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Abstract

Background: Riemerella anatipestifer is one of the most important pathogens of ducks. However, the molecular
mechanisms of R. anatipestifer infection are poorly understood. In particular, the lack of genomic information from a
variety of R. anatipestifer strains has proved severely limiting.

Results: In this study, we present the complete genomes of two R. anatipestifer strains, RA-CH-1 (2,309,519 bp,
Genbank accession CP003787) and RA-CH-2 (2,166,321 bp, Genbank accession CP004020). Both strains are from
isolates taken from two different sick ducks in the SiChuang province of China. A comparative genomics approach
was used to identify similarities and key differences between RA-CH-1 and RA-CH-2 and the previously sequenced
strain RA-GD, a clinical isolate from GuangDong, China, and ATCC11845.

Conclusion: The genomes of RA-CH-2 and RA-GD were extremely similar, while RA-CH-1 was significantly different
than ATCC11845. RA-CH-1 is 140,000 bp larger than the three other strains and has 16 unique gene families.
Evolutionary analysis shows that RA-CH-1 and RA-CH-2 are closed and in a branch with ATCC11845, while RA-GD is
located in another branch. Additionally, the detection of several iron/heme-transport related proteins and motility
mechanisms will be useful in elucidating factors important in pathogenicity. This information will allow a better
understanding of the phenotype of different R. anatipestifer strains and molecular mechanisms of infection.
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Background
Riemerella anatipestifer (RA) is a Gram-negative bacter-
ium in the family Flavobacteriaceae and rRNA super-
family V [1]. R. anatipestifer can infect ducks, geese,
turkeys, chickens, and other birds, and leads to a conta-
gious septicemia [2]. Transmission between ducks oc-
curs vertically (through the egg) as well as horizontally
via the respiratory tract [3]. R. anatipestifer has a world-
wide distribution and is one of the leading problems of
the farmed duck industry, mainly infecting young ducks
with a mortality of up to 90%. Animals that survive in-
fection may be stunted [4], leading to decreased produc-
tion. Riemerellosis causes substantial economic losses
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in countries with significant duck industries, such as
China and Southeastern Asia [5]. While serotyping is the
traditional method to differentiate R. anatipestifer isolates
[5], other methods, including PCR based on 16S rRNA or
rpoB genes [6,7], repetitive-sequence polymerase chain re-
action (Rep-PCR) [8], multiplex PCR [9], matrix-assisted
laser desorption/ionization-time of flight (MALDI-TOF)
mass spectrometry [10], plasmid profiling, pulsed-field
gel electrophoresis (PFGE), and PCR-restriction fragment
length polymorphism (PCR-RFLP) [11] have also been
used to characterize isolates.
At least 21 serotypes have been described in different

countries [5,7,12] with no cross-protection between dif-
ferent serotypes. Among pathogenic isolates, serotypes
1, 2, 3, 5, and 15 are the most common [13]. Individual
animals can be infected with multiple serotypes and
changes in the predominant serotype from year to year
within a single farm have been described [12].
Although Reimerellosis causes serious economic losses,

the pathogenesis of R. anatipestifer and the virulence factors
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remain mostly unknown. Subramaniam et al. identified
OmpA as a predominant immunogenic outer membrane
protein [14]. Later, it was shown that ompA mutant strains
were attenuated when used to infect ducklings, with de-
creased adhesion and invasion capacities in Vero cells, indi-
cating that OmpA is a virulence factor [15]. Recently, Zhai
et al. selected six proteins that cross-reacted with serotypes
1 and 2 for a vaccine trial. Only administration of the re-
combinant outer membrane protein A (OmpA) showed a
protective effect when challenged by serotype 1 (60%) and
serotype 2 (50%) [13]. Additionally, VapD was identified as a
virulence factor, with homology to virulence-associated pro-
teins of other bacteria [16]. CAMP cohemolysin was identi-
fied as another potential virulence factor, which may lyse red
blood cells and release iron for use by the organism [17].
The publication of the first R. anatipestifer genome,

ATCC11845 [18] has improved the understanding of the
disease mechanisms underlying infection. However,
the relatively limited number of published strains has
hindered more in-depth analysis. In order to establish
genetic differences between pathogenic strains, we se-
quenced two R. anatipestifer genomes, RA-CH-1 and
RA-CH-2, which were isolated from sick ducks from
Chengdu and Mianyang, respectively, in the SiChuan
province of China, and compared these to the two previ-
ously sequenced strains, ATCC11845 and RA-GD (which
was isolated from a sick duck in GuangDong, China).

Results and discussion
General features of the R. anatipestifer genomes
Genomic read-data for the two R. anatipestifer strains
sequenced in this study were generated using a multiplex-
ing approach in a single Illumina HiSeq lane. The result-
ing sequences were assembled using SOAPdenovo. The
previously sequenced ATCC11845 has single 2,164,087 bp
circular chromosome with 35.01% GC content. In con-
trast, RA-CH-1 is larger at 2,309,519 bp with 35.07% GC
content while RA-CH-2 is similar at 2,166,321 bp with
35.04% GC content. ATCC11845, RA-CH-1 and RA-CH-
2 contain 2,091 (92.8% of the genome), 2,236 (97.8%), and
2,095 (97.8%) genes, respectively. All genomes have ap-
proximately the same codon usage frequency.

Genes associated with iron/hemin metabolism
Bacteria that reside in animal tissues must acquire iron
from their host for growth. A large number of genes coding
for iron and hemin metabolism and iron-dependent tran-
scriptional regulators were annotated in all sequenced
strains. A total of one siderophore-interacting protein (Sip)
and three siderophore receptors were detected that could
be involved in Fe3+ uptake. The siderophore-interacting
protein was previously found to be involved in iron
utilization and mutation of this gene significantly decreased
virulence in R. anatipestifer CH-3 [19]. There were two
putative proteins, FeoA and FeoB, for Fe2+ uptake and two
outer membrane hemin receptors. All sequenced strains
had one extracellular hemin-binding protein (hemophore),
and no hemin degrading proteins were detected via se-
quence analysis, suggesting that R. anatipestifer may have a
novel hemin degrading system. Additionally, we found that
several TonB-dependent receptors with a plug domain, one
set of the ExbB-ExbD-TonB complex, one set of the ExbB-
ExbD-ExbD-TonB complex, and one TonB family protein.
The TonB-dependent receptor TbdR1 (Riean_1607) has
been found to be involved in heme acquisition in R. anati-
pestifer. The median lethal dose of a tbdR1 mutant was ap-
proximately 45-fold higher than the wild-type CH-3 strain
[20]. Our group has confirmed the functions of TonB and
the TonB complex and determined that the ExbB-ExbD-
TonB complex is involved in heme uptake in ATCC11845
(unpublished data).
R. anatipestifer is usually grown on blood-enriched

media. Sequence analysis shows that R. anatipestifer does
not encode for genes involved in heme synthesis, hemF, Y,
and G (http://www.kegg.jp/pathway/rae00860). This sug-
gests that the heme compounds from the culture plate
could be essential for growth. We have determined that R.
anatipestifer can synthesize hemin using protoporphyrin
as a substrate and subsequently use hemin as an iron
source (unpublished data). However, the function of
proteins involved in iron/hemin metabolism in main-
taining and enhancing virulence still requires experi-
mental investigation.

Genes associated with gliding motility
Cells of the phylum Bacteroidetes can rapidly move over
surfaces using a process called gliding motility. In F.
johnsoniae, at least nineteen genes (gldA, gldB, gldD,
gldF, gldG, gldH, gldI, gldJ, gldK, gldL, gldM, gldN, sprA,
sprB, sprC, sprD, sprE, sprT and RemA) involved in glid-
ing motility have been identified [21-23]. These motility
proteins constitute a novel protein secretion system, the
Por secretion system (PorSS) [24], which may be an inte-
gral part of the gliding motility machinery [23]. In F.
johnsoniae, the Por secretion system consists of gldK,
gldL, gldM, gldN, sprA, sprE, and sprT, which are needed
for secretion of an extracellular chitinase [23]. Similarly,
the P. gingivalis PorSS is needed for secretion of gingi-
pain protease virulence factors [25].
Genome analysis finds that R. anatipestifer encodes for

several genes involved in gliding motility, including gldA,
gldB, gldC, gldD, gldF, gldH, gldJ, gldK, gldL, gldM, gldN,
porP, and porT. Many of the proteins encoded by these
genes are predicted to localize to the cellular envelope.
In F. johnsoniae, gldK, gldL, gldM, and gldN are clus-
tered together on in two adjacent operons, although
gldK is transcribed separately from the other three genes
[26]. A similar arrangement is found in R. anatipestifer
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as well as other Bacteroidetes, such as F. psychrophilum
and C. hutchinsonii [21]. This organization suggests that
the protein products of these genes work together as a
part of a complex, and the extensive conservation of the
genes encoding this protein secretion system indicates it
is likely functional in R. anatipestifer. Analysis of this
system in R. anatipestifer has the potential to provide
insight into disease pathogenesis. For example, in P. gin-
givalis, the PorSS is involved in gliding motility and
pathogenesis [24]. The PorSS, its relationship to gliding,
and its function in pathogenesis, needs to be further
studied in R. anatipestifer.

Complete genome analysis and structural variation
The genomes of RA-CH-2 and RA-GD were similar to
the genome of ATCC11845, while the genome of RA-
CH-1 is significantly different. All four strains had some
deletions unique to a specific strain. The missing parts
of the RA-CH-2 and RA-GD genomes were focused in
three different places as shown in the colinearity analysis
(Figure 1A). However, deleted sequences of RA-CH-1
were dispersed throughout the genome (Figure 1A).
Moreover, there were more genome rearrangements be-
tween RA-CH-1 and ATCC11845 than the other two ge-
nomes. By analyzing the genomic coverage rate and
sequence similarity of homologous regions for the four
Figure 1 Whole-genome collinearity comparison. A: Collinearity compa
compared to ATCC11845. B: Genome-wide colinear homology comparision
similarity, and predicted amino acid sequence similarity. C: Coverage statist
different genomes, we found that there is a higher de-
gree of similarity between ATCC11845 and both RA-
CH-2 and RA-GD than RA-CH-1 (Figures 1B and C).
Compared to the genome of ATCC11845, RA-CH-1 had
a higher SNP and indel density than RA-CH-2 and RA-
GD. The distribution of SNPs and indels for RA-CH-2
and RA-GD are similar (Figure 2). Furthermore, we
found that the genomes of RA-CH-1 and RA-CH-2 had
commons deletions compared to ATCC11845 and RA-
GD (Figure 3). Both RA-CH-1 and RA-CH-2 contain
same inserted and deleted sequences, which suggests these
deletions are localized to the region both these strains
were isolated from.

Functional analysis of variant genes
Based on analysis of mutation types, we found that indels
mainly induced non-synonymous mutations, while SNP
primarily caused synonymous mutations. There were sig-
nificantly more SNPs than indels (Figure 4). In addition,
we analyzed three different types of genes using COG
[27], KEGG [28], PATHWAY [29], and GO functional
characterization databases [30] (Figure 5). First were genes
that were found by pairing with sequences from other
strains, but were not annotated because of a mutation in
the original sequence. Second were structural variations
(SV) region genes. Third were genes containing SNPs or
rison results. All three strains have deleted sequences (blanks)
. From top to bottom: genome similarity, coding sequence (CDS)
ics.



Figure 2 Genome SNP-indel maps. The distribution of SNP and indels in RA-CH-1, RA-CH-2 and RA-GD. SNP distribution is presented as a bar
graph and indel distribution as a line graph.

Figure 3 Genome structure variation and gene pairing. From inside to outside: GC-skew of ATCC11845, the COG functional assignments of
ATCC11845, structural variation of RA-CH-1, RA-CH-2, and RA-GD compared to ATCC11845. Purple is positive, green is negative.
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Figure 4 Variations due to SNPs and indels. The number of SNPs is in red, and the number of indels in blue. Unshift: the mutation does not
cause a frame change (only for indels), Outside_Frame: the variation occurred outside the coding frame, Unknow_Codon: unrecognized variant
codon, Same_Codon: the codon was unchanged by the mutation, Start_nonsyn: non-synonymous mutations at start codon; Stop_nonsyn:
non-synonymous mutations at stop codon; Start_syn: synonymous mutations at start codon; Stop_syn: synonymous mutations at stop codon,
Total_Mutate: the total number of various variants.
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small indels. Among these three groups, the first have no
significant difference in the three databases, indicating
that there is no increased rates of change in any particular
functional gene category or pathway.
Through COG analysis, we can find that the SV region

sequences of RA-CH-1, RA-CH-2, RA-GD have no sig-
nificant differences in polymorphism frequencies. RA-
CH-1 had 14 areas with significantly higher rates of
SNPs and indels, RA-CH-2 showed no significant differ-
ences, and RA-GD had significantly higher SNP and
indel rates in the COG “M: Cell wall/membrane/enve-
lope biogenesis”, which may be associated with host in-
vasion or antibiotic resistance. SNPs are the main type
of polymorphism, indicating that R. anatipestifer evolu-
tion mainly relies on this rather than deletion or inser-
tion to generate genetic diversity.

Gene family cluster analysis
A gene family is a set of several similar genes formed by
duplication of a single original gene, generally with simi-
lar biochemical functions [31]. Members of the same
gene family can be closely arranged, forming a gene
cluster, or can be scattered throughout the chromosome,
with different patterns of expression and regulation.
Gene families play an important role in the evolution
and functional analysis of different species [32]. For R.
anatipestifer, most of the high copy number gene fam-
ilies were annotated as hypothetical genes, with RA-CH-
2 having a higher copy number compared to the other
strains (Figure 6A). The number of gene families in differ-
ent strains reflected phenotypic differences. Copy numbers
of core gene families may be related to quantitative
traits, while non-core gene families may be associated
with strain-specific traits. RA-CH-1 had four non-core
gene families with higher copy numbers, but these were
not detected using the KEGG or COG databases. Multi-
copy gene family analysis showed that the four strains
analyzed had only six multi-copy gene families, with
RA-CH-2 family members having higher copy numbers.
Overall, RA-CH-1 had the most unique family members
(up to 16), while the other three strains had only 1–2
unique gene families per strain (Figure 6B). RA-CH-1
had 787 unique genes, while each of the other three
strains had approximately 500 unique genes each. This



Figure 5 Correlation of variations with functional enrichment analysis. A: Functional characterization of insert region genes using the GO
database; the arrows show significant enrichment. B: Functional characterization of genes containing SNPs, and indels using the GO database;
asterisks show significant enrichment. C: Functional characterization of genes containing SNPs, and indels using the COG database; arrows show
significant enrichment.

Wang et al. BMC Genomics 2014, 15:479 Page 6 of 10
http://www.biomedcentral.com/1471-2164/15/479
complexity could reflect the differing biological charac-
teristics of R. anatipestifer strains.
Phylogenetic analysis
We constructed two phylogenetic trees of the four R.
anatipestifer strains using conservative and non-
conservative elements. The topological structures of
the conservative and non-conservative trees are similar,
but with different branch lengths (Figure 7). Phylogenetic
analysis determined that RA-CH-1 and RA-CH-2 be-
long to the same branch, but the relationship of their
ancestor node with the ATCC11845 and RA-GD
strains was unclear (Figure 7). RA-CH-1 and RA-CH-
2 appear closely related to ATCC11845, but are on
different branches compared to RA-GD (Figure 7).
Additionally, structural analysis demonstrated that
some conserved components were not in annotated
CDSs. Most of the conserved components were in
conserved regions and non-conserved regions had
eight times the polymorphism rate of conserved re-
gions (Figure 7). When compared to other flavobacteria,
the four R. anatipestifer strains and R. columbina cluster
in one group, while other flavobacterium belong to an-
other group (Figure 8).
Conclusions
We successfully isolated two R. anatipestifer strains, RA-
CH-1 and RA-CH-2, from Chengdu and Mianyang,
respectively, in the SiChuan province of China, and
completed their genome sequences. Using a mixture of
comparative genomics strategies, we completed a com-
prehensive analysis of four R. anatipestifer strains: RA-
CH-1, RA-CH-2, ATCC11845, and RA-GD, to identify
factors involved in pathogenesis. Our findings will form
the foundation of future investigations into the patho-
genesis of R. anatipestifer.
Methods
Genome sequencing and annotation
Specimen collection and DNA extraction
RA-CH-1 and RA-CH-2 were isolated from the brain of
sick ducks from Chengdu and Mianyang, respectively, in



Figure 6 Gene family analysis. A. Distribution of gene family member copy numbers. B. Venn diagram of homologous gene families. C. The
number of homologous genes among four R. anatipestifer genomes. D. Single-copy homologous gene similarity distribution.

Figure 7 The phylogenetic tree of four Riemerella. The phylogenetic trees were constructed using orthologous gene coding sequences,
phase 1 site, and four-fold degenerate sites, respectively. As the relationship of the ancestor node of RA-CH-1 and RA-CH-2 with ATCC11845 and
RA-GD was not clear, the phylogenetic trees were constructed using conserved (top) and non-conserved (bottom) elements.
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Figure 8 Phylogenetic relationships between Riemerella and other related Flavobacteria. Phylogenetic relationships based on maximum
likelihood analysis of genome sequences. Support for monophyletic groups by bootstrap analysis is indicated as numbers out of 100. The scale
bar represents sequence variation based on the models for nucleotide substitution and tree shape used in the maximum likelihood analysis.
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the SiChuan province of China. Serotyping were per-
formed for RA-CH-1 and RA-CH-2 using reference
serum of National Animal Disease Center. RA-CH-1 is
serotype 1, RA-CH-2 is serotype 2. The samples were ly-
ophilized after two successive transfers of stock culture
on tryptic soy agar (TSA, Difco, Detroit, USA) contain-
ing 5% defibrinated sheep blood at 37°C for 24–48 h.
R. anatipestifer genomic DNA was extracted and puri-
fied via proteinase K treatment, multiple phenol ex-
tractions, ethanol precipitation, and spooling.
Genomic DNA was checked for quality by monitoring
A260/A280 ratios (DU800, Beckman Coulter, USA).
DNA sequencing and assembly
Bacterial strains were sequenced using an Illumina
Hiseq2000 (Illumina Inc., San Diego, CA) with a multi-
plexed protocol. Paired-end 90 nt long reads from
500 bp and 6 kb random sequencing libraries were
generated for strains RA-CH-1, and RA-CH-2. Raw
data in four steps, including removing reads with 5 bp
of ambiguous bases, removing reads with 20 bp of low
quality (≤Q20) bases, removing adapter contamination,
and removing duplicated reads. Finally, 100 × 500 bp
and 50 × 6 kb libraries were obtained with clean
paired-end read data. Assembly was performed using
SOAPdenovo v1.05 [33] (http://soap.genomics.org.cn/
soapdenovo.html). The genome of the RA-GD strain
was downloaded from NCBI (ftp://ftp.ncbi.nih.gov/
genbank/genomes/Bacteria/Riemerella_anatipestifer_RA_
GD_uid49039).

Repetitive sequences analysis
The genome was searched for tandem repeats using Tan-
dem Repeats Finder [34] and Repbase [35] to identify inter-
spersed repeats. Transposable elements in the genome
assembly were identified at both the DNA and protein
levels. To identify transposable elements at the DNA level,
Repeat Masker was applied using a custom library based on
Repbase. For protein analysis, Repeat Protein Mask from
the Repeat Masker package was used to perform RM-
BlastX against a transposable elements protein database.

Gene predict analysis
Genes were predicted using Glimmer v3.02 [36] (http://
www.cbcb.umd.edu/software/glimmer). This software pre-
dicts start sites and coding region more effectively and has
better interpolation of hidden Markov models, reducing
the ratio of false positive predictions.

Gene functional annotation
Function annotation was accomplished by analysis of
protein sequences. Genes were aligned with databases to
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obtain the annotation corresponding to homologs, with
the highest quality alignment result chosen as the gene an-
notation. Function annotation was completed by compar-
ing BLAST v2.2.23 (http://blast.ncbi.nlm.nih.gov/Blast.cgi)
results in M8 format to the Kyoto Encyclopedia of Genes
and Genomes (KEGG) v59 [37], Cluster of Orthologous
Groups of proteins (COG) v20090331 [27,38], SwissProt
v2011_10_19 [39], NR v2012-02-29, and Gene Ontology
(GO) v1.419 [40] databases.

Comparative genomic analyses
Structural variation
The sequences of the RA-CH-1, RA-CH-2, and RA-GD
strains were compared to the reference sequence
ATCC11845 using Mummer v3.22 [41] (http://mummer.
sourceforge.net) for the chain stander and start side se-
lection and LASTZ v1.01.50 [42] (http://www.bx.psu.
edu/miller_lab/dist/README.lastz-1.02.00) for detailed
alignment. Syntenic regions, deletions, insertions, inver-
sions, and translocations were identified from the align-
ment blocks [43].

SNP and small indel identification
SNPs were identified in mismatch sites from syntenic re-
gions. SNPs located in sequence gaps, repeat regions, or
at scaffold ends were discarded. To validate the resulting
non-redundant candidate SNPs, high-quality paired-end
reads were mapped to the corresponding genomes with
SOAPaligner v2.21 [44] (http://soap.genomics.org.cn), and
the most abundant (n1) and the second most abundant
(n2) nucleotides at each SNP position in each strain were
examined. High quality SNPs were defined as those where
the quality score of each mapped base was > Q20 and that
satisfied the criteria n1 + n2 ≥ 10 and n1/n2 ≥ 5. If more
than 95% of reads had a high-quality SNP in a certain pos-
ition, the SNP was included in the final set. The resulting
set of unique SNPs was filtered to obtain a set of high-
quality SNPs present in all strains.
Raw small insertions and deletions (indels) were defined

as those with a length shorter than 50 bp. These were
identified as gaps from the synteny alignment. Any indels
with more than one mismatch in the sequence 10 bp up-
stream and downstream of the indels were eliminated.
Read validation was performed on the remaining indels.

Those with three or more reads which mapped to the
indels-removed sequence of the subject were retained.

Phylogenetic analysis
Gene family analysis Gene families were constructed
using genes from ATCC11845, RA-CH-1, RA-CH-2, and
RA-GD. The current analysis is aimed at single copy
gene families, which are determined by aligning protein
sequences via BLAST. Gene family clustering from
alignment results was performed using orthomclSoftware-
v2.0.3.tar.gz [45].

Phylogenetic tree analysis Protein alignments were con-
verted into multiple amino acids sequence alignments
using Muscle v3.8.31 (http://www.drive5.com/muscle).
Gene family trees were constructed from multiple se-
quences alignments using the ML method with Treebest
v1.9.2 [46] (http://treesoft.svn.sourceforge.net/viewvc/tree-
soft/trunk/treebest).

Functional enrichment analysis of variant gene/proteins
Connections between all gene function variations were
analyzed using the differential gene/protein function items
in the COG, GO, and KEGG databases, allowing calcula-
tion of the number of corresponding COG/GO/KEGG
terms. We then determined the difference between dif-
ferences within each COG/GO/KEGG group and the
whole genome for variant genes/proteins using the
hypergeometric test [30], with a P-value ≤ 0.05 consid-
ered significant.
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