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Abstract

Background: The availability of diverse second- and third-generation sequencing technologies enables the rapid
determination of the sequences of bacterial genomes. However, identifying the sequencing technology most
suitable for producing a finished genome with multiple chromosomes remains a challenge. We evaluated the
abilities of the following three second-generation sequencers: Roche 454 GS Junior (GS Jr), Life Technologies Ion
PGM (Ion PGM), and Illumina MiSeq (MiSeq) and a third-generation sequencer, the Pacific Biosciences RS sequencer
(PacBio), by sequencing and assembling the genome of Vibrio parahaemolyticus, which consists of a 5-Mb genome
comprising two circular chromosomes.

Results: We sequenced the genome of V. parahaemolyticus with GS Jr, Ion PGM, MiSeq, and PacBio and performed
de novo assembly with several genome assemblers. Although GS Jr generated the longest mean read length of
418 bp among the second-generation sequencers, the maximum contig length of the best assembly from GS Jr
was 165 kbp, and the number of contigs was 309. Single runs of Ion PGM and MiSeq produced data of considerably
greater sequencing coverage, 279× and 1,927×, respectively. The optimized result for Ion PGM contained 61 contigs
assembled from reads of 77× coverage, and the longest contig was 895 kbp in size. Those for MiSeq were 34
contigs, 58× coverage, and 733 kbp, respectively. These results suggest that higher coverage depth is unnecessary
for a better assembly result. We observed that multiple rRNA coding regions were fragmented in the assemblies
from the second-generation sequencers, whereas PacBio generated two exceptionally long contigs of 3,288,561 and
1,875,537 bps, each of which was from a single chromosome, with 73× coverage and mean read length 3,119 bp,
allowing us to determine the absolute positions of all rRNA operons.

Conclusions: PacBio outperformed the other sequencers in terms of the length of contigs and reconstructed the
greatest portion of the genome, achieving a genome assembly of “finished grade” because of its long reads. It
showed the potential to assemble more complex genomes with multiple chromosomes containing more
repetitive sequences.
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Table 1 Data statistics for sequence run and assemblies

Sequencer GS Jr Ion PGM MiSeq PacBio

Number of reads 115611 4982888 39656630 120230*

Total bp 48285593 1443005019 9953814130 374942687

Coverage 9 279 1927 73

Mean length 418 290 251 3119

Assembler Newbler Newbler CLC Sprai

Number of bp
used for assembly

48285593 400000107 299809460 374942687

Number of reads
used

115611 1380757 1194460 120230*

Coverage 9 77 58 73

Number of contigs 309 61 34 31

Total bases 5053921 5075085 5103771 5298335

Max length 164926 895358 732626 3288561

N50 contig length 30451 392606 431440 3288561

GS Jr, Ion PGM, and MiSeq data are based on a single run. PacBio data are
from three cells. The upper part of the table shows read statistics and the
lower part shows the statistics of the best assembly. *Number of reads of
PacBio is the number of subreads longer than 500 bp.
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Background
Next-generation sequencing (NGS) technologies have
dramatically changed genomic research. NGS instruments,
the so-called second-generation sequencers, generate large
volumes of data compared with conventional Sanger
sequencers. Before 2010, although the cost of reading a
whole genome was rapidly decreasing, the use of NGS
technologies was still limited to large genome sequencing
centers because of technical and logistical difficulties asso-
ciated with the operation of the instruments and require-
ments for computer hardware and data analysis. The
advent of benchtop sequencers has accelerated sequencing
efforts in small centers and laboratories. For example, the
454 GS Junior (GS Jr), released by Roche in early 2010 as
the first benchtop sequencer, uses the same emulsion PCR
technology [1] as the Roche GS FLX. The Life Technolo-
gies Ion PGM (Ion PGM) benchtop sequencer, which was
launched at the beginning of 2011, utilizes semiconductor
technology [2]. The Illumina MiSeq (MiSeq) benchtop se-
quencer became available at the end of 2011 and employs
the same sequencing-by-synthesis technology [3,4] as the
Illumina GAII and HiSeq sequencers. With the annual
emergence of new NGS instruments, experimental proce-
dures such as library preparation and analysis methods re-
quire continual improvement.
Second-generation sequencers generate massive amounts

of short reads, which differ in throughput and length from
reads produced by Sanger sequencers. To assemble massive
amounts of short reads, a new type of algorithm using de
Bruijn graphs has flourished, as illustrated by a series of
genome assemblers including ABySS [5], ALLPATHS-LG
[6], Velvet [7,8], and SOAPdenovo [9]. Although these algo-
rithms [5-9] have been developed to produce high-quality
finished-grade genomes, it remains a challenge to assemble
long contigs spanning an entire genome. One of the im-
portant factors in successfully obtaining finished genomes
is resolving repetitive regions scattered across the genome.
It is problematic to reconstruct long repetitive regions
by assembling reads shorter than the repetitive regions.
Paired ends and mate pairs have been used to tackle this
problem. Mate pairs improved scaffold length, but the
results using mate-pair assembly have usually been far
from finished grade [10,11].
To address this issue, reads longer than repetitive re-

gions may offer a solution to the assembly problem. The
recently launched third-generation Pacific Biosciences RS
sequencer (PacBio) system [12] generates long reads with
a mean length of 4.5 kbp and with randomly distributed
sequencing errors. This evolutionary technology demands
a new algorithm to process sequence reads because of the
different nature of its reads, whose nucleotide-level ac-
curacy is only 85% [12]. Therefore, several algorithms
first correct sequencing errors in reads and then assem-
ble the error-corrected reads [13-15]. PacBio has the
advantage of generating long reads but at a throughput
lower than that of the second-generation sequencers.
One of the disadvantages of PacBio is that the initial
installation is more expensive than that of benchtop
second-generation sequencers (Additional file 1: Table S1).
Combining second- and third-generation sequencing data
may be an option [13,16]; however, these hybrid methods
offer limited efficiency because they require more labor
and consumables costs for additional library preparation.
Given that various sequencing instruments and soft-

ware are available for genome sequencing and are evol-
ving, selecting the best one or the best combination is
difficult. Performance comparisons of NGS instruments,
including that of a third-generation sequencer, have been
previously published [17-21]; however, considering the
rapid improvement of NGS technologies, frequent com-
parisons are valuable for selecting the platform providing
the best results. Therefore, we performed an updated
comparison study of second- and third-generation se-
quencers using the bacterial genome of Vibrio parahae-
molyticus, consisting of two chromosomes. Because of the
presence of two chromosomes with higher copy numbers
of rRNA operons than found in other bacteria, it was diffi-
cult to finish the genome sequence [21]. In this study, we
demonstrated the reconstruction of the V. parahaemolyti-
cus genome using current sequencers.

Results and Discussion
A summary of sequence run data and their assembly
results is shown in Table 1, and the distribution of the
sequence read quality of each sequencer is shown in
Additional file 2: Figure S1. The assembler for each
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sequencer was selected on the basis of a previous study
and our experiences [22]. To evaluate the accuracy of the
generated contigs, we compared them with the V. para-
haemolyticus reference genome [21] using QUAST v2.3
[23]. Table 2 shows the result of the accuracy evaluation.

Genome assembly using GS Junior
A single sequencing run of GS Jr yielded 48 Mbp with
115,611 reads, corresponding to 9× coverage of the V.
parahaemolyticus genome. The mean length of the GS
Jr reads was 418 bp. We selected the Newbler assembler
[24], which is optimized for Roche 454 chemistry [22,24].
The Newbler assembly consisted of 309 contigs with max-
imum length 164,926 bp. The total length of the contigs
was 5,053,921 bp. Long reads are usually superior to short
reads for the reconstruction of long contigs; however,
this fragmented assembly suggested that low-coverage
reads are insufficient for building a small number of
long contigs.
The generated contigs were evaluated by comparison

with the V. parahaemolyticus genome. The contig cover-
age of the V. parahaemolyticus genome was 97.844%. The
total number of mismatches was 133, and the number of
Table 2 Accuracy of assembled contigs with respect to
the reference genome

Mismatches GS Jr Ion
PGM

MiSeq PacBio PacBio
(>1 M bp)

Number of contigs 309 61 34 31 2

Number of mismatches 133 108 230 389 157

Number of indels 824 2853 184 715 698

Indels length 977 3018 241 818 794

Number of mismatches
per 100 kbp

2.6 2.1 4.5 7.5 3.0

Number of indels per
100 kbp

16.3 56.2 3.6 13.8 13.5

Number of
misassemblies

0 0 1 13 10

Number of relocations 0 0 1 11 10

Number of translocations 0 0 0 1 0

Number of inversions 0 0 0 1 0

Number of
misassembled contigs

0 0 1 5 2

Genome coverage (%) 97.844 98.290 98.499 99.999 99.848

Duplication ratio 1.004 1.000 1.003 1.032 1.007

Generated contigs were compared with the reference genome using QUAST
v2.3 [23]. The number of indels is the total number of insertions and deletions
in the aligned bases. The number of relocations, inversions, and translocations
are classified as misassemblies. A relocation is defined as a misassembly in
which the left and right flanking sequences both align to the same
chromosome on the reference but are either >1 kb apart or overlap by >1 kb.
An inversion is a misassembly in which the left and right flanking sequences
both align to the same chromosome but on opposite strands. A translocation
is a misassembly in which the flanking sequences align on different
chromosomes. Genome coverage is the percentage of bases aligned to the
reference genome.
mismatches per 100 kbp was 2.6. The total number of
insertions and deletions (indels) was 824, and the number
of indels per 100 kbp was 16.3. These higher rates of
errors compared with the other sequencers were largely
because of the homopolymer error of 454 chemistry [22].
Genome assembly using Ion PGM
A single run from Ion PGM using the Ion 318 chip
generated 1.44 Gbp with 4,982,888 reads. The mean
length of the reads was 290 bp. The read coverage of the
genome was 279×. We selected Newbler for Ion PGM
because it is known to produce longer contigs for Ion
PGM as well [22] because of the similarity of its sequen-
cing chemistry to that of Roche 454.
We employed random sampling to reduce the number

of input reads [20] and attempted to find the best
amount of input data size for assembly [9]. Six sets of
100 inputs were prepared. The size of the inputs in each
set was 100, 200, 300, 400, 500, and 600 Mbp, respect-
ively. These sizes correspond to 19×, 39×, 58×, 77×, 96×,
and 116× coverage, respectively. The maximum contig
length and N50 contig length of all results are shown in
Additional file 3: Figure S2. The best subset contained
61 contigs with maximum contig length of 895,358 bp in
the 400 Mbp data set (Additional file 3: Figure S2). The
number of reads used for the assembly was 1,380,757,
corresponding to 77× genome coverage. The N50 contig
length was 392,606 bp, and the total length of the
contigs was 5,075,085 bp.
Subsequently, the accuracy was evaluated as that for

the GS Jr contigs. The contig coverage of the genome
was 98.290%. The total number of mismatches was 108,
and the number of mismatches per 100 kbp was 2.1.
The total number of indels was 2,853, and the number
of indels per 100 kbp was 56.2. Homopolymer error has
often been reported for Ion PGM [18,22], and we could
confirm this effect in the assembled contigs, as exempli-
fied in Additional file 4: Figure S3(A).
Genome assembly using MiSeq
A single run of the MiSeq sequencer generated 9.95 Gbp
with 39,656,630 reads in pairs. The read coverage of the
genome was 1,927×. The mean length of the reads was
251 bp. We used CLC Assembly Cell as the assembler,
which is known as a short-read assembler and has been
used for a benchmark sequence comparison [22]. We
performed random sampling to find the best subset of
reads for assembly. The best subset yielded 34 contigs
with a maximum contig length of 732,626 bp. The num-
ber of reads used for the assembly was 1,194,460, corre-
sponding to 58× genome coverage. The total length of
the contigs was 5,103,771 bp and N50 contig length was
431,440 bp.
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The contigs contained 230 mismatches in total and 4.5
mismatches per 100 kbp. There were 184 indels in total
and 3.6 indels per 100 kbp. MiSeq has a different error
profile than Ion PGM. MiSeq errors are known to occur
in GGC motifs [25], and we confirmed this error in the
generated contigs. The examples of errors are shown in
Additional file 4: Figure S3 (B).

Evaluation of random sampling
We used random sampling for the assembly of Ion PGM
and MiSeq data and selected the best subset. For compari-
son, Additional file 5: Table S2 shows a summary of as-
semblies generated by the complete set of reads. Assembly
using all 279× coverage reads generated by Ion PGM re-
sulted in 502 contigs that were much more fragmented
than the 61 contigs using the sampled reads. Likewise, the
N50 contig length using all reads is 110,578 bp, a number
much smaller than the 392,606 bp obtained with randomly
sampled reads. MiSeq generated coverage of 1,927× in a
single run and 42 contigs were generated using all reads
by a single run of MiSeq, whereas the number of contigs
assembled from the sampled reads was 34. These results
suggest that an excessive number of reads does not help
and can even harm genome assembly. Widely used assem-
blers do not assume excess coverage, suggesting that the
number of reads fed to assemblers should be optimized by
random sampling. The optimized sequencing coverage
was reported to be <100 [9,20].
To determine the factors that improve assembly by

random sampling, we compared the best subset with the
worst. The subset yielding the fewest contigs was consid-
ered the best. The best and worst sampled reads were
mapped to the reference V. parahaemolyticus genome.
On a closer examination of the junction regions, where
reads from the worst sampled reads were unable to con-
nect contigs (i.e., gaps), we found that the high-quality
reads perfectly matching the reference genome were uni-
formly distributed in the gap regions of the best sampled
reads (Additional file 6: Figure S4). In contrast, the distri-
bution of the high-quality reads from the worst sampled
reads was not uniform, suggesting that nonuniform cover-
age causes a disconnection of contigs. Random sampling
enables us to generate different combinations of read sets,
some of which contain high-quality reads that uniformly
span the genome and aid in constructing long contigs.
This finding indicates that random sampling would be a
simple and effective procedure for finding the optimum
coverage and best combination of reads for de novo
assembly when excess reads are available.

Genome assembly using PacBio
Three cells of PacBio data yielded 120,230 subreads longer
than 500 bp, amounting to 375 Mbp in total and corre-
sponding to 73× coverage of the V. parahaemolyticus
genome. Several assemblers have been developed for Pac-
Bio data. pacBioToCA is a program that corrects sequen-
cing errors using other sequencers’ reads [13] or using
PacBio reads themselves. HGAP does not require other
sequencers’ reads to correct errors [14]. We employed
Sprai [26], a new tool for correcting PacBio sequencing er-
rors without other sequencers’ reads using multiple align-
ments of raw PacBio reads. The Sprai algorithm and its
performance are shown in Additional file 7. The assembly
by Sprai generated 31 contigs using three-cell data, show-
ing better assembly performance than that by HGAP. The
results are shown in Additional file 8: Table S3 and
Additional file 9: Figure S5. The maximum length of the
contigs was 3,288,561 bp, and the second longest contig
was 1,875,537 bp. The lengths of these two contigs are
almost equal to those of the V. parahaemolyticus genome
chromosomes 1 and 2 (3,288,558 and 1,877,221 bps, re-
spectively). The other 29 contigs were all <21 kbp. The
contig length distribution is shown in Additional file 9:
Figure S5. The two chromosomes of V. parahaemolyticus
were reconstructed without gaps by PacBio reads alone,
without using reads from other sequencing platforms or
jumping libraries.
To further validate these two contigs, we evaluated

their accuracy along with all 31 contigs (Table 2). The
coverage of all 31 contigs was 99.999%, whereas that of
the longest two contigs was 99.848%. The 31 contigs
contained a total of 389 mismatches, whereas the longest
two contigs contained 157. The number of mismatches
per 100 kbp was 7.5 for the 31 contigs and 3.0 for the
longest two contigs. The numbers of indels were 715
and 698, and the numbers of indels per 100 kbp were 13.8
and 13.5, respectively. The majority of PacBio sequencing
errors were indels, a characteristic known to be a
shortcoming of PacBio [27].

Comparison of assembled contigs
All contigs from GS Jr, Ion PGM, Miseq, and PacBio were
aligned to the V. parahaemolyticus genome, as summa-
rized in Figure 1. The contig length distributions are shown
in Additional file 10: Figure S6. The sequence assembled
using the PacBio sequencer was the highest in quality and
genome coverage (Table 2). The Sprai assembler corrected
the sequencing errors of PacBio and successfully assembled
the reads into two contigs corresponding to the two chro-
mosomes. MiSeq, Ion PGM, and GS Jr all left gaps across
contigs. We found that these gaps often fell into rRNA
tracts in the genome.
The power of PacBio to generate long reads shows

great promise for the assembly of bacterial sequences
without hybrid assembly [15,20]. Previous studies con-
cluded that the accuracy and length of the contigs using
PacBio alone surpassed those using second-generation
sequencers. However, these studies analyzed bacterial
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Figure 1 Contig alignment against the V. parahaemolyticus genome. A Alignment of contigs to V. parahaemolyticus chromosome 1. PacBio,
MiSeq, Ion PGM, and GS Jr contigs are aligned to chromosome 1 and visualized with Circos [28]. From outer to inter rings: forward CDS, reverse
CDS, tRNA, rRNA, PacBio contigs, MiSeq contigs, Ion PGM contigs, GS Jr contigs, %GC plot, and GC skews. B Alignment of contigs to V.
parahaemolyticus chromosome 2 PacBio, MiSeq, Ion PGM, and GS Jr contigs are aligned to chromosome 2 and visualized using a Circos plot.
From outer to inter rings: forward CDS, reverse CDS, tRNA, rRNA, PacBio contigs, MiSeq contigs, Ion PGM contigs, GS Jr contigs, %GC plot, and
GC skews.
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genomes with a single chromosome. In contrast, the
present study examined a more complex genome com-
prising two chromosomes containing 11 copies of rRNA
operons. The lengths of 23S rRNA and 16S rRNA se-
quences are approximately 3.0 kbp and 1.4 kbp, respec-
tively, and the mean read length obtained using PacBio
was 3.1 kbp, making it possible to correctly determine
the absolute positions of multiple rRNA coding regions
(Figure 1). The difficulty of the V. parahaemolyticus
genome assembly is caused by these rRNA repetitive
regions and by similar regions between chromosomes 1
and 2, which may be the cause of misassembly (Additional
file 11: Figure S7). These complications made assembly
difficult for the second-generation sequencers.
Previously, the V. parahaemolyticus genome was

sequenced by the Sanger method using multiple libraries
with different insert sizes [21]. Libraries with long insert
size (4–5 kbp) were used to construct the scaffolds. How-
ever, repetitive regions such as rRNA operons required to
be independently sequenced to identify the absolute
positions. From this experience, we know that jumping
libraries would not be useful for accurate reconstruction
of the repetitive regions. Long reads that cover not only
entire repeat regions but both ends of each repeat region
are necessary to determine their absolute positions.

Conclusions
We compared the abilities of currently available sequencers
to assemble a bacterial genome. The use of random sam-
pling improved the assembly of the sequence data from the
second-generation sequencers. In the course of upgrading
the performance of the second-generation sequencers, the
best-subset selection of sequencing data would be more
important to make a good assembly of bacterial genome.
As described in previous reports [17-21], PacBio achieved
a long continuous, finished-grade assembly of a complex
bacterial genome. Sequencing technology and chemistry
are evolving at a dramatic speed. Future chemistry and
instrument updates will bring further improvements, such
as support for the sequencing and assembly of higher or-
ganisms with multiple chromosomes and the coexistence
of multiple genomes in symbiotic organisms. Several chal-
lenges in assembling the genomes of higher organisms
using PacBio have been published [29-31], although hybrid
assembly is required because of the limitations of current
PacBio technology including low throughput, high cost,
and the amount of DNA required. Our study and these re-
cent challenges reinforce the importance of performing fre-
quent evaluations of the rapidly improving hardware and
software for determining genomic sequences.

Methods
DNA preparation of the V. parahaemolyticus genome
A single colony of V. parahaemolyticus (RIMD2210633)
from TCBS agar plates was isolated and transferred to
3% NaCl-containing LB medium. Cells were harvested
after overnight culture and subjected to PowerSoil DNA
Isolation Kit (MO BIO Laboratories). Purified DNA was
quantified with a Qubit dsDNA HS Assay kit (Life Tech-
nologies). DNA degradation was evaluated by 1% agar-
ose gel electrophoresis using an E-Gel Electrophoresis
System (Life Technologies).

Library preparation, sequencing, and data analysis
GS Junior
Genomic DNA (500 ng) was sheared using a GS Rapid
Library Prep Nebulizer (Roche) and a library was prepared
using a GS Rapid Library Rgt/Adaptors Kit (Roche), ac-
cording to the manufacturer’s instructions. Sequencing was
performed using a GS Junior Titanium Sequencing Kit.
The software Newbler v2.5 (Roche) [24] was employed to
assemble the 454 GS Junior data with default parameters.

Ion PGM
Genomic DNA (2 μg) was sheared using the Covaris S220
(Covaris) and a library was prepared using an Ion Frag-
ment Library Kit (Life Technologies), according to the
manufacturer’s instructions. Sequencing was performed
using a 318 chip and an Ion PGM Sequencing 400 Kit
(Life Technologies). The Ion PGM data were randomly
sampled with the sfffile tool v2.5 (Roche) and then assem-
bled with the software Newbler v2.5 (Roche) [24] with
default parameters.

MiSeq
Genomic DNA (500 ng) was sheared using the Covaris
S220 (Covaris) and a library was prepared using ligation-
based Illumina multiplex library preparation (LIMprep).
Paired end sequencing (250 bp) was performed using a
MiSeq v2 500 cycle kit (Illumina). Random sampling and
assembly were performed with CLC Assembly Cell v4.10
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(CLC bio). Parameters for assembly were bubble size 600
and word size 41.
PacBio
Genomic DNA (3 μg) was sheared using the HydroShear
Plus (Digilab) and a library was prepared using a DNA
Template Prep Kit 2.0 (Pacific Biosciences), according to
the manufacturer’s instructions. Sequencing was per-
formed with XL polymerase and a DNA Sequencing Kit
C2 (Pacific Biosciences) and three SMRT cells (120 min
movies). De novo assembly was performed with Sprai
v0.9.5 [26] and HGAP v2.1.0 [14] with default parameters.
The contigs from Sprai were circularized with a script in
the Sprai package when the script detected a significant
overlap between the beginning and end of contigs.
Evaluation criteria
Contig statistics were used to evaluate the performance.
The number of contigs, maximum length of contigs, total
length, and N50 contig length were used as general
metrics for contig assessment. Contig statistics were calcu-
lated with QUAST v2.3 [23].
Availability of supporting data
The raw sequencing data have been deposited in the DDBJ
Sequence Read Archive (DRA) under the accession code
DRA002157.
Additional files

Additional file 1: Table S1. Cost and required DNA amount for each
sequencer. Sequence cost and DNA requirements for each sequencer.
Ion PGM cost is based on an Ion 318 Chip that yields 2 Gb with 400 bp
read length. MiSeq information is based on 250 paired-end reads
generating 15 Gb. Library preparation information for MiSeq is based on
MiSeq Reagent Kit v3.

Additional file 2: Figure S1. Quality distribution of sequence reads.
The mean Phred score and percentage of sequences are plotted on the
X- and Y-axes, respectively. All reads were used to generate these graphs.

Additional file 3: Figure S2. Variations of maximum length and N 50
contig length generated by random sampling. Six sets of 100 random
data sets were generated. The size of the inputs in each set was 100
Mbp (19× coverage), 200 Mbp (39×), 300 Mbp (58×), 400 Mbp (77×),
500 Mbp (97×), and 600 Mbp (116×), respectively.

Additional file 4: Figure S3. Examples of Ion PGM and MiSeq errors.
Assembled contigs were aligned to the V. parahaemolyticus genome.
Mismatches: A) Ion PGM and B) MiSeq.

Additional file 5: Table S2. Assembly results using all reads. All reads
from Ion PGM and MiSeq sequencing were used for de novo assembly of
six sets. Newbler was used for Ion PGM and CLC Assembly Cell was used
for MiSeq assembly.

Additional file 6: Figure S4. Mapping comparison of best- and
worst-sampled reads. The best and worst sampled reads were mapped
to the reference V. parahaemolyticus genome. The zoomed images show
that perfectly matched reads of the best-sampled reads were uniformly
distributed in the gap regions of the worst-sampled reads. Mapping was
performed with CLC Genomics Workbench v7.0.
Additional file 7: Details of the Sprai algorithm and performance
validation. The algorithm of the Sprai and performance benchmarks
using the six bacterial genomes in the previous study [15] are shown.

Additional file 8: Table S3. Comparison between Sprai and HGAP
assembly. The number of mismatches was calculated using QUAST v.2.3 [23].

Additional file 9: Figure S5. Comparison of the distributions of HGAP
and Sprai contigs. The length of the contigs (log10) is plotted on the
X-axis and the number of contigs is plotted on the Y-axis. Sprai
generated exceptionally long contigs. HGAP [16] generated relatively
long contigs but Sprai [26] outperformed HGAP.

Additional file 10: Figure S6. Distribution of contig sizes. The length of
the contigs (log10) is plotted on the X axis and the number of contigs is
plotted on the Y axis. The longest PacBio contigs were 3,288,561 and
1,875,537 bps.

Additional file 11: Figure S7. V. parahaemolyticus chromosome
alignment. The V. parahaemolyticus chromosomes 1 and 2 are aligned by
MUMmer (Version 3.22). Minimum length of a match is 10. Forward and
reverse complement matches were computed and plot by red and blue
respectively.
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