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Abstract

Background: Magnolia sprengeri Pamp is one of the most highly valuable medicinal and ornamental plants of the
Magnolia Family. The natural color of M. sprengeri is variable. The complete genome sequence of M. sprengeri is not
available; therefore we sequenced the transcriptome of white and red petals of M. sprengeri using lllumina technology.
We focused on the identity of structural and regulatory genes encoding the enzymes involved in the determination of
flower color.

Results: We sequenced and annotated a reference transcriptome for M. sprengeri, and aimed to capture the
transcriptional determinanats of flower color. We sequenced a normalized cDNA library of white and red petals
using lllumina technology. The resulting reads were assembled into 77,048 unique sequences, of which 28,243
could be annotated by Gene Ontology (GO) analysis, while 48,805 transcripts lacked GO annotation. The main
enzymes involved in the flavonoid biosynthesis, such as phenylalanine ammonia-Lyase, cinnamat-4-Hydroxylase,
dihydroflavonol-4-reductase, flavanone 3-hydroxylase, flavonoid-3'-hydroxylase, flavonol synthase, chalcone
synthase and anthocyanidin synthase, were identified in the transcriptome. A total of 270 transcription factors
were sorted into three families, including MYB, bHLH and WD40 types. Among these transcription factors, eight
showed 4-fold or greater changes in transcript abundance in red petals compared with white petals. High-performance
liquid chromatography analysis of anthocyanin compositions showed that the main anthocyanin in the petals of M.
sprengeri is cyanidin-3-O-glucoside chloride and its content in red petals was 26-fold higher than that in white petals.

Conclusion: This study presents the first next-generation sequencing effort and transcriptome analysis of a non-model
plant from the Family Magnoliaceae. Genes encoding key enzymes were identified and the metabolic pathways involved
in biosynthesis and catabolism of M. sprengeri flavonoids were reconstructed. Identification of these genes and pathways
adds to the current knowledge of the molecular biology and biochemistry of their production in plant. Such insights into
the mechanisms supporting metabolic processes could be used to genetically to enhance flower color among members
of the Magnoliaceae.
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Background

Magnolia sprengeri Pamp is one of the most valuable medi-
cinal and ornamental plants of the Magnolia Family, which
is native to the Qinling Mountains of Shaanxi Province and
the Daba Mountains of Hubei Province, China [1]. The
flower color (i.e., color of the petals) of M. sprengeri varies
widely from white to red. Flower color has evolved via
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interaction with evolving pollinating insects. The extreme
color variation ranges from pure white color, with only
the faintest pale purple stripe on the base of the petals
abaxially, to an intense red color on both sides. Previous
studies showed that red and white were the two main
types of abaxial color patterns. Anthocyanin is the primary
flower pigment in higher plants, and its accumulation is
tightly linked with flower development and color changes
in most cases [2]. Natural phenotypic variations offer an
opportunity to elucidate the role of anthocyanin genes
that lead to extreme colors of M. sprengeri. Anthocyanin
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biosynthesis via the flavonoid metabolism pathway has
also been well studied in flower development because of
its high anti-oxidation properties and ultraviolet protec-
tion [3-7]. Anthocyanin is synthesized from phenylalanine,
and catalyzed by phenylalanine ammonia-lyase (PAL),
which is controlled by two groups of genes. The first
group consists of the structural genes, including PAL,
chalcone synthase (CHS), flavanone 3-hydroxylase (F3H),
dihydroflavonol-4-reductase (DFR), anthocyanidin synthase
(ANS), and UDP-glucose flavonoid 3-O-glucosyltransferase
(UFGT), which represent the enzymes responsible for
the biochemical reactions of anthocyanin synthesis [8-13]
(Figure 1). The second group involves regulatory genes or
transcription factors (TFs), which regulate the structural
genes expressions during anthocyanin biosynthesis. The
important TFs for anthocyanin biosynthesis belong to the
MYB, bHLH, and WD40 families [14-21]. The coordinated
expressions of the two categories of genes lead to anthocya-
nin accumulation during the color development process.
Transcriptome analysis of an organism is a particularly
effective method for gene discovery, especially in non-
model plants for which no reference genome sequences
are available [22]. At the same time, it may provide
powerful tools to identify differentially expressed genes,
and its possible use in modern plant breeding continues
to attract the attention of many plant biologists [23-26].
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Figure 1 Simplified scheme of the flavonoid pathway, comprising
the general phenylpropanoid pathway, the anthocyanin branch,
and other subgroups of flavonoid endproducts. Abbreviations: PAL,
phenylalanine ammonia lyase; C4H, cinnamic acid 4-hydroxylase;
4CL, 4 coumarate CoA ligase; CHS, chalcone synthase; CHI, chalcone
isomerase; F3H, flavanone 3-hydroxylase; F3'H, flavanone 3'-hydroxylase;
DFR, dihydroflavonol reductase; FLS, flavonol synthase; ANS,
anthocyanidin synthase.
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Sequencing technologies have dramatically accelerated
genome-wide studies of transcriptomes and have been
widely used to explore gene structure and gene expres-
sion, even in plants without a genome reference [27-29].
[llumina sequencing technology has been applied recently
to transcriptome analyses of plant and animals, and can
generate large amounts of sequence data cheaply and
quickly [30-33].

In this study, we first sequenced the transcriptomes of
white and red petals of M. sprengeri using lllumina technol-
ogy (Figure 2). We focused on the discovery of structural
genes and regulatory genes encoding enzymes involved in
the anthocyanin biosynthetic pathway. We obtained sets of
upregulated and downregulated genes from red and white
flowers, and identified some candidate genes related to
anthocyanin synthesis in M. sprengeri. The assembled
annotated transcriptome sequences provide a valuable
genomic resource to further understand the molecular
basis of variations of flower color in M. sprengeri.

Results and discussion

Sequencing and sequence assembly

A cDNA library from red and white petals was sequenced
using [llumina sequencing in a single run which generated
39,652,898 sequences with 4,004,9422,698 nucleotides
(bp) from red petals and 68,698,774 sequences with

Figure 2 White and red petals of M. sprengeri. (A, Red petals; B,
White petals).
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6,938,576,174 bp from white petals. After the removal of
the low-quality raw reads (too short, empty, too many
Ns), we obtained 39,652,898 (red) and 68,698,774 (white)
high-quality sequences (Table 1). These short reads were
assembled into 39,990 total genes, 77,048 total isogenes,
and 91,433,742 total resides with an average length of
1,186.71 bp. The largest isogene was 15,888 bp and the
smallest was 351 bp (Table 2). The sequence length distri-
bution is shown in Figure 3.

In this study, we obtained 35,642,032 sequences and
62,964,028 high-quality sequences in red and white petals
of M. sprengeri, respectively (Table 2). By comparison, the
assembly of 39,990 M. sprengeri sequences from GenBank
(using the GS De novo Assembler) led to only 77,048
unique sequences. The unique sequences derived from
GenBank sequences and Illumina sequences were com-
pared by a BLAST search, where matches were defined
as having an identity > 90% and an overlap >100 bp. Our
[llumina sequencing efforts produced 77,048 unique
sequences. Unique sequences that were not present
in GenBank were considered as the novel transcripts
of M. sprengeri. The large quantity of unique se-
quences should cover the vast majority of genes from
M. sprengeri petals, providing, for the first time, a
powerful gene resource for this medicinal and orna-
mental plant.

Gene ontology (GO) annotation

GO annotation provides a description of gene products
in terms of their associated molecular functions, cellular
components, and biological processes [34]. GO functional
interpretations for plants are primarily based on the
Arabidopsis thaliana genome. GO terms were assigned
to 28,243 M. sprengeri sequences based on sequence
similarities with known proteins and annotated using
The Arabidopsis Information Resource (TAIR) using GO
slim. Among the 77,048 spliced transcripts, 28,243 had
GO annotated transcripts while 48,805 had no annotated
transcripts (Figure 4). The GO annotations of the unique
sequences were most frequently related to molecular func-
tion (23,227 unique sequences), followed by biological
processes (20,540 unique sequences) and cellular compo-
nents (16,690 unique sequences). For each sequence, the
specifically annotated GO terms provide a broad overview
of the groups of genes cataloged in the transcriptome.
Finally, the functions of the identified transcripts were
determined to be involved different biological processes.

Table 1 Summary of sequencing for M. sprengeri
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Table 2 Splicing results for M. sprengeri

Type Sum
Total genes (n) 39,990
Total isogenes (n) 77,048
Total residues (bp) 91,433,742
Average length (bp) 1,186.71
Largest isogene (bp) 15,888
Smallest isogene (bp) 351

The best represented groups were protein metabolism,
developmental processes, response to abiotic or biotic
stimuli, and response to stress and transport. These GO
annotations provided valuable clues to investigate the
specific processes, molecular functions, and cellular struc-
tures of the M. sprengeri transcriptome.

Clusters of orthologous group (COG) and eukaryote
clusters of orthologous groups (KOG) classification

The GO analysis identified well-represented categories
within the cellular component group, including sequences
related to the chloroplast, the plasma membrane, and the
ribosome. Additionally, the sequences encoded a broad
set of transcripts that could be assigned to molecular
function categories. To further examine the integrity of
our transcriptome library and the effectiveness of the
annotation process, we identified the unigene numbers
with COG and KOG classification. Altogether, there
were 25,626 unigenes identified from all unigenes with
COG (Figure 5) and KOG classifications (Figure 6).
Among the 24 COG categories, the cluster of “General
function prediction” accounted for the largest proportion
(3,823, 14.9%) followed by “Replication, recombination
and repair” (2,120, 8.3%), “Transcription” (2,102, 8.2%)
and “Signal transduction mechanisms” (1,792, 7.0%). The
categories of “Nuclear structure” (7) accounted for 0.03%,
“Secondary metabolites biosynthesis, transport and catab-
olism” (437) accounted for 1.7%, and “RNA processing
and modification” (254) accounted for 1.0%. Among the
25 KOG categories, the cluster of “General function
prediction” accounted for the largest proportion (3,682,
14.4%), followed by “Signal transduction mechanisms”
(2,346, 9.2%), “Posttranslational modification, protein
turnover, chaperones” (1,971, 7.7%) and “Transcription”
(1,388, 5.4%). The categories of “Nuclear structure” (90,
0.35%), “Secondary metabolites biosynthesis, transport and

Sequencing No. of sequences No. of bases No. of high-quality reads No. of bases
Red petal 39,652,898 4,004,942,698 35,642,032 3026511514
White petal 68,698,774 6,938,576,174 62,964,028 5,246,524,133
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Figure 3 Length distribution of sequencing reads and contigs of M. sprengeri.

catabolism”(519, 2.0%), “RNA processing and modification”
(1,121,4.4%), and “Extracellular structures” (62, 0.24%) had
the least proportions.

Pathway assignment based on the Kyoto Encyclopedia of
Genes and Genomes (KEGG) classification system

The KEGG classification system provides an alternative
functional annotation of genes according to their associ-
ated biochemical pathways [35]. KEGG annotations for
M. sprengeri transcripts were based on sequence similarity
searches against the KEGG database, and matches were

assigned the corresponding enzyme commission (EC)
number. Overall, 12,082 M. sprengeri unique sequences
were assigned KEGG annotations, of which only 1,696
unique sequences were assigned to the biosynthesis of
secondary metabolites pathways.

Metabolic pathways were well represented among
M. sprengeri unique sequences, most of which were asso-
ciated with amino acid metabolism, galactose metabolism,
biosynthesis of secondary metabolites, aminoacyl-tRNA
biosynthesis, and flavonoid biosynthesis. Notably, the
transcripts encoding all the enzymes involved in the

28243

100

2824

282

Percent of genes

Number of genes
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Figure 4 Histogram representing Gene Ontology (GO) classification. GO categories, shown on the x-axis, were grouped into three main
ontologies: biological process, cellular component, and molecular function. The right y-axis indicates the number of genes in each category,
while the left y-axis indicates the percentage of total genes in that category. The ‘all gene’ indicates that the unigenes were those assembled
from reads from the red and white sample.
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Figure 5 Histogram representing clusters of orthologous groups (COG) classification. A total of 25,626 unigenes were assigned to 24
categories in the COG classification. The y-axis ‘Frequency’ indicates the number of genes in a specific functional cluster. The right side legend
shows a description of the 24 functional categories.
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flavonoid biosynthesis pathway were present in our
[lumina sequences dataset (Table 3). The expression
of all candidate genes in the petals (Additional file 1:
Figure S2) was confirmed by quantitative real-time
PCR (qPCR) (Figure 7).

Candidate genes encoding enzymes involved in the
biosynthesis of flavonoids

Flavonoid biosynthesis is an integral part of secondary
metabolism; therefore, it should be considered within the
context of cellular metabolism. The color of the petal is af-
fected by the flavonoids metabolism pathways. Changes in
the transcript abundances of the genes encoding enzymes
in these pathways are listed in Tables 3 and 4.

The levels of transcripts encoding the first enzymes in
the flavonoids biosynthesis, such as PAL (EC.4.3.1.5),
were markedly higher in red petals than in white petals.
The transcript abundance of the flavonoids biosynthesis
enzymes, including C4H (EC.1.14.13.11), DFR (EC.1.1.1.219),
F3H (EC.1.14.11.9), flavonoid-3'-hydroxylase (F3'H), fla-
vonol synthase (FLS, EC.1.14.11.23), CHS (EC.2.3.1.74),
and ANS (EC.1.14.11.19), were also higher in red petals.

The Plant Transcription Factor Database was used to
search the M. sprengeri transcripts dataset to identify the
genes encoding putative TFs or transcriptional regulators
[36]. A total of 270 transcripts were predicted to be TFs
and were sorted into three families (data not shown). Of
these genes, the expression of eight MYB genes showed
4-fold or greater changes in red petals compared with
white petals. Further studies are needed to determine
whether the changes in transcript abundance of these
putative TFs could be related to the regulation of flavon-
oid metabolism.

Flavonoids are a large group of polyphenolic compounds
and are a structurally diverse class of plant secondary
metabolites. They are important for defense against patho-
gens and herbivores, protection from harmful ultraviolet
radiation, and flower pigmentation for attracting pollina-
tors [37-39]. In addition to their physiological functions in
plants, flavonoids display a wide range of anti-oxidant,
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anti-microbial, anti-inflammatory, and anti-cancer activities
[39]. As a dietary component, flavonoids are considered to
have health-promoting and disease-preventing properties.
Recently, flavonoids have been intensively investigated
as potent pharmaceuticals for treating chronic human
pathological conditions [40-44].

According to the present transcriptomic analysis, the
expression of eight genes was altered in flavonoid biosyn-
thesis, including PAL, C4H, F3H, FLS, CHS, DFR, and
ANS. It has been known for decades that flavonoids are
synthesized from phenylalanine. This process involves
three steps: first, PAL, cinnamic acid 4-hydroxylase, and
4-coumarate coenzyme A ligase catalyze the conversion of
phenylalanine to; second, CHS, CHI, F3H, F3'H, and
DER catalyze the conversion of p-coumaroylCoA to
leucoanthocyanidins; and third, ANS catalyzes the con-
version of leucoanthocyanidins to form anthocyanidins
[9]. In this process, any changes in the expression of the
genes encoding these enzymes can lead to the production
of different anthocyanidin species [45-47], and such
changes may lead to the production of the red petal
phenotype of M. sprengeri. Our study also identified
certain genes encoding TFs related to flavonoid biosyn-
thesis, such as MYBs, bHLHs, and WD40s. The differen-
tially expressed structural genes and differentially expressed
TF genes that may be associated with flavonoid biosynthesis
are shown in Tables 4 and 5. Such information would help
provide a deeper understanding of how changes in gene
expression are related to the changes in the color of
M. sprengeri flowers.

Based on this comparison, almost all of the candidate
genes involved in the flavonoid biosynthesis were present
in the transcriptome datasets of M. sprengeri in this study.
These results highlight the immense capacity of high-
throughput sequencing to discover genes in metabolic
pathways.

Anthocyanin accumulation
Anthocyanin accumulation is tightly linked with flower
development and color changes in most cases [2]. To

Table 3 Genes encoding enzymes involved in flavonoid biosynthesis in M. sprengeri

Name Description Number of transcripts KO no. EC no.

PAL PhenylalanineAmmonia-Lyase K10775 EC43.15
C4H Cinnamat-4-Hydroxylase K13065 EC.1.14331
DFR Dihydroflavonol-4-Reductase K13082 EC1.1.1.219
F3H Flavanone 3-Hydroxylase K00475 EC1.14.119
F3'H Flavonoid-3'-Hydroxylase K05280 EC.1.14.1321
CHI Chalcone Isomerase K01859 EC5.5.1.6
FLS Flavonol Synthase K05278 EC.1.14.11.23
CHS Chalcone Synthase K00660 EC23.1.74
ANS Anthocyanidin Synthase K05277 EC1.14.11.09
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Figure 7 Changes in transcript levels of genes of red and white petals. A. Relative transcript levels of regulatory genes in red and white
petals. 1: Gene 55739; 2: Gene 53876; 3: Gene 43573; 4: Gene 47103; 5: Gene 49650; 6: Gene 50438; 7: Gene 51086; 8: Gene 25552. B. Relative
transcript levels of transcript factors in red and white petals. 9: Gene 45264; 10: Gene 45298; 11: Gene 46821; 12: Gene 47225-0; 13: Gene 47225-1; 14:
Gene 47747; and 15: Gene 50161. The amount of transcript was normalized to the level of M. sprengeri act gene. Mean values and standard errors

examine the accumulation of anthocyanin in the petals
of red and white M. sprengeri, the flower extracts were
subjected to high-performance liquid chromatography
(HPLC) analysis. The HPLC data showed that the main
anthocyanin in the petals of M. sprengeri is cyanidin-3-
O-glucoside chloride. The accumulation of cyanidin-3-
O-glucoside chloride in petals of red and white
M. sprengeri was 3.421 and 0.132 mg per 100 g samples,

respectively (Additional file 2: Figure S1), Our results
indicate that red petals accumulate 26-fold more cyanidin-
3-O-glucoside chloride than white petals (Figure 8).

Conclusions

[llumina next-generation sequencing technology was
used for sequencing and transcriptome analysis of the
non-model plant M. sprengeri pamp. We identified the

Table 4 Differentially expressed genes related to flavonoid biosynthesis in M. sprengeri red and white

Transcript Annotation FPKM-R FPKM-W
comp55739_c0_seq2 Phenylalanine Ammonia-Lyase 967.65 454.39
comp53876_c0_seq] Cinnamat-4-Hydroxylase 447 91 14363
comp43573_c0_seq2 Dihydroflavonol-4-Reductase 264.97 746
comp47103_c0_seq]1 Flavanone-3-Hydroxylase 42034 389.55
comp49650_c0_seq] Flavonol synthase 786.51 29947
comp50438_c0_seq1 Chalcone synthase 705.94 225.14
comp51086_c0_seq] Anthocyanidin reductase 34497 203.23

FPKM-R, fragments per kilobase of transcript per million fragments mapped red; FPKM-W, fragments per kilobase of transcript per million fragments mapped white.
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Table 5 Changes in transcript abundance of predicted transcription factors and regulators about flavonoid biosynthesis in

M. sprengeri red and white

Transcript Annotation FPKM-R FPKM-W
comp25552_c0_seq1 MYB domain protein 20 2.54 0.7
comp45264_c0_seq2 R2R3 MYB transcription factor 1327 0.35
comp45298_c0_seq2 R2R3-MYB transcription factor MYB9 9249 1.02
comp46821_c0_seg4 MYB6 39.37 9.38
comp47225_c0_seql MYB-related protein 306 3892 7.95
comp47225_c1_seql MYB-related protein 306 isoform 1 4262 135
comp47747_c0_seq2 MYB transcription factor 89.68 17.14
comp50161_c1_seql R2R3 Myb24 transcription factor 288.96 72.35

FPKM-R, fragments per kilobase of transcript per million fragments mapped red; FPKM-W, fragments per kilobase of transcript per million fragments mapped white.

genes encoding key enzymes and reconstructed the
metabolic pathways involved in biosynthesis and catabolism
of flavonoid of M. sprengeri. Our results promote under-
standing of the mechanisms underlying various metabolic
processes, and will enable the genetic manipulation of
flower color in M. sprengeri.

The accumulation of flavonoids and the discovery of
genes associated with their biosynthesis and metabolism
in M. sprengeri are intriguing and worthy of further inves-
tigation. The sequences and pathways identified here rep-
resent the genetic framework required for further studies.
Quantitative transcriptomics in concert with physiological
and biochemical analysis in M. sprengeri under conditions
that stimulate production and accumulation of flavonoids
could help provide insights into the regulation of, and
links between, these pathways.

Cyanidin-3-O-glucoside chloride
(mg/100g )
L5

0 ,
Red White

Figure 8 Accumulation of anthocyanidin in petals of red and
white M. sprengeri. Red: Anthocyanidin concentrations in the petals
of the red flower; White: Anthocyanidin concentrations in the petals
of the white flower. Concentrations in the petal of the red and
white flowers were determined by measuring the absorbance at

350 nm using HPLC analysis with cyaniding-3-O-glucoside chloride
as the standard. Data are the mean + SD of three replicates.

Methods

Plant materials

The petals of red and white M. sprengeri were harvested
from approximately 50-year-old trees in March 2012
from Wufeng County, Hubei Province, China (Figure 2).
We selected 10 trees with red flowers and 10 trees with
white flowers for petal collection. Nine petals of each
color were selected for RNA-sequencing experiments
while three petals (around 0.5 g) of each color were taken
for the HPLC experiments. For qPCR, we used additional
5-10 petals to isolate total RNA. After cleaning, the petals
were cut into small pieces, immediately frozen in liquid
nitrogen, and stored at —80°C until further processing.

RNA preparation

The TRIzol° reagent (Invitrogen) was used to extract
total RNA from the petals of red and white M. sprengeri
according to the manufacturers instructions (Invitrogen,
USA). The purity of all RNA samples was assessed at an
absorbance ratio of OD260/280 and the RNA quality was
tested using a 1% ethidium bromide-stained (EtBr-stained)
agarose gel. A GeneQuant100 spectrophotometer (GE
Healthcare, UK) assessed the RNA concentration before
processing.

cDNA synthesis and Illlumina sequencing

Clontech’s SMART c¢DNA synthesis kit (Clontech, USA),
was used to produce first-strand cDNA from 5 pg of total
RNA extracted from the petals of M. sprengeri, according
to the manufacturer’s instructions. The samples were
treated with RNase-free DNase I (Takara Biotechnology,
China). To construct a cDNA library, oligo (dT) magnetic
beads were used to purify poly (A) mRNA from total
RNA. The RNA was then fragmented into small pieces by
the addition of fragmentation buffer. These short frag-
ments served as templates to synthesize first-strand cDNA
using random hexamer primers. Second-strand cDNA
was synthesized using buffer, ANTPs, RNaseH, and DNA
polymerase I. A QiaQuick PCR extraction kit purified the
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short fragments. These fragments were washed with elution
buffer for end repair and poly (A) addition and were
then ligated to sequencing adapters. Suitable fragments,
as judged by agarose gel electrophoresis, were selected
for use as templates for PCR amplification. An Illumina
HiSeq™2000 sequenced the cDNA library using paired-
end technology in a single run.

Transcriptome assembly and annotation
The Solexa GA pipeline 1.6 generated the transcriptome
de novo assembly. After the removal of low-quality reads,
the Trinity de novo assembler (http://trinityrnaseq.source-
forge.net/) [48,49] assembled processed reads with an
identity value of 95% and a coverage length of 100 bp
[48,49]. First, the overlap information in the short reads
was used to construct high-coverage contigs, and then
the short reads were assembled into contigs. We then
realigned the short reads onto the contigs and estimated
the distance and relation of the two contigs using the
pair-end linkage and insert size information. Unreliable
linkages between the two contigs were filtered and the
remaining contigs with compatible connections were
linked to each other, and had at least three read-pairs.
The last step was to close gaps in the scaffolds. We
gathered the paired-end reads with one end mapped to
the contigs and another end located in the gaps and
performed local assembly with the unmapped end to
extend the contig sequence into the small gaps in the
scaffolds. CAP3 [50] was used (with default parameters)
to reduce redundancy and to combine scaffolds and
single-end contigs in the separate assemblies.

To annotate the M. sprengeri transcriptome, we per-
formed a BLAST search against the non-redundant

Table 6 Primers used in quantitative real-time PCR
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(NR) database in NCBI, SWISS-PROT, KEGG, and
COG with a cut-off E-value of <107°. The Blast2GO
software (http://www.blast2go.com/b2ghome) obtained the
GO annotations and the corresponding EC numbers of the
sequences.

Pathway assignment with KEGG

Pathway assignments were mapped according to the KEGG
database (http://www.genome.ad.jp/kegg/kegg2.html) (ver-
sionKEGQ) [51]. EC numbers were assigned to unique se-
quences that had BLASTX scores with an E value cut-off
of 107 after searching the KEGG protein databases. The
unique sequences were mapped to specific biochemical
pathways according to the corresponding EC distribution
in the KEGG database.

Quantitative Real-time PCR (qPCR) Analyses

To remove any contaminating genomic DNA before cDNA
synthesis, we treated the total RNA with RNase-free
DNAse I (Invitrogen, USA) according to the manufacturer’s
instructions. A NanoDrop™ 1000 spectrophotometer was
used to quantify the RNA before and after this DNAse I
treatment, and RNA quality and integrity were checked by
electrophoresis using agarose gels stained with ethidium
bromide. For qPCR, first-strand cDNA was synthesized
with 2 pg of total RNA in a volume of 20 pL, using a
SYBR°PrimeScript™ RT-PCR Kit II (Takara, China) plus
random hexamers and oligo(dT) primers. After reverse-
transcription, the reaction product was diluted 10-fold
with sterile water. Real-time PCR was performed on an
iQ5 instrument (Bio-Rad, USA) using SYBR Green qPCR
kits (Takara, China) according to the manufacturer’s in-
structions. Primer sequences are listed in Table 6. Real-

Gene ID

Primer sequence(forward) 5'-3'

Primer sequence(reverse) 5-3'

55739 TAACGAAGCCGAAACAGGA GAGAATTGGGCGAACATCA
53876 ACGCATCTTACGCCAGTG ATTCCAGCCGTTCATTCT
43573 TCGTGGAAGCGTGCGAGGAC AGCGTGATGGTGCCAGGGTC
47103 CGGTTCGTGGCTGGTTAT TCCGCTAGTGATTTGGAGAC
49650 GCAGAAACAATCCATCCCTCAA CAGGACGACAGTAAACAAGGAGAA
50438 GCAGGCATCCAAGCAATAC AATAATCCTCCCACTCAAGC
51086 GGGGACTCTACACCAGGAA CTAACGGAGGAGATATTGACG
25552 GCCTCACATAACCTTTCTC TTGACCCTTTCAGCCAGTA
45264 CAATCGGTGTCGTAAGAGC CCCGTCGTAATGGAAAGTA
45298 TTTATTTAGTGCCGATACCA ATTACGATGTGCCAGGAG
46821 GCGAATCATACTCCGACAT TTGCTGCTTTGACTCTGC
47225 ATGCGTAGGTAGATGGTTG CACTGATACTGAGGAGGAGAA
47747 CCGAAGAAGATGCGACAAA GAGCAGCGATTCAAGAGCC
50161 GGCTTGATTTGGGAGACGA TACCGACCTGTGGCGAGAA
53953(Actin) GGCTGGATTTGCTGGAGAC GTGGTGCTTCGGTGAGGAG



http://trinityrnaseq.sourceforge.net/
http://trinityrnaseq.sourceforge.net/
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time PCR reactions were carried out in 20-pL volumes
containing a 10-uM concentration of each primer, 40 ng
of ¢cDNA, and 10 pL of SYBR Premix Ex Taq™ IL
Thermal-cycling conditions included an initial heat-
denaturing step at 95°C for 3 min; then 40 cycles of 95°C
for 20 s, 58°C for 20 s, and 72°C for 20 s. Fluorescence
was measured at the end of each cycle. A melting-curve
analysis was performed by heating the PCR product from
58°C to 95°C. Expression data were presented as relative
units after normalization to the act control, using the
27*“T method. Values for mean expression and SD
were calculated from the results of three independent
experiments.

HPLC analysis of anthocyanin

Magnolia sprengeri petals (0.5 g) were ground in 1.5 mL
of 70% methanol containing 2% formic acid at 4°C, then
centrifuged at 10,000 g for 10 min at 4°C. The supernatant
was passed through a 0.22-pm syringe filter before HPLC
analysis. Anthocyanins were investigated on an Agilent
1100 HPLC equipped with a diode array detector (Agilent
Technology), as described by Zhang et al. [52]. The
total anthocyanin concentration was calculated based
on a cyanidin-3-O-glucoside standard (Sigma-Aldrich,
St. Louis, MO, USA).

Additional files

Additional file 1: Full-length cDNA sequences of genes used in
qPCR assay.

Additional file 2: Anthocyanidin analysis of petals in red and white
flower color. Peaks of HPLC were identified by retention time compared
with cyaniding-3-O-glucoside chloride standards. (A: Red petals; B: White
petals).
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