Murphy et al. BMIC Genomics 2014, 15:831
http://www.biomedcentral.com/1471-2164/15/831

BMC
Genomics

RESEARCH ARTICLE Open Access

Methyltransferases acquired by lactococcal
936-type phage provide protection against
restriction endonuclease activity

James Murphy', Jochen Klumpp?, Jennifer Mahony', Mary O'Connell-Motherway'?, Arjen Nauta®

and Douwe van Sinderen'”

Abstract

monetary return.

936-type phages.

Background: So-called 936-type phages are among the most frequently isolated phages in dairy facilities utilising
Lactococcus lactis starter cultures. Despite extensive efforts to control phage proliferation and decades of research,
these phages continue to negatively impact cheese production in terms of the final product quality and consequently,

Results: Whole genome sequencing and in silico analysis of three 936-type phage genomes identified several putative
(orphan) methyltransferase (MTase)-encoding genes located within the packaging and replication regions of the
genome. Utilising SMRT sequencing, methylome analysis was performed on all three phages, allowing the identification
of adenine modifications consistent with N-6 methyladenine sequence methylation, which in some cases could be
attributed to these phage-encoded MTases. Heterologous gene expression revealed that M.Phi1451/M.Phi93I and
M.Phi93DAM, encoded by genes located within the packaging module, provide protection against the restriction
enzymes Hphl and Dpnll, respectively, representing the first functional MTases identified in members of

Conclusions: SMRT sequencing technology enabled the identification of the target motifs of MTases encoded by
the genomes of three lytic 936-type phages and these MTases represent the first functional MTases identified in
this species of phage. The presence of these MTase-encoding genes on 936-type phage genomes is assumed to
represent an adaptive response to circumvent host encoded restriction-modification systems thereby increasing
the fitness of the phages in a dynamic dairy environment.
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Background

The bacterio(phage) — host arms race represents a dynamic
interplay of survival among a population of bacteria
and their infecting viral parasites [1]. Depending on the
complexity of the environment, the ongoing antagonistic
evolution can generate diverse populations among both
phages and their bacterial hosts [2-4]. Host adaptation is
driven by the highly selective pressure of lytic phages,
while phages are in turn compelled to mutate in order
to achieve efficient host infection, combined with, in
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the case of virulent phages, optimal production and
release of progeny particles [5]. An example of such
adaptive interplay are phages that modify their receptor
binding protein (RBP) or tail fibres to target a new cell
surface receptor if the original receptor becomes unavail-
able as seen in Escherichia coli phage cI26 [6,7]. Bacterial
genomes and plasmids may encode a wide variety of
defence mechanisms to combat phage infection, such as
restriction-modification systems (R-Ms), abortive infective
(Abi) systems and CRISPR-mediated immunity [8,9].
Nonetheless, phages have been shown to be able to
bypass many of these phage-resistance systems in order to
successfully continue their replication and proliferation.
For example, phages may evade CRISPR systems by
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acquiring mutations in the protospacer, thus preventing
complementary binding of the CRISPR-produced crRNA to
the target phage DNA [10]. Furthermore, phage genomes
have been shown to acquire methyltransferase (MTase)-
encoding genes, which are termed orphan MTases if
they occur in the absence of their cognate restriction
enzyme-encoding gene [11]. Their function is to actively
methylate phage DNA to negate the activity of host
encoded restriction endonucleases which recognize the
same sequence. MTase-encoding genes are found on the
genomes of, among others, T-even phages of E. coli,
several Bacillus subtilis phages, and the lactococcal phi-50
(P335-type phage) [12-14]. In some cases phages have
been shown to specify complete R-M systems as observed
in the Staphylococcus aureus quadruple converting (causes
lysogenized bacteria to acquire or lose the ability to
express phenotypic traits) phage m42, which harbours a
Bcgl-like R-M system [15].

In the dairy industry, selection of phage-resistant starter
cultures coupled with extensive phage control strategies
may reduce the risk of phage infection of hosts and
decrease their ability to engage in antagonistic evolution
[16-18]. However, some examples of 936-type phages
overcoming host-encoded systems include mutations in
the sak and sav genes, which allow such mutated phages
(referred to as escape mutants) to circumvent the abortive
infection systems AbiK [19,20] and AbiV, respectively
[21]. Most recently it has been demonstrated that certain
mutations in the gene specifying the major capsid protein
allow the 936-type phage skl to overcome the AbiB
system of L. lactis UC509.9 [22]. Previously, we reported
on the isolation of phages from a mixed starter system
[23], and showed that, consistent with earlier surveys
[24,25] members of the 936-type phages are the only
detected phages within the examined fermentation facil-
ities. The reasons behind the persistence and prevalence
of the 936-type phages are undoubtedly multifactorial
and encoded by their genome, which encompasses
many genes without an assigned function. The 936-type
phage genomes, with sizes ranging from 26-32 kb, are
modular in organisation and are clustered into late, early
and middle-expressed genes, with the early transcript
encompassing the largest number of genes with unknown
function [26]. The advances in sequencing technology and
the variety of sequencing platforms available has allowed
for a significant increase in the number of fully sequenced
phage genomes [27]. Continued phage isolation and rapid
genomic characterization is crucial in order to unravel the
underlying reasons and mechanisms for the occurrence
and persistence of particular phage species, especially
936-type phages in lactococcal fermentations. Here, we
report on the genome sequences of three 936-type
phages, Phi93, Phil45 and Phil5, and for the first time
show that the 936-type phages can acquire (orphan)
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MTases which provide a protective effect against specific
restriction endonuclease activities.

Results and discussion

Identification of 936-type phages encoding putative
(orphan) methyltransferases

Initial genome sequencing was performed on a 454
device on phage DNA isolated from three lactococcal
936-type phages (Phi93, Phil45 and Phil5), previously
isolated from whey samples obtained from Gouda-
producing cheese factories (Table 1) [23]. The genomic
characteristics of the three phages are summarized in
Table 2. The three genomes each encompass 55 ORFs
(Additional file 1: Table S1), apparently organised into
three transcriptional modules (as based on gene orien-
tation), a gene arrangement that is typical for 936-type
phages (Figure 1) [26,28]. Typically, the consensus gene
order of the packaging module consists of the gene
encoding the putative small terminase subunit followed
by that specifying the large terminase subunit as seen,
for example, in the genomes of jj50, skl and P0O08 [26].
However, this region appears to be a hotspot for genetic
insertions and several 936-type phages were observed to
possess an additional ORF of unknown function located
downstream of the gene encoding the small terminase
subunit [25,28]. Annotation of the genomes revealed that
also the genomes of Phil5, Phi93 and Phil45 each contain
additional ORFs in this region of their genomes (Figure 1),
including ORFs that specify putative (orphan) MTases
(Summarised in Table 3). In the case of Phil5 the deduced
protein product of locus tag Phil5_02 was predicted
to specify a homing endonuclease (HNHE), while for
Phil45, the similarly positioned gene, designated here
as mtPhil45-1 (Nomenclature assigned according to
Roberts et al., 2003 [29]) (corresponding to locus tag
Phil45_02) (Figure 1) is predicted to encode a putative
(orphan) MTase, and accordingly named M.Phil45I
(Nomenclature of the identified MTases was according
to Roberts et al., 2003 [29]) (Table 3). The Phi93 genome
has three additional ORFs located between the genes that
encode the putative large and small terminase subunits:
mtPhi93-1, HNHPhi93-3 and mtPhi93-DAM (correspond-
ing to locus tags Phi93_02, Phi93_03 and Phi93_04,
respectively), which are predicted to specify an MTase,
accordingly named M.Phi93I, a HNHE, designated as
PHEasePhi93I (putative homing endonuclease), and a
DAM MTase, named M.Phi93DAM, respectively (Figure 1)
(Table 3). Using BlastP and HHpred analyses, M.Phi145I
and M.Phi93l, whose amino acid (aa) sequences share
99% similarity, were found to share sequence similarity
(50 aa% identity) to the prophage MTases of L. lactis
CV56 (GenBank: YP_005868377) and KF147 (GenBank:
YP_003353511), and 22% aa identity to the MTase Mbolla
(GenBank: P23192). Amino acid alignments of the above-
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Table 1 Bacteria, phages, plasmids and primers used in this study
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Bacteria Features Source

L. lactis NZ9000 Host strain for expression [53]

L. lactis SM' M Host strain for Phi93 [23]

L. lactis SM E Host strain for Phi145 [23]

L. lactis SM 13 Host strain for Phi15 [23]

L. lactis SM 11 2" propagating strain for Phi15 [23]

E. coli EC101_pPTPi Strain carrying low-copy plasmid pPTPi [23]

E. coli EC101 Host strain for cloning [54]

E. coli K12 Competent, DAM /DCM ~ Strain for pPiM.93DAM cloning NEB
Phage Features Source
Phi15 Methylase positive® 23]

Phio3 Methylase positive [23]
Phi145 Methylase positive [23]
Plasmids Features Source
PPTPI Tetracycline resistant, Nisin inducible, PTet" [52]
pPiM.93DAM pPTPi derivative encoding mtPhi93-DAM, PTet" This study
pPiM.145] pPTPi derivative encoding mtPhi145-1, PTet’ This study
pPiM.145]| pPTPi derivative encoding mtPhi145-2, PTet’ This study
Primers Sequence (5'-3")° Source
93DAMMTaseF agcagcGGATCCAGGAGGCACTCACATGCACCATCATCATCATCATTCTTCTGGTAATAATGAATTAATG This study
93DAMMTaseR gctgctCCCGGGTTAATGATGATGATGATGGTGACCAGAAGTTCAAATATCACGACCATG This study
Phi145.M1F agcagcGGATCCaggaggcactcacATGCACCATCATCATCATCATTCTTCTGGTATTGAATTAAATAAA This study
Phi145.M1R agcagcCCCGGGTTACTATTCGTTTTCAGATAT This study
Phi145M2F agcagcGGATCCaggaggcactcacATGCACCATCATCATCATCATTCTTCTGGTCTTAAGTTAGACGAG This study
Phi145.M2R agcagcCCCGGGTTAACTGTTTTTAACCATAAA

mcsPTPiFwd CTGAGGTTCTTATGGCTC [51]
mcsPTPiRev TTCGCTTTTAAAGTCGATTTCAT [51]

?Predicted from BlastP and REBASE.

bTet'?=?TetracycIine resistant.

“Restriction sites incorporated into oligonucleotide primer sequences are indicated in bold.

mentioned putative MTases with Mbolla and Kpnl
(GenBank: P25238) identified several of the motifs associ-
ated with methyltransferases, and based on the order they
occur (III, IV, VI, VII, VIII, X, I, II), M.Phil45] and M.
Phi93I are believed to belong to the type II-encoding
genes, group p MTases (Figure 2) (Table 3) [30,31].
HHpred analysis of M.Phi93DAM showed that this
(orphan) MTase shares 63% aa identity to the S. aureus
prophage L54a-encoded putative N-6 adenine MTase
(GenBank: YP_185238.1). Using REBASE it was predicted
that mtPhi93-DAM encodes a putative DAM MTase,

recognising the motif 5'-GATC-3’, however, and in
contrast to other DAM MTases, M.Phi93DAM was
found to only harbour a single conserved MTase motif,
Asn-Pro-Pro-Tyr (NPPY) [12].

Individual ORFs located within the replication regions of
the Phil45, Phi93 and Phil5 genomes (corresponding to
locus tags Phil45_37, Phi93_39 and Phil5_36) (Figure 1)
(Table 3), designated here as mtPhil45-2, mtPhi93-2, and
mtPhil5-1, respectively, were also found to encode proteins
(M.Phi14511, M.Phi93II and M.Phil5]) predicted to specify
(orphan) MTases based on BlastP, REBASE and HHpred

Table 2 Summary of the characteristics of the sequenced 936-type phage

Phage Genome size (bp) % G+C No. of ORFs cos sequence Source
Phi15 31945 34.58 55 CACAAAGGACT [23]
Phio3 31841 3497 55 CACAAAGGTCT [23]
Phi145 30862 34.90 55 CACAAAGGTCT [23]
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Late genes

Early genes Middle genes

Packaging

Figure 1 Schematic representation of the 936-type phage genome. A) Phi145 B) Phi93 and C) Phi15. green arrow symbol= Small terminase,
yellow-green arrow = Large terminase, violet arrow symbol = Putative MTase (mtPhil45-1, mtPhi93-1 and mtPhi93-DAM). yellow arrow symbol = Homing
endonuclease and sky blue arrow symbol = Putative MTase (mtPhi145-2, mtPhi93-2 and mtPhil5-1).

Replication

analysis (Table 3). These putative (orphan) MTases are
not unique to the phage sequenced in this study as they
were also found to appear in several other 936-type
phages such as ASCC191 (GenBank: AFE86771) and
Caseus]M1 (GenBank: AGE60667) [28,32]. Amino acid
alignments with the E. coli T4 phage MTase (NP_049647)
identified these ORFs as group a type II N-6 MTases
based on the presence of several of the conserved motifs
associated with this group and the particular order they
occur in (X, L, II, III, IV, VI and VIII) (Figure 3). These
three phage-encoded MTases lacked motif VII and had
only one conserved residue for motifs III, VI and VIII
[30,33] (Figure 3). While all four MTases did not harbour
all nine conserved MTase motifs, typically observed in
group o type II N-6 MTases, variations in motifs have
been seen before such as in Hhall (GenBank: P00473)
in which motif IV is represented as DPQYR instead of
N/DPPYN. Type II MTases are often associated with a
cognate restriction endonucleases making up type II R-Ms
in lactococcal strains which play an important role in
protecting these strains from phage infection [22]. It
has been demonstrated that lytic lactococcal phages
have the ability to acquire functional MTases as shown
for phi-50 which possesses the nucleotide sequence
encoding an amino domain, LlaPI, from the R-M Llal,
identical to that on the plasmid pTR2030 [13]. It is
believed that the MTases identified in this study are

(orphan) MTases as they do not appear to be associated
with a cognate restriction endonuclease which may
have occurred due to the negative impact a restriction
endonuclease may have on the phage DNA or that the
amount of additional genomic information that can be
acquired in the region of the phage genome may be
limited, i.e. there is no selective advantage in acquiring
the restriction endonuclease component.

Acquisition of additional ORFs by lytic phages may occur
due to errors during phage DNA packaging, and appears
to be more frequently encountered in pac-type phages,
which use the head-full packaging mechanism, due to the
recognition of pseudo-pac sites on the host DNA [34,35].
However, packaging of additional DNA has also been
shown for cos-type phages, such as 12 and SLT, which
have been shown to mobilise S. awureus pathogenicity
islands [36]. The observed sequence similarity between
the packaging module-associated MTase-encoding genes
with sequences located within the prophage elements of L.
lactis KF147 and CV56 may indicate a genetic exchange
event either between the phage and a prophage sequence
within the host genome, or between phage genomes
during co-infection with a replicating temperate phage
via non-homologous recombination. Previous studies have
shown that lactococcal strains encode type II R-M systems
(LlaAlL LlaBI, LIaDCHI, and LlaKR21) specifying Dpnl
and Dpnll isochizomers (5'-GATC-3"), and it is possible

Table 3 Summary of putative MTases in the 936-type phage

Phage Locustag  Gene designation Protein Genome location  Target motif Type Group  Conserved motifs
Phi15 Phi15_36 mtPhil5-1 M.Phi15I Replication 5-CCOMAG-3" Il a XL IV, VL VI
Phio3 Phi93_02 mtPhi93-1 M.Phio3l Packaging 5-GGWGTTA-3® || B IV, VI, X, I, 11
Phi93_04 mtPhi93-DAM M.Phi93DAM  Packaging 5'-GOMATC-3' I - \%
Phi93_39 mtPhi93-2 M.Phio3ll Replication 5'-CYPMAG-3" Il a XL IV, VL VI
Phi145  Phi145_02  mtPhil45-1 M.Phi145I Packaging 5-GGWGTTA-3® || IV, VI, X, 111
Phi145_37  mtPhil45-2 M.Phi145l| Replication 5'-CY°MAG-3 I a X, 1L IV, VI VI

“Motif identified on two independent SMRT sequencing runs with Phi15 propagated on two separate hosts.

bValidated by restriction analysis using Hphl. Phi93_002 and Phi93_039 are 99% and 100% identical to Phi145_002 and Phi145_037 respectively, therefore only
the genes from Phi145 were cloned and validated by restriction analysis.

“Validated by restriction analysis using Dpnl and Dpnll.

9Assigned based on comparative sequence alignment to mtPhi15-1.
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Protein

Type II Group p Methyltransferase
N-Motif IV-V -VI-VII-TRD - X -1-1I1-1I - III-C

(1)

mtPhil45-1

Kpnl
Mbolla

Protein

KF147 Phage----MIELNKIYNEDCLEGMKRI PDGSVDMILCDLPYGTT—————————— NCSWD YNRIIKDNGAIVLTGAEPFSSHLR 66
—-——-MIELNKIYNEECLEGMKKIPDGSVDMILCDLPYGTT—————————— ACTWD YERVIKDNGAIVLTASQPFTSKLV 66
CV56 Phage ----MIKLNKIYNEDCSEGMKRIPDGSVDMILCDLPYGTT—————————— NCSWD YERIIKDNGAIVLTGAEPFSSHLR 66
DSTLSSSIYIGDNLTYLOGLSKTSPKTIDFCY IDPPYNTGNKIIYHDNRKSVSSDIFGLHN-EWMSFLLPRLFHAHKMLK 7 9
———-MLEINKIHQMNCFDFLDQVENKSVQLAVIDPPYNLS—————————— KADWDSFDSHN-EFLPFTYRWIDKVLDKLD 65

motif IV

motif V motif VI

KF147 Phage LsN-—-—————- LKLYKYDWIWDKVKGTGFLNAKKQPMRNHE IVSVEYKNQPTYNPQ—————————————————————— KT 116
miPhil45-1 MSN-——-———- IKWFKHEWIWEKQRASNFMRANHEPLKYHENILVFSKGLLNFNPQRYKVLEIDEIMTMTKKEMEVMMKS 138
CV56 Phage LSN-——--——-——- LKIYKYDWIWDKVKGTGFLNAKKQPMRNHET ISVFYKNQPTYNPQ—————————————————————— KT 116
kpnl DTGIIAISIDDYEFAHLKILMDKIFGEDNFIGNIVVCRSKNGKGS-KRNIASAHEYLIVYG-———————————————— KS 141
Mbolla KDGSLYI---FNTPENCAFICQYLVSKGMIFQNWITWDKRDGMGSAKRGEFSTGOETILEFS————————————————— KS 125

motif VI
Protein

motif VII

motif VIII -- -- motif VIII

K147 Phage
miPhil45-1
CV56 Phage
kpnl

Mbolla

95)

Protein

BGHN~———~== LKTSFRSSEHQTDVYGEMKQDYTYSSTERYPRSIQIFSTDTONSSLHPTQRPVALFEYLIKTYTNKGDT 189
KHYDRFGRVDKRKTVRGPNENKKYLGSEIKRVRNADDGEFRNPKSVLKIN-NKLHGNIHPTQKPVPLFEYLIRTYTNKGDT 217
SGHN—-=-==——— LKTSFRSSEHQTDVYGEMKQDYTYSSTERYPRSIQIFSTDTONSSLHPTQKPVALFEYLIKTYTNKGDI 189
DMAELS—-——————-— GQPDDKSLY SHKRIKVRTLWNDSSEYTERATNEITKIFGSKVFDTPKALNYIMSIINCMAKPDAL 213
KNHTFN-—---- YDEVRVPYESTDRIKHASEKGI LKNGKRWEPNPNGRLCGEVWHES --TPKPRDLIERIIRASSNPNDL 198

(18)

motif X

mitPhil45-1
CV56 Phage
kpnl

motif'] motif 11

KF147 Phage VLDNCMGSGTTAVACLNT—————— ERNFIGFETNEEYYNKSLORIKNN--VTQLDLFEVVG
VLDNCAGSFTTAVACDNT-————— NRNWICMEKEEEYCNIGLTRINDNRERLSLPLLERISENE
VLDNCMGSGTTAIACLNT—————— ERNFIGFETNEEYYNKSLQRIKNN--VTQLDLFEEYPSQIRYYAKESLEAIGEKID 261
ILDFFAGSGTTAHAAAVLNSLDGGSRKTILMESNHPITKTHIAYKSGFRKISDITISRLNYVSDNFPDFKYKKIETIT
Mbolla VLDCFMGSGTTAIVAKKI—————— GRNFIGCDMNAEYVNQANFVIN-—————— QLEIN

242
205

290
243

Figure 2 Type Il group B MTases. Protein alignment of the putative (orphan) MTases of Phi145, mtPhii45-1, the MTases encoded by prophage
QV56 (YP_005868377) & KF147 (YP_0033553511) and the representative MTases Mbolla (P23192) and Kpnl (P25238). The group 3 MTases conserved
motifs previously determined [30,31] are underlined and conserved residues are highlighted in red bold letters. To aid in the identification of conserved
motifs some residues were removed from the alignment and indicated by the numbers in parenthesis: (11) =11 amino acids removed from KFl47, CV/56
and mtPhi145-1; (95) = 95 amino acids removed from Kpnl and (18) = 18 amino acids as described previously and (18) = 18 amino acids removed from

Mbolla as described previously [30,31].

that Phi93 acquired mtPhi93-dam from a host harbouring
such an R-M system [37,38]. These packaging module-
associated MTase-encoding genes appear to be unique
to the 936-type phages sequenced in this study. MTases
have been implicated in several functions in phages, pri-
marily that of providing protection against host-encoded
endonucleases [11,39], yet regulatory roles have also been
proposed for those associated with the packaging genes in
E. coli phage P1 [40]. GATC methylation has been shown
to be required to ensure efficient packaging of the phage

DNA as loss of this methylation resulted in a reduction in
progeny phage numbers. It is unlikely that the MTases
identifed in this study fulfill a regulatory role, as there are
no reported 936-type phages (prior to this study) that
harbour (orphan) MTase-encoding genes between the large
and small terminase-encoding genes. It is more plausible
that the MTases represent an acquired defence whereby
phage DNA is methylated such that it will be protected
from endonuclease activity that may be present in pro-
spective hosts.
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Type Il Group a Methyltransferase
N-Motif X -1-1I1-1II1 - TRD -1V -V - VI - VII - VIII-C
Protein
(15)
T4 MLGAIAYTGNK----QSLLPELKSHFPKYNRFVDLFCGG--LSVSLNVNG-PVLANDIQEPI IEMYKRLIN--VSWDDVL 71
mtPhil45-2 --- LPYQGSKKKISKKIIEIIKQNFGTDRPIYDIFGGGGAITAECILNGLEVHYNDLDKDITNAFERVVSQDREWIKTL 77
mtPhi93-2  --- LPYQGSKKKISKKIIEIIKQNFGTDRPIYDIFGGGGAITAECIINGLEVHYNDLDKDITNAFERVVSQDREWIKTL 77
mtPhil5-1 --- LPYQGSKKKISKKIVEIIKQNFGTDEPIYDIFGGGGAITAECILNGLEVHYNDLDKDITNAFERVISQDREWIKTL 77
Motif X Motif I Motif 11 Motif III
Protein
T4 KVIKQYKLSKTSKE-—--- EFLKLREDYNKTRDPLLLYVLHFHGFSN--MIRINDKGNFTTPFGKRTINKNSEK--QYNH 142
mitPhil45-2 IISREEFFEIKDKENKTTDDFLKLLVNSEGNKKINYLYSKEISDLKYNLAKEIIEKHDVENGYKQTETYKKVTSGLDWNW 157
mtPhi93-2  I1ISREEFFEIKDKENKTTDDFLKLLVNSFGNKKINYLYSKEISDLKYNLAKEIIEKHDVENGYKQTETYKKVTSGLDWNW 157
mtPhil5-1  IVSRTEFTEIKAKENKTTDDFLKLLVNSFGNDKKSYMYSKEISDLKYNLAKEIIGNHDVFGGYKQTETYKKVISGAEWNW 157
Protein
(55)/(15)
T4 FKQNCDK------ IIFSSLHFKDVKILDGDFVYVDPPYLITVADYNKFWSEDEEKDLLNLLDS--LNDRGIKFGQSNVLE 214
mtPhil45-2 FNEKQEKHKI NEVKATNKSYHIFSEVSGAILYLDPPYEG----------- SHOKGYINQFDSQEFYDWAFEIAKNNIVI 226
mtPhi93-2 FNEKQEKHKI NEVKATNKSYHTFSEVSGAILYLDPPYEG-—-------—- SHOKGY INQFDSQEFYDWAFEIAKNNIVI 226
miPhil5-1  FNEKK ------- VKATNKSYHDFGEVSGAILYLDPPYEG----——---—- SHQKGYINSFDSQEFYDWAFEMSKSNIVI 219
Motif IV Motif V Motif VI
Protein
T4 HHGKENTLLKEWSKKYNVKHLNKKYVENIYHSKEKN-GTDEVYTFN 259
mtPhil45-2 15S----- YSISDERFEAVYSFDKAHSTLQSGTRND-KCEKLEMVENS 268
mtPhi93-2  1585----- YSISDERFEAVYSFDKAHSTLQSGTRND-KCEKLFMVKNS 268
mtPhil5-1  188----- YSISDERFEVVYSFDKARSCLQGGTSNKRKNEKLEMVEKN 261
Motif VII Motif VIII
Figure 3 Type Il group a MTases. Protein alignment of the putative phage (orphan) MTases located in the replication region: mtPhi145-2,
mtPhi93-2, mtPhi15-1 and T4 phage DAM MTase (NP_049647). The group a MTases conserved motifs previously determined [12,30] are underlined
and conserved residues are highlighted in red bold letters. To aid in the identification of conserved motifs some residues were removed from the
alignment and indicated by the numbers in parenthesis: (15) =15 amino acids removed from mtPhil45-2, mtPhi93-2, and mtPhii5-1; (55/15) =55
amino acids removed mtPhi145-2, mtPhi93-2 as well as 15 amino acids from mtPhil15-1.

Epigenomic analysis of phage DNA reveals distinctive
methylation profiles

To determine the methylation specificities of the predicted
phage MTases, Phi93 (propagated on L. lactis strain
SM M), Phil45 (propagated on L. lactis strain SM M and

SM E in order to distinguish host-specific methylation
patterns) and Phil5 (propagated on L. lactis strains SM 13
and on strain SM 11) were subjected to SMRT DNA
sequencing [41,42], a real-time approach that allows for
the detection of modified nucleotides [6-methyladenine



Murphy et al. BMIC Genomics 2014, 15:831
http://www.biomedcentral.com/1471-2164/15/831

(6 mA), 5-methylcytosine (5mC) and 5-hydroxymethylcy-
tosine (5hmC)] in the DNA sequence based on the DNA
polymerase kinetics [42]. Several methods are available to
study DNA methylation such as bisulphite treatment,
HPLC, and microarrays, although it is challenging to
detect 6 mA methylation patterns using any of these
methods [43]. A certain minimum sequencing coverage
is necessary for methylome analysis and several recent
studies have demonstrated the advantages of the use of
SMRT sequencing technology [44-46]. The methylated
motifs detected were all shown to represent adenine-
specific methylation. Genome-wide motif analysis resulted
in the identification of several MTase recognition motifs
with the same motifs detected on two separate sequencing
runs (where phages had been propagated on different
strains). For both the Phi93 and Phil45 genomes, four
distinctly different methylation motifs, 5'-CCC°™A-3’,
5'-GT*™AG-3", 5'-CY°"AG-3" and 5'-GGW°"AG-3’
(W=AorT,Y=CorT, R=A or G), were identified in
the SMRT sequencing data. In addition, the methylation
motif 5'-G*™ATC-3'was identified for the Phi93 genome,
consistent with the presence of mtPhi93-dam, which
specifies a predicted DAM MTase (predicted to methylate
the adenine base in the sequence GATC). This methyla-
tion motif was, as expected, not identified on the genome
of either Phil5 or Phil45, which do not harbour a
predicted DAM-specific (orphan) MTase. Finally, a single
methylation motif identified on the Phil5 genome, 5'-
CC®™AG-3', was identified on both SMRT sequencing
runs. As a result, it is tempting to assign this motif to
the presumed methylation activity of the gene product
of mtPhil5-1, which is located within the replication
region of Phil5. A very similar motif was identified for
Phi93 and Phil45, 5'-CY®™AG-3" (Y =C or T), which
is consistent with the high level of sequence similarity
between the gene products of mtPhil45-2, mtPhi93-2,
and mtPhil5-1 (Figure 3) and which indicates that the
replication module-associated MTases of these three
phages are responsible for the 5'-CC°™AG-3’ motif
methylation.

MTases protect phage genomes from endonuclease activity
To determine whether the putative MTases encoded by
the phage genomes provide a protective effect, restriction
endonucleases were used to determine if their activity
was blocked by active methylation of phage DNA. The
5'-GATC-3" specific enzymes Dpnll (cuts unmethylated
DNA) and Dpnl (only cuts methylated DNA) were used
to determine if the product of mtPhi93-DAM is indeed
capable of protection of Phi93 genomic DNA against
restriction that targets a GATC recognition sequence.
As expected, Phi93 genome DNA was protected from
restriction by Dpnll, while no such protection was
observed against Dpnl (Figure 4 Ai). In contrast, genomic
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DNA of Phil45, which is not DAM methylated (Table 3),
exhibited the opposite endonuclease-mediated pattern
whereby the DNA was restricted by Dpnll and not by
Dpnl (Figure 4 Ai).

The methylation-sensitive, 5'-GGTGA-3"-recognizing
restriction enzyme Hphl, which exhibits an overlapping
target recognition sequence with the methylation motif
5'-GGWG™A-3" (where W represents either an A or a
T; and found in the genomes of Phi93 and Phil45), was
utilised to demonstrate that the protein products of
mtPhil45-1 and mtPhi93-1 protected genomic DNA of
phages Phil45 and Phi93 against Hphl-mediated restric-
tion. As expected, Phil45 and Phi93 phage DNA was not
digested by Hphl, while DNA Phil5 was clearly digested
by this enzyme (Figure 4 Aii).

To unambiguously link predicted MTase-encoding
genes to a specific methylation motif found on the
investigated phage genomes, mtPhi93-DAM, mtPhil45-1
and mtPhil45-2 were individually cloned into the low
copy plasmid pPTPi and heterologous expression studies
were performed using the nisin-inducible system (L. lactis
NZ9000 background) to determine if their encoded
products had the ability to methylate plasmid DNA and
protect against restriction. The genomes of Phi93 and
Phil45 contain identical genes encoding putative (orphan)
MTases (i.e. the gene products of mtPhil45-1 and
mtPhil45-2, are 99% and 100% identical to those of
mtPhi93-1 and mtPhi93-2, respectively), therefore the
Phil45-associated genes and their encoded products,
M.Phi1451 and M.Phil45II, were used as representatives
for these phage-associated MTases.

pPTPi derivatives were constructed to generate pPiM.93-
DAM (harbouring gene mtPhi93-DAM), pPiM145.1
(harbouring gene mtPhil45-1) and pPiM145.1 (har-
bouring gene mtPhil145-2) under the control of a nisin
inducible promoter. Following the growth of NZ9000
harbouring pPiM.93DAM with and without nisin, plas-
mid DNA was restricted with both Dpnl and Dpnll
pPiM.93DAM DNA isolated from NZ9000 following
nisin induction was protected from digestion by DpnlI,
but restricted by Dpnl. The opposite effect was observed
under conditions without nisin induction where plasmid
DNA was shown to be digested by Dpnll and not by
Dpnl. This shows that the plasmid-located GATC sites
were methylated by the expressed gene product of
mtPhi93-DAM and thus protected against digestion by
DpnlI (Figure 4 Bi).

Using a similar approach, it was hypothesised that if
either of the MTases encoded by the Phil45 genome is
associated with the methylation motifs mentioned above,
it would protect this phage from Hphl digestion. Along
with plasmid DNA from the empty vector, pPTPj,
plasmid DNA isolated from L. lactis NZ9000 strains,
harbouring either pPiM145.1 or pPiM145.2, and grown in
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Ai)  Phi93

Dpnl Dpnll

Phil45
Dpnl Dpnll

Bi) Dpnl Dpnll

NI 1

Aii)

Figure 4 DNA restriction analyses. A) i) Phi93 and Phi145 (DAM negative) cut with Dpn1 (cuts methylated GATC) and Dpnll (cuts unmethylated
GATQ). i) Phi145, Phi93 (MTase positive) and Phi15 (MTase negative) with Hphl. B) i) Plasmid pPiM.93DAM cut with Dpn1 (cuts methylated GATC) and
Dpnll (cuts unmethylated GATC) under induced (I) and un-induced (NI) conditions. ii) Plasmid pPTPi (P), pPiM.145] cut with Hphl under induced (I) and
un-induced (NI) conditions. iii) Plasmid pPTPi (P), pPiM.145Il cut with Hphl under induced () and un-induced (NI) conditions.

Hphl
Phil45 Phi93 Phil5

Bii) Hphl

P NI I

Biii) Hphl
P NI I

the presence or absence of nisin was restricted with Hphl.
Restriction endonuclease digestions showed that DNA of
plasmid pPiM145.1 isolated from NZ9000 grown in the
presence of nisin was protected from cleavage by Hphl,
whereas such DNA was not protected when isolated from
the same strain grown in the absence of nisin (Figure 4
Bii). The empty vector was digested, as expected, by Hphl.
Since plasmid DNA of pPiM145.2 isolated from NZ9000
following growth with and without nisin was not resistant
to Hphl cleavage, (Figure 4 Biii), it is tempting to ascribe
the non-palindromic methylome motif,-GGWG°®™A-3" to
the activity of the gene product of mtPhil45-1 and by
default, to that of mtPhi93-1.

Conclusions

To our knowledge, this is the first reported use of SMRT
sequencing technology to identify MTases encoded by
phage genomes and the first identification of functional
MTases associated with the lactococcal 936-type phages
(summarized in Table 3). The protective effects provided

by these proteins indicate that these particular isolates
have aquired these M Tase-encoding genes as an enhanced
fitness mechanism. The phages were isolated from an
undefined mixed starter culture environment (containing
40+ bacterial strains), which may harbour an extensive
array of R-M systems. Due to the selection pressure being
imposed on infecting phages by such systems, phages
may have aquired these methyltransferases to defend
themselves from host-encoded R-Ms, a trait not previ-
ously observed in 936-type dairy phages. Developments
in the SMRT sequencing platform and analysis tools
has permitted a novel approach to defining methylation
sites within phage and bacterial genomes and in this study
has complemented traditional approaches to defining
methylation activity. The acquisition of such genetic ele-
ments highlights the ever-changing nature and plasticity
of these phage genomes and warrants continued genome
sequence analysis of phages as novel genetic elements
continue to emerge and enhance our understanding of
phage evolutionary processes.
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Methods

Bacterial strains, plasmids and phages

Bacterial cultures, plasmids, phages and primers used in
this study are listed in Table 1. Phages were propagated
on their respective hosts as described previously [23]
and resulting phage lysates were maintained (10 mL) at a
titre of approximately 108'° PFU (plaque-forming units)
mL™" at 4°C. L. lactis cultures were routinely grown in
M17 broth (Oxoid, Hampshire, United Kingdom) supple-
mented with 0.5% w/v lactose (LM17) or glucose (GM17)
at 30°C. E. coli strains were routinely grown in Luria
Bertani (LB) broth. Growth medium (LM17, GM17 or LB)
for strains harbouring plasmid pPTPi or its derivatives
were supplemented with 10 ug mL™" tetracycline (Sigma,
Co. Wicklow, Ireland) for plasmid maintenance.

Whole genome sequencing

An equal volume of RNase and DNase-treated, CsCl-
purified phage preparation was added to an equal volume
of disruption buffer (prepared by the addition of 7.2 pL
2-mercaptoethanol to 1 mL of GTC stock solution
[22.5 mL 6 M guanidium thiocyanate solution (Sigma),
6.8 mL H,0, 1.76 mL sodium citrate (0.75 M), pH 7 and
2.64 mL 10% sarkosyl]). Following a 30 min incubation at
room temperature, an equal volume of phenol:chloro-
form:isoamyl alcohol (25:24:1) (Sigma) was added, mixed
and subjected to centrifugation at 12,300 x g for 5 min.
This extraction was repeated, after which DNA present in
the aqueous phase was precipitated by the addition of 2.5
volumes 96% ice-cold ethanol and 0.1 volume sodium
acetate (pH 4.8) and collected by centrifugation at 12,300
x g for 15 min. The obtained pellet was gently washed in
70% ethanol, allowed to air-dry and finally resuspended in
50-65 pL of TE buffer [23]. Whole genome sequencing
was conducted by Macrogen Inc (Korea) using a GS-FLX
Titanium sequencer. An average 233-fold sequencing
coverage was obtained using pyrosequencing technology
on a 454 FLX instrument. The files generated by the 454
FLX instrument were assembled de novo with GSassem-
bler (454 Lifesciences, Branford, CT). To ensure correct
assembly and to resolve any remaining base conflicts,
selected regions of the phage genomes were amplified by
PCR and subjected to Sanger sequencing (performed by
MWG, Ebersberg, Germany).

Phage genome annotations

Open reading frames (ORFs) were automatically predicted
using the Heuristic Approach for Gene Prediction [47].
Protein-encoding regions with a minimum size of thirty
amino acids were selected and the annotation manually
curated by predicting the ribosomal binding site and the
start and stop codons using the visualization software,
Artemis (v15.0.0.1) [48]. BlastP was employed to provide
preliminary functional annotation data. Putative (orphan)
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MTases were identified using REBASE [49] and HHpred
[50] and comparative analysis was performed using the
MegAlign program of the DNASTAR software package
(DNASTAR, Madison, WI, USA).

SMRT DNA sequencing for methylome analysis

To investigate the methylation sites of phage-encoded
(orphan) MTases, 10 mg mL ™" of phage DNA (a total of
10 mg) was prepared as above; phage Phi93 was propa-
gated on L. lactis strain SM M. To take host-specified
methylation activities into account, DNA was isolated
from Phil45, which had been propagated on strain SM
M or strain SM E (strains were previously shown to have
different plasmid profiles and phage infection profiles [23]),
while Phil5 was propagated on strain SM 11 or strain SM
13. Whole genome sequencing was performed on a Pacific
Biosciences RS2 machine with C2/P4 chemistry at the Func-
tional Genomics Centre, Zurich. The results were analysed
with SMRTanalysis 2.0 software (http://pacbiodevnet.com/)
using protocol “RS_Motification_and_Motif Analysis.1”
with default settings. For the detection of some methyla-
tion patterns, the Minimum Modification QV set to the
more stringent setting of 60. The library was prepared
according to the manufacturer’s instructions (PacBio,
Germany).

MTase cloning

For the construction of pPTPi derivative plasmids,
pPiM.93DAM, pPiM.145] and pPiM.1451I, DNA fragments
encompassing the coding sequences of mtPhi93-dam
(corresponding to locus tag Phi93_04), mtPhil45-1 and
mtPhil145-2 (corresponding to locus tags Phil45_02 and
Phil45_37, respectively) were generated by PCR amplifi-
cation using the primers listed in Table 1 and employing
KOD high fidelity polymerase (Millipore, Cork, Ireland).
Each of these amplicons was cloned into pPTPi, using
E. coli as a cloning host (DAM ~/DCM ~ K12 for
mtPhi93-dam, and EC101 for mti451 and mt1452) and
selected on LB agar plates supplemented with 10 ug mL™
tetracycline at 37°C. Sanger sequencing was employed to
verify the integrity of each of the generated constructs
(MWG Eurofins, Germany) using relevant plasmid-
associated primers (Table 1) [51].

MTases protein expression, plasmid isolation and

DNA restriction

Plasmid constructs were isolated from E. coli and trans-
formed into L. lactis NZ9000 for protein expression using
the Nisin-Inducible Expression System (NICE) [52]. L.
lactis NZ9000 harboring pPiM.93DAM, pPiM.1451 and
pPiM.14511 were grown overnight at 30°C in GM17 broth
supplemented with tetracycline at 10 pug mL™. A 2%
inoculum of L. lactis NZ9000 harboring pPiM.93DAM,
pPiM.1451 and pPiM.145I1 overnight bacterial cultures
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was transferred into fresh 10 mL GM17 containing
5 pug mL™" tetracycline and incubated at 30°C. When
the optical density at 600 nm had reached 0.2, protein
expression was induced by the addition of Nisaplin™ at a
concentration of 100 ng mL ™", Un-induced controls were
incubated as above without the addition of Nisaplin™.
Following a 3 h incubation at 30°C, the induced cells
harboring pPiM.93DAM, pPiM.1451 and pPiM.145II
were harvested by centrifugation (5, 580 x g, 10 min)
and subsequently incubated in protoplast buffer (20 mM
Tris—HCl, pH 7.5, 5 mM EDTA, 0.75 M sucrose,
10 mg mL™" lysozyme and 50 units mL™" mutanolysin;
Sigma) at 37°C for 30 min. Each sample was centrifuged
at 1,700 x g for 5 min and plasmid preparations were
performed using the GeneJet plasmid miniprep kit as
described by the manufacturer (Thermo Scientific, Dublin,
Ireland). Restriction endonuclease digests were performed
on phage DNA, plasmid DNA and bacterial genomic
DNA using Dpnl and Dpnll (Roche, United States), or
HphI (NEB, United States), all according to the manufac-
turer’s instructions.

Nucleotide sequence accession numbers

All the sequences generated have been submitted to Gen-
Bank database with the following accession numbers: Phil5
[GenBank: KM091442], Phi93 [GenBank: KM091443] and
Phil45 [GenBank: KM091444].
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Additional file 1: Table S1. Putative predicted ORFs of the 936-type
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coordinates and predicted function of Phi93, Phi15 and Phi145.
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