalised using
the RMA background correction (Robust Multi-array
average [83]) with quantile normalisation, log base 2
transformation and mean probe set summarisation with
adjustment for GC content and performed in Partek
Genomics Suite Software version 6.5 (Partek Incorpo-
rated, St Louis, MO, USA). All samples sent for analysis
passed all quality controls during analysis. The arrays
were analysed as part of a larger set of CEL files which
additionally included samples of granulosa RNA from 5
atretic follicles as discussed elsewhere [82]. For initial
statistical analysis, the data were first subjected to Prin-
cipal Component Analysis (PCA, based on the method

Target Primer sequences 5'-3' Genbank accession number PCR reaction and conditions

CYP19A1 Forward ggctatgtggacgtgttgacc NM_174305 2 min 50C, 10 min 95C, 40 X cycles of 15 s 95C and 60 s 60C
Reverse tgagaaggagagcttgccatg

CYP17A1 Forward accatcagagaagtgctccgaa NM_174304 2 min 50C, 10 min 95C, 40 X cycles of 15 s 95C and 60 s 60C
Reverse ccacaacgtctgtgcctttgt

185 Forward agaaacggctaccacatccaa DQ2224 2 min 50C, 10 min 95C, 40 X cycles of 15 s 95C and 60 s 60C

Reverse cctgtattgttatttttcgt
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of [84]) and hierarchical clustering analysis to compare
the gene expression patterns of the arrays in terms of
our classification. Hierarchical clustering was performed
using the Euclidian algorithm for dissimilarity with aver-
age linkage. The expression data were analysed by
ANOVA using method of moments estimation [85] with
post-hoc FDR test for multiple comparisons. The fold
change in expression for each gene was based on the
non log-transformed values after correction and normal-
isation. A differentially-expressed gene data set was
imported into IPA and genes mapped against the In-
genuity Knowledge Base for network and pathway ana-
lysis. These differentially-expressed genes were further
annotated and classified based on the GO consortium
annotations from the GO Bos taurus database (2010/02/
24) [86] using GOEAST [87]). The background for the
gene enrichment analyses in IPA and GOEAST was the
whole array. Statistical association for mapping of genes
to functions and pathways in IPA was conducted using a
Fisher’s right tailed ¢-test and similarly ranking of map-
ping to GO terms in GOEAST was accomplished by the
Benjamini-Yuketeli method. Expression data were also
exported to Excel and used to generate size-frequency
distributions of the coefficient of variation for each
probe set for small and large follicles. We also used IPA
Upstream Regulator analysis to identify upstream tran-
scriptional regulators by Fisher’s exact t-test. The ana-
lytical outcome is based upon prior knowledge of
expected effects between transcriptional regulators and
target genes stored in the Ingenuity Knowledge Base.
The microarray CEL files, normalised data and experi-
mental information have been deposited in the GEO
database under series record GSE39589.

Additional files

Additional file 1: Figure S1. Unsupervised hierarchical clustering across
all probe sets (n = 24,182) for 14 arrays using the Euclidian dissimilarity
algorithm method with average linkage in Partek. The heatmap
represents the distribution of normalised signal intensity, grouping by
pattern similarity for both probe set and array. The R columns represent
the rounded granulosa cells and the C columns represent the columnar
granulosa cell arrays.

Additional file 2: Figure S2. Plots of coefficients of variation (CV)
versus their frequency for granulosa cell cDNA hybridised to Bovine
Genome Affymetrix Expression arrays across replicate samples per gene
for small (n =10) and large follicles (n =4). The 50% most highly
expressed genes, representing half of all probe sets (n = 12,064) were
used in these analyses. 2 fold and 3 fold represent all probe sets which
were 2-fold (n=1809) or 3-fold (n = 598) differentially regulated between
small and large follicles in Partek.

Additional file 3: Table S1. The total number of probe sets (758)
which were 3-fold differentially regulated with a Benjamini-Hochberg
FDR muiltiple correction of P < 0.05 between large and small healthy
follicles listed in alphabetical order by gene symbol.

Additional file 4: Figure S3. The complete canonical Axonal Guidance
Signalling pathway as presented in IPA showing which genes map from
the 3-fold differentially-expressed dataset with a Benjamini-Hochberg FDR
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multiple correction P < 0.05 between large and small healthy follicles.
Genes which are up regulated in large are indicated in red, and those
which are down regulated are green, with the degree of fold difference
commensurate with the color intensity.

Additional file 5: Figure S4. The complete canonical IL-6 signalling
pathway as presented in IPA showing which genes map from the 3-fold
differentially-expressed dataset with a Benjamini-Hochberg FDR multiple
correction P < 0.05 between small and large healthy follicles. Genes which
are up-regulated in large are indicated in red, and those which are
down-regulated are green, with the degree of fold difference
commensurate with the color intensity.
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FDR: Benjamini-Hochberg false discovery rate; GO: Gene ontology;
GOEAST: Gene ontology enrichment analysis software toolkit; GEO: Gene
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component analysis; RMA: Robust multi-array average; RT-PCR: Reverse
transcriptase polymerase chain reaction.
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