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Abstract

aneuploid chromosomes (nine cell lines).

Background: The crisis of Misidentified and contaminated cell lines have plagued the biological research
community for decades. Some repositories and journals have heeded calls for mandatory authentication of human
cell lines, yet misidentification of mouse cell lines has received little publicity despite their importance in sponsored
research. Short tandem repeat (STR) profiling is the standard authentication method, but it may fail to distinguish
cell lines derived from the same inbred strain of mice. Additionally, STR profiling does not reveal karyotypic changes
that occur in some high-passage lines and may have functional consequences. Single nucleotide polymorphism
(SNP) profiling has been suggested as a more accurate and versatile alternative to STR profiling; however, a
high-throughput method for SNP-based authentication of mouse cell lines has not been described.

Results: We have developed computational methods (Cell Line Authentication by SNP Profiling, CLASP) for cell line
authentication and copy number analysis based on a cost-efficient SNP array, and we provide a reference

database of commonly used mouse strains and cell lines. We show that CLASP readily discriminates among cell
lines of diverse taxonomic origins, including multiple cell lines derived from a single inbred strain, intercross or wild
caught mouse. CLASP is also capable of detecting contaminants present at concentrations as low as 5%. Of the 99
cell lines we tested, 15 exhibited substantial divergence from the reported genetic background. In all cases, we
were able to distinguish whether the authentication failure was due to misidentification (one cell line, Ba/F3), the
presence of multiple strain backgrounds (five cell lines), contamination by other cells and/or the presence of

Conclusions: Misidentification and contamination of mouse cell lines is potentially as widespread as it is in human cell
culture. This may have substantial implications for studies that are dependent on the expected background of their cell
cultures. Laboratories can mitigate these risks by regular authentication of their cell cultures. Our results demonstrate
that SNP array profiling is an effective method to combat cell line misidentification.

Background

For decades, misidentified and contaminated cell lines
have been a high-profile cause of wasted research effort
and funding, and false claims in the literature [1-3]. In re-
cent analyses of human and mouse cell lines, at least 13%
and 4% of samples, respectively, were falsely identified
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[4,5]. There is a growing movement to require the valid-
ation of all cell lines used in sponsored research [3], and
some journals and repositories have heeded the call [1,2].
Multiplex short tandem repeat (STR) profiling is the
current standard for authentication of human cell lines
[6], and also has been recently applied to the mouse [7].
While these assays are capable of discriminating between
genetically distinct individuals and inbred strains, the
long-term stability of STRs in cultured cells is in ques-
tion [8]. Furthermore, STR assays may lack the reso-
lution to discriminate between cell lines derived from
closely related inbred strains [5], or to identify partial
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contamination, such as outbreeding that occurred prior
to derivation of the cell line. Finally, STR markers cannot
reliably identify chromosomal copy number aberrations
that occur in culture and may have functional implications
[9-11]. SNP-based assays are an attractive supplement or
alternative to STR profiling that have the potential to
address these limitations [8,12-15]. Here we describe a
comprehensive and cost-efficient SNP-based solution to
the problems of mouse cell line misidentification, cross-
contamination and copy number aberration.

Results

Genotype quality and reproducibility

We genotyped 117 samples from 99 commonly used
mouse-derived cell lines (Additional file 1) and 503 ref-
erence samples from 245 distinct genetic backgrounds,
including most commonly used inbred strains and a
broad sample of outbred individuals (Additional file 2).
Genotyping was done using two generations of the Mouse
Universal Genotyping Array: MUGA [16] (7,800 markers)
and MegaMUGA [17] (78 k markers). MegaMUGA is
available commercially, and will soon transition to the
third-generation GigaMUGA array (144 k markers) that is
under development (JPD, FPMV, Andrew P Morgan,
Leonard McMillan, Ping Fu, Katy Kao unpublished).

Considering only the 6,212 SNP markers in common
between the two arrays, reference samples had a mean
call rate of 94.6%. As expected, call rates varied widely
(range: 52.1% — 99.5%) and were dependent on the spe-
cific and subspecific origin of the sample [18] (Additional
file 3). When considering only Mus musculus-derived
samples, call rates for reference samples (mean: 95.5%,
range: 91.7 — 99.5%) were significantly higher (t-test, p =
0.001) and less variable (F test, p = 1.8x107°) than for cell
line samples (mean: 94.1%, range: 71.0 — 98.6%).

We measured genotype reproducibility as the fraction
of markers that was fully consistent across replicates.
The mean reproducibility was 0.968 (39 strains, range:
0.924 — 0.997) and 0.986 (44 strains, range: 0.970 — 0.997)
for MUGA and MegaMUGA, respectively. We chose the
conservative value of 0.032 for the error rate that we used
in Probability of Incorrect Assignment (PIA) computa-
tions (see Methods); however, we expect that the true
error rate is much lower (<0.001) when considering only
the markers that pass the strict quality thresholds de-
scribed below.

Development of an assay for mouse cell line authentication
We developed an R package called Cell Line Authentica-
tion by SNP Profiling (CLASP, Additional file 4), which
is described in the Methods. We used the assay develop-
ment function of CLASP to select markers that met the
following criteria: 1) on an autosome; 2) call rate > 80%;
3) minor allele frequency >0 (i.e., not fixed for a single
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allele); 4) fully consistent across all replicate samples (re-
gardless of genotyping platform); and 5) either not in
linkage disequilibrium (LD) with adjacent markers (<
0.25) or a different strain distribution pattern (SDP)
from any linked marker. This yielded a set of 3,552 high-
quality informative markers. The markers were evenly
spaced across the entire autosome. Inter-SNP distances
followed a Poisson distribution with median of ~500 kb
(Additional file 5). Although 23% of adjacent marker
pairs were in LD, the mean r° value was low (0.156,
Additional file 6) and no pairs had identical SDPs.

Among inbred strain pairs, the mean alignment score [8]
(fraction of markers with identical genotypes) was 0.495
(range: 0.215 — 0.999, Figure 1 and Additional file 7).
Nearly all of the 12,090 pairwise comparisons were differ-
ent at 10 or more markers (corresponding to a PIA <
1.1x107"%). The 11 pairs with fewer than 10 differences
consisted of groups of substrains (BALB/c, C57BL/6,
C3H/He, DBA/1, SJL), which only differ due to genetic
drift, and two wild M. m. castaneus mice (IN17 and IN47)
that were trapped at nearby sites. We note that the ability
to differentiate between closely related substrains was a
key consideration in the design of the MegaMUGA array.
Using the full set of MegaMUGA markers, we compared
two or three different substrains from each group that our
assay had trouble differentiating and found that any pair
differed at a minimum of 45 markers (Additional file 8).

There were nine individuals from three outbred stocks
among our reference samples, including four replicates
each from the CD-1 and SW stocks. These samples were
not considered during the third step of assay development
(consistency check). Instead, we identified a subset of
1,652 markers that were consistent across replicates of
outbred lines. The distribution of alignment scores for
comparisons between the outbred stocks and the inbred/
wild mice (mean alignment score: 0.564, range: 0.204 —
0.953, Additional file 9) was similar to that among only
the inbred/wild mice.

Pairwise analysis of cell lines

The mean alignment score for all pairwise comparisons
among the 117 cell line samples was 0.501 (range: 0.116 —
1.0, Figure 1). Between pairs of samples with the same cell
line designation, the absolute number of genotype differ-
ences was relatively high (mean: 21.3). This reflects the
fact that we obtained samples from multiple repositories
and/or at different passages, and suggests that there is
genomic instability in some cell lines. In contrast, three
replicates from the same culture (TC-1, Beverly Koller
lab) were identical to each other (alignment scores of 1.0).

Validation of strain background
We created 6,105 in silico intercross samples by imput-
ation of genotypes for all pairwise combinations of 111
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Figure 1 Genotypes uniquely identify mouse strains and cell lines. A) Density plots of alignment scores for all pairwise comparisons
between reference samples (purple) and between cell lines (green), and maximum alignment scores for each cell line compared to all reference
samples (orange). Alignment scores range from 0.0 (no genotypes in common) to 1.0 (genetically identical). High identity in some pairwise cell
line comparisons is due to inclusion of replicates. B) Heat map of all comparisons between cell lines (columns) and reference samples (rows).
Columns are ordered based on clustering of cell lines by genotype, as shown in the dendrogram at the top of the plot (branch lengths
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M. musculus reference samples, which yielded 21.7 M
additional genotypes. Next, we identified the best align-
ment score for each cell line when compared to all refe-
rence samples (primary tissue and in silico, mean: 0.927,
range: 0.665 — 1.0, Figures 1 and 2). On average, the
best match had 109 fewer genotype differences than
any other reference sample (range: 1 — 1059), correspond-
ing to a mean PIA of 1.15x107°% Castro et al. (2012) sug-
gest that alignment scores of 0.96 or greater are indicative
of identical samples. We found that two-thirds of cell line
samples matched a reference sample with an identity of at
least 0.96 (Additional file 1). Of these, the best match for
all but one cell line was the reported strain of origin, or a
closely related strain in the event that the reported back-
ground was absent from our database or was imprecisely
specified (e.g., a family of strains was reported rather than
a specific substrain). The single exception, Ba/F3, most
closely matched C3H/He]J, not BALB/c as was reported.
We communicated this discrepancy to RIKEN, a distribu-
tor of the Ba/F3 cell line, and they confirmed our finding
[19]. They also compared the cell morphology of Ba/F3
against other C3H-derived cell lines and found that Ba/F3
was a distinct cell line rather than the result of cross-
contamination.

Most cell lines with low alignment scores were derived
from outbred stocks or wild-caught individuals, and thus

were not expected to closely match any reference sample
in our database. Each cell line derived from an outbred
stock best matched an outbred stock reference sample
with a mean identity of 0.86 — similar to the pairwise
identity of replicate outbred reference samples. Each
wild-derived cell line best matched the reference sample
that was phylogenetically closest to the mouse of origin
[20,21]. We were unable to identify a single best match-
ing reference sample for 14 cell lines (Additional file 1).

Backcrossing and introgression

We attempted to identify the reason why our assay failed
to identify a match for the 14 cell lines noted above.
First, we tested whether the mismatched genotypes were
due to the contribution of a second genetic background.
We identified five lines of reported intercross origin
(AtT-20, B6x129-1, CAKB3, IM3 and OB1xB3) that ap-
pear to have been backcrossed prior to derivation of the
cell line (Figure 2). For these lines, both the best overall
match and the best secondary match were to one or both
of the reported intercross background with alignment
scores of 0.7 or greater (OB1xB3 had a slightly lower align-
ment score due to known contamination by Chinese
Hamster Ovary feeder cells, personal communication from
Rosann Farber, Additional file 1). Additionally, these
lines exhibited a non-random genomic distribution of
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Figure 2 Mouse cell lines have contamination and widespread aneuploidy. Neighbor-joining tree of 117 cell line samples based on
genotypes from 3,552 SNP markers. Node colors show the support for each clade, based on 100 resamplings (light blue = lower support, dark
blue = higher support). Samples labeled in red are from the Ba/F3 cell line, which was reported to be of BALB origin but is actually derived from
C3H. Asterisks denote (*) cell lines known to be derived from cancer tissue, and (**) cell lines of unknown origin. The four circular tracks (from
inside to outside) show alignment score (blue), presence of a secondary genetic background (orange), cross-contamination level (purple) and
number of chromosomes with evidence of copy number change (red =loss, green = gain). Labels identify groups of cell lines derived from
classical inbred strains (129, A, BALB, C3H, C57BL, DBA), intercross (C57BL Hybr = hybrid between C57BL and another background, CCF1 =
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intercross between two Collaborative Cross (CC) founder strains), Swiss mice (including commercial outbred stocks), wild-derived strains of M. m.
musculus or M. m. castaneus origin (M. m. mus, cas), wild mice on non-M. musculus origin (other species), and other backgrounds (Ma/MyJ and
PL/J are classical inbred strains, IL6211 is a CC line, and JR4 is derived from a 129xCAST hybrid).

discordant markers, which is indicative of introgression
prior to the derivation of the cell line rather than con-
tamination [22] (Additional file 10). This left nine un-
matched cell lines (Additional file 1).

Cross-contamination

A cell culture that is contaminated by cells of a different
genetic background (Figure 3A) can be distinguished from
an uncontaminated sample (Figure 3B) by visual ins-
pection of their B allele frequencies (BAFs, the ratio of
hybridization intensity values for the two allelic probes
[23]). A contaminated sample exhibits a large number of
markers with allelic ratios falling outside of the expec-
ted ranges. We developed a computational approach to

estimate the degree of contamination, if any, in each cell
line (see Methods). Our method was based on intensity
distributions for each marker that we computed [23] using
our reference samples. We derived the BAF thresholds for
homozygous and heterozygous calls from our reference
intercross samples (17, = 0.02 and T}, = 0.46).

We modeled the effect of contamination at different
proportions on allelic ratios using a dilution series (ratios
from 1:1 to 200:1) between Phoenix (an uncontaminated
cell line of 129S6/SvEvTac origin) and a feeder cell line of
unknown origin (which we treat as the contaminant).
We found that the pairwise alignment scores between
the pure Phoenix cells and the mixed samples decreased
exponentially with the concentration of the contaminant
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Figure 3 CLASP identifies contamination and copy number aberration in cell lines. Visualizations of genome-wide intensity distributions for
A) a sample with cross-contamination (W4/12956); B) a normal sample from primary tissue (CAST/EiJ x A/J); and C) an aneuploid sample (OB1xB3).
Top tracks: B allele frequencies. Each data point represents a marker and is colored by genotype call, AA (blue), AB (purple) or BB (red). Middle
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than the mean, respectively. Markers colored red have values lying outside the range [-2,2]. Lower tracks: copy number intervals identified by
genoCNA. Colors represent the different HMM states (see Sun et al. [24]).
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(Additional file 11). The contaminated samples exhibited
a consistent deviation from the expected BAF distribution
(Additional file 12A), and there was a strong correlation
between the concentration of the contaminant and the
magnitude of the deviation (r = 0.988).

We estimated the degree of contamination in each cell
line sample by fitting their mean deviations from the
expected BAF distribution to a model derived from the
dilution series (Additional file 12B). Of the nine un-
matched samples, our method predicted that eight were
cross-contaminated at ratios between 1:6 and 1:1 (Figure 2
and Additional file 1). We estimate that the minimum
level of contamination that is required to observe a signifi-
cant deviation from the expected BAF distribution is
about 0.1 (1:10 ratio) for MUGA and 0.05 (1:20 ratio) for
MegaMUGA.

Copy number aberrations

Deviations from the expected BAF distribution may also
be caused by copy number changes. For example, when
one of two homologues is duplicated (trisomy), the al-
leles on the duplicated chromosome will be present at
twice the frequency as those on the unduplicated chro-
mosome; therefore, at heterozygous markers, a 2:1 ratio
would be observed (BAF = 0.33 or 0.66). Detection of copy
number variation in cell lines is complicated by two fac-
tors. First, a cell culture may be heterogeneous for a copy
number variant, leading to a less intense signal than if the
variant was fixed. A variant that is present only in a small
fraction of cells may not produce a change in the intensity
signal that is distinguishable from noise. Second, genomic
regions in cells that have not undergone G1 arrest prior to
DNA extraction may vary in the number of alleles de-
pending on the cell cycle phases they are undergoing.

We used the genoCNA algorithm [24] to identify copy
number aberrations (CNAs) in our cell line samples
(Additional file 1). We found that mean predicted copy
numbers less than 1.5 and greater than 2.1 were indi-
cative of substantial negative and positive Log R ratios
(LRRs, the log transformation of the ratio between ob-
served and expected intensities [23]), respectively, across
a large portion of the chromosome. About half of cell
line samples were predicted to have some degree of an-
euploidy, including 24% and 62% of cell lines derived
from normal and cancer tissue, respectively (Figure 2).
In aggregate, there were 192 chromosomes with evi-
dence of copy number change, roughly evenly split be-
tween loss and gain events (89 and 103, respectively,
Figure 4). In most cases, however, only a fraction of the
cell population appeared to be affected. Only 24 chro-
mosomes showed evidence of complete deletion (copy
number less than 1.25) or gain (copy number greater
than 2.75) including three chromosomes exhibiting loss or
gain of multiple copies (Additional file 1 and Figure 3C).
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Figure 4 Aneuploidy is pervasive in cell culture. Frequency
with which each chromosome was classified by genoCNA as
being below our threshold for chromosome loss (mean copy
number 1.5, dark gray) or above our threshold for chromosome
gain (2.1, light gray).

All autosomes exhibited CNA at some level (mean: 10.1
events), although the distribution of events per chro-
mosome was non-uniform (chi-squared test, p =0.02,
Figure 4).

We verified all of the predicted CNAs by visual inspec-
tion of intensity plots (Figure 3). In most cases, a mean
copy number outside our specified thresholds correlated
with a chromosome-wide LRR shift that was distinguish-
able from background noise. In a small number of cases,
we identified chromosomes that were likely aneuploid,
albeit at a low frequency within the cell culture, but were
not identified by the algorithm (false negatives, highlighted
in yellow in Additional file 1). In several instances, only a
portion of the chromosome exhibited CNA (i.e., structural
variation, rather than whole-chromosome loss or gain). Fi-
nally, we assessed that false-positives were rare and oc-
curred mostly in the context of samples that exhibited
cross-contamination.

Of the nine unmatched cell lines, five had multiple ob-
vious copy number change events (mean: six events per
sample, range: 2 — 10). These five lines were also those
that had the least evidence for contamination. Two of
these were derived from tumors (Ehrlich-Lettre Ascites
Strain E and Y-1), and so the presence of aneuploidy was
not surprising. The other three lines (Nmu3li, SV40 MES
13 and YAMC) were derived from primary tissue, thus the
observed aneuploidy likely occurred in culture. In sum-
mary, the combination of genotype and intensity-based
analysis enabled us to discriminate between multiple pos-
sible reasons for failures to verify cell line backgrounds.

Discussion
We have compiled a database of SNP profiles for hun-
dreds of commonly used mouse inbred strains and cell
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lines based on the MUGA genotyping array, which is
commercially available and affordable (~US$100). The
current version of the array (MegaMUGA) has an order
of magnitude greater density than the initial version. Al-
though data from both arrays are compatible, regenoty-
ping of the samples used in this study on MegaMUGA
would provide at least 1-2 orders of magnitude greater
discriminatory power. We provide software (CLASP) that
includes functions to manage the genotype database, per-
form fast and accurate identification of strain background
and authentication of cell line identity, and recognize con-
taminants and CNAs. Although we developed this method
for the purposes of cell line authentication, we expect that
it will have other applications, such as the monitoring of
mouse stocks used in biomedical research [25] and foren-
sics applications (CLASP can easily accommodate human
genotype data).

We found that cell lines have higher call rate variability
and lower reproducibility compared to matched reference
samples. This variability may be due to karyotypic rear-
rangements or other mutations accumulated in culture,
which can alter hybridization intensities [18] and thus
produce genotype calls that are different from one passage
to the next. Alternatively, variability may be due to accel-
erated DNA replication (which creates unbalanced allelic
ratios) in cell lines relative to primary tissue. It has been
shown that DNA isolation procedures can greatly affect
the quality of downstream data, and that inducing G1 ar-
rest in cells prior to DNA extraction can improve results
[26,27]. Finally, converting continuous intensity data to
discrete genotype calls reduces noise but also discards im-
portant information. Recent advances in methods for
working directly with intensity data will enable better dis-
criminatory power of array-based assays [28].

We found that, while most cell lines correctly matched
their reported strain(s) of origin (98/99), a substantial frac-
tion of cell lines had evidence of cross-contamination
and/or aneuploidy. Our finding that 42% of cell lines
tested showed evidence of aneuploidy (Figure 2 and
Additional file 1) was consistent with previous findings
in ES cells [10,29]. Furthermore, aneuploidy was evident
in 24% of cell lines derived from normal tissue, indicating
that it is a widespread problem in cell culture and not sim-
ply a feature of cancer-derived cell lines.

We acknowledge that there are inherent limitations in
applying to our data set algorithms that were designed
to model human tumor data sets of 100,000 or more
markers. First, the relatively low density of the MUGA
platform amplified the effect of noise. The genoCNA algo-
rithm identified many more transitions between different
copy number regions in cell lines genotyped on MUGA
than in the same cell lines genotyped on MegaMUGA.
Second, mouse cell lines may be derived from inbred
strains, which have significantly greater homozygosity than

Page 7 of 11

what is expected in humans. Third, no algorithm is
currently capable of simultaneously modeling sample
heterogeneity, cross-contamination and copy number
aberration, all of which may be present in a non-clonal
cell culture. While the output from genoCNA corre-
sponded well with our visual scoring of intensity plots
(Figure 3), we did not perform cytogenetic verification
of any predicted CNAs. Therefore, predicted CNAs
should be considered suggestive that further investiga-
tion is necessary.

Conclusions

Misidentification and contamination of mouse cell lines
is potentially as widespread as it in human cell culture.
This may have substantial implications for studies that
are conditioned on the expected genetic background of
their cell cultures. Laboratories can mitigate these risks
by regular authentication of their cell cultures. Our re-
commendations for future use of SNP profiling in cell
line authentication are as follows. Laboratories should
test their cell cultures periodically and report on changes
that occur between passages. Ideally, a central database
will be maintained and made accessible using the client—
server capabilities of CLASP. Database maintainer(s)
should obtain multiple samples of each cell line from in-
dependent labs and determine the natural variability in
each cell line in order to establish cell line-specific thresh-
olds for identity. Journals and funding agencies should re-
quire proof of authenticity for each cell line used in a
study as a prerequisite for consideration. In addition, we
encourage increased study of the functional impact of an-
euploidy and structural variation in cell lines. While estab-
lishing the authenticity of cell lines by genetic means is an
important and necessary step in establishing the validity
of research findings, we hypothesize that it may not be
sufficient and that verifying the structural integrity of the
genome may also be necessary.

With the wide availability of STR- and SNP-based profil-
ing, the scientific community has to the tools to resolve
the long and hard-fought campaign to end the “scandal-
ous” use of misidentified human cell lines [30]. We expect
that the resources we provide here will help to extend
these advances to the mouse and other model organisms.

Methods

Biological samples

We obtained 117 samples from 99 different cell lines in
pelleted form (Additional file 1). For three cell lines (Ba/F3,
E14.Tg2a and NIH/3 T3) we obtained samples from more
than one source. DNA or tissue was obtained from a total
of 245 distinct genetic backgrounds (Additional file 2).
These included material from 89 classical inbred strains,
80 intercrosses (offspring of a cross between two inbred
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strains), 28 wild-derived inbred strains, 3 outbred stocks
and 45 wild-caught mice.

DNA isolation and preparation

DNA isolation was performed using the QiAmp DNA
Micro Kit (Cat: 56304). Briefly, cell pellets were incu-
bated overnight in 300 pl of lysis buffer at 65°C. The
supernatant was transferred into a mixture of 300 pl of
isopropanol and 0.5 pl of glycogen and DNA was iso-
lated by centrifugation. After discarding the supernatant,
the DNA pellet was washed in 70% ethanol and then re-
suspended in deionized water, vortexed and incubated at
55°C for one hour. The DNA concentration was deter-
mined using an ND8000 (Nanodrop) and adjusted to be-
tween 50-150 ng/pl. Samples were then randomized,
and 10 pl from each sample was loaded into a 96 well
plate for genotyping.

SNP genotyping

All genotyping was done using two versions of the Mouse
Universal Genotyping Array (MUGA). The initial MUGA
array had 7,810 evenly spaced SNP markers. The current
version of the array (MegaMUGA) has 77,808 SNP
markers. Array processing and genotype calling were
performed by GeneSeek/Neogen (http://neogen.com) as
previously described [16].

Genotype QC was performed by clustering H and N
call rates by sample type and species/subspecies and
removing outliers. For reference samples, outliers were
defined as being outside 1.5 times the interquartile range.
For cell lines, we could not estimate the expected H and
N rates; therefore, we eliminated only extreme outlier
samples by visual examination. Second, we calculated the
Kolmogorov-Smirnov statistic (D) of the sum intensity
distribution for each sample compared to a reference dis-
tribution estimated from a larger set of reference samples.
The sum intensity for each bi-allelic probe is /=X +Y,
where X and Y are the normalized intensity values for the
two alleles. Outliers for D fell into two categories: those
with left-shifted distributions and those with normal dis-
tributions but a “spike” at I ~ 0. The former are recognized
as genotyping failures and were eliminated, while the later
were associated with species other than M. musculus. The
“spike” in the later distributions was expected, as it re-
presented probe sequences that were not sufficiently con-
served in the other species and thus resulted in the
absence of hybridization signal.

After eliminating poor-quality arrays, our database
contained genotypes for 620 samples. For ease of data
integration and interpretation, only the 6,212 autosomal
SNPs common to both arrays were used for analysis;
however, the complete set of genotypes is available in
the database.
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Dilution series

We isolated DNA from pellets of the Phoenix cell line
(Anne Latour and Beverly Koller unpublished), and of a
mouse embryo fibroblast “feeder” cell line of unspecified
M. musculus background. We normalized the concen-
trations of both samples to ~15 ng/pl using a Qubit
Fluorometer (Invitrogen). We then created seven mixtures
of Phoenix/Feeder with final volumes of 100 ul each, as
follows: 100/0, 90/10, 75/25, 50/50, 25/75, 10/90, 0/100.
These mixtures were genotyped as described above.

CLASP

A complete description of the CLASP framework is avai-
lable in the documentation for the R software package.
Briefly, CLASP provides three main functions that are
agnostic of the details of the origin or coding of the
genotype data (Additional file 4). 1) Genotype data are
recoded and imported along with sample and SNP anno-
tations into an SQLite relational database (http://www.
sqlite.org). Optionally, the database can be expanded to
include in silico intercrosses created by imputation from
pairwise combinations of reference sample genotypes. 2)
Genotype data are analyzed to identify the subset of SNP
markers that are most reliable and informative for au-
thentication purposes. Reliability is determined by the
consistency of genotypes across replicate samples, while
informativeness is determined by allele frequencies. This
step is controlled by many parameters, including cri-
teria for filtering based on Hardy-Weinberg equilibrium
(HWE) and linkage disequilibrium (LD). 3) All reference
and cell line sample data are analyzed simultaneously to
identify the best match for each experimental sample.
Additionally, when hybridization intensity data is available,
CLASP can utilize the genoCNA algorithm [24] to identify
allelic imbalances and copy number changes in cell lines.

Samples from outbred mice require special consider-
ation because, although each outbred individual is ge-
netically unique, individuals are not uniquely identified.
CLASP does not exclude markers that are inconsistent
across samples of the same outbred line, and instead
maintains a separate list of the subset of markers that
are consistent within outbred lines. This smaller list of
markers is only used when comparing an outbred line
against another sample.

Authenticated experimental samples may be added to
the database to serve as references in future applications
of the assay. Multiple databases can be merged, enabling
labs to share results easily. Alternately, the software can be
configured to run in a client—server environment to en-
able a central authority to maintain a canonical database.

Statistics
For forensic applications, Random Match Probability
(RMP) [31] is the standard measure of an assay’s
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discriminatory power. However, RMP is an insufficient
metric when the assay must discriminate between distinct
yet highly related genetic backgrounds (e.g. sister lines of
inbred mouse strains). Consider, for example, a set of
1000 unlinked markers. The RMP for this marker set
is 3x107100 (essentially zero). However, two sister
lines that differ at only 0.1% of markers will have hap-
lotypes that differ at only a single marker. The ability
to discriminate between these two lines depends en-
tirely on the probability that the observed haplotypes
reflect the true haplotypes with complete accuracy.

We propose a new metric, the Probability of Incorrect
Assignment (PIA). PIA depends on two variables: the
error rate of the genotype data (E) and a pairwise haplo-
type difference matrix (H) for all samples being compared.
The PIA for a pair of samples (;, j) is the probability that
all of the genotypes that differentiate two samples have
been incorrectly ascertained. CLASP assigns each match a
PIA that is simply the maximum PIA for that sample
compared to all the other samples in H:

PIA(i) = max (EH [’91’1)

For each match result, CLASP also returns an align-
ment score, which is simply the percent haplotype iden-
tity between the experimental sample and the closest
matching reference sample. When the alignment score
falls below a specified threshold, CLASP attempts to iden-
tify the contribution of a second genetic background (due
to hybridization, introgression or contamination) using
only the genotypes that are inconsistent with the closest
matching reference sample.

Intensity normalization

Hybridization intensity data is subject to multiple classes
of noise that can be attenuated by normalization proce-
dures. We employed two normalization steps for BAFs
and LRRs (these values can be computed automatically
by Illumina BeadStudio software, but they were not avail-
able in our data files). First, we used thresholded quantile
normalization (tQN) to correct for dye bias, which is spe-
cific to the Illumina platform [32]. Second, we adjusted for
“genomic waves” — variations in intensity that are caused
by differences in local DNA quantity and are indicated by
GC content [33] — using the genomic_wave.pl script of
PennCNYV [34].

Allelic imbalance

BAFs are in the range [0,1] and are normally distributed
(with standard deviation determined by the sample
noise) around 0, 0.5 and 1 when alleles are present in
the expected ratios of 2:0, 1:1 or 0:2 for AA, AB and BB
genotypes, respectively. When a contaminant introduces
additional alleles and has a different genotype than the
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host sample, it changes the allelic ratio. If the degree of
contamination is high enough, the deviation can be dis-
tinguished from background noise.

Given thresholds 7}, and T, representing the normal
range of homozygous and heterozygous BAF values, we
first transform the BAF value for each marker. Next, we
compute the deviation of each sample from the expected
BAF distribution as the sum of the transformed, non-zero
BAFs divided by the total number of markers (M):

BAF' = min(BAF, 1 - BAF)

BAF'-T, if Thom < BAF < 0.25

BAF" = Thet — BAF', if 0.25 < BAF' < Thes

0, otherwise

> {BAF;|BAF; > 0}
M

dev =

Copy number aberrations

We use the genoCNA function of the genoCN R pack-
age [24] to identify CNAs (amplification or deletion
of chromosomal regions). This function requires two
platform-specific parameters, distThreshold (the max-
imum distance, in bp, between adjacent SNPs) and geno.
error (the estimated genotyping error rate). We set dis-
tThreshold at 750,000 and 100,000 and geno.error at 0.03
and 0.01 for MUGA and MegaMUGA, respectively. The
output of this algorithm is a list of genomic intervals for
which copy number could be inferred. In intervals where
genoCNA could not predict the copy number, we as-
sumed a copy number of 2.

Availability of supporting data

The CLASP R package is available in CRAN (http://
cran.r-project.org). Supporting data has been deposited
in the figshare repository (http://dx.doi.org/10.6084/m9.
figshare.1185417).

Additional files

Additional file 1: Analysis of 117 cell line samples. Two worksheets
show 1) results of analysis by 611 CLASP and 2) column annotations for
the first worksheet

Additional file 2: Analysis of 503 reference samples. Four worksheets
list reference samples obtained from 1) inbred strains, 2) outbred stocks,
3) F1 hybrids between two inbred strains and 4) wild-caught mice. A fifth
worksheet summarizes the level of consistency between biological/
technical replicates.

Additional file 3: Call rates depend on type and taxon of samples.
Heterozygous (H) call rate (x-axis) and No-call (N) rate (y-axis) out of
6,212 markers for 620 samples. Color represents sample type: primary
(blue) or cell line (orange). Shape represents sample taxonomy: M.
musculus (circle) or other (square). Inset: primary samples have higher
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variability in H call rate, but generally lower N call rates (excluding
non-M. musculus samples).

Additional file 4: Overview of CLASP software. Closed rectangle:
processes; cylinder: database; open rectangle: input data sets; trapezoid:
output data set.

Additional file 5: MUGA has sub-chromosome resolution to detect
contamination and copy number variation. Density plot of distances
between all adjacent pairs of 3,552 informative markers. Most inter-SNP
distances are < 2 Mb, meaning MUGA can detect contaminations and
copy number variants on the order of tens-of-megabases.

Additional file 6: Most MUGA marker pairs are unlinked. Histogram
of r values for all adjacent pairs of 3,552 informative markers. Typical
thresholds used to classify linkage disequilibrium are 0.3 - 0.7.

Additional file 7: Most reference samples are uniquely identified by
SNP profile. Heatmap of pairwise comparisons between reference
samples. Each point represents the number of genotype differences (out
of 3,552) between the pair.

Additional file 8: Pairwise comparison of sister strain differences in
MegaMUGA genotypes.

Additional file 9: Outbred stocks are genetically distinct from
inbred strains. Histogram of pairwise alignment scores between nine
outbred individuals and 156 inbred strains.

Additional file 10: Cell lines from introgressed backgrounds have
non-random differences from best matching reference sample.
Physical locations of markers for which cell line genotypes don't match
the reported strain of origin for A) CAKB3, a cell line derived from an
animal of a mixed (i.e, non-pure inbred strain) genetic background, and
B) W4129, an apparently contaminated cell line.

Additional file 11: Alignment score is negatively correlated with
level of contamination. Top panel shows relative concentrations of
Phoenix cell line (blue) and a contaminating feeder line (yellow) in a
dilution series experiment. Bottom panel shows H (gray) and N (green)
call rates (left y-axis) and alignment scores (red line, right y-axis) between
the mixtures and the pure Phoenix cell line sample (left-most sample, i.e.
“Phoenix_100_Feeder_0").

Additional file 12: BAF deviation accurately predicts fraction of
contaminant. A) In the dilution series, there is a direct relationship
between the fraction of contaminant (i.e. the feeder line) and the shift in
BAF from the expected distribution. B) A model derived from the dilution
series (red circles) enables prediction of the fraction of contamination in
cell lines genotyped on MUGA (blue diamonds) and MegaMUGA (green
squares) based on BAF deviation.
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