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Abstract

Background: Sorghum [Sorghum bicolor (L) Moench] is an important dry-land cereal of the world providing food,
fodder, feed and fuel. Stay-green (delayed-leaf senescence) is a key attribute in sorghum determining its adaptation
to terminal drought stress. The objective of this study was to validate sorghum stay-green quantitative trait loci
(QTL) identified in the past, and to identify new QTL in the genetic background of a post-rainy adapted genotype
M35-1.

Results: A genetic linkage map based on 245 Fq Recombinant Inbred Lines (RILs) derived from a cross between
M35-1 (more senescent) and B35 (less senescent) with 237 markers consisting of 174 genomic, 60 genic and 3
morphological markers was used. The phenotypic data collected for three consecutive post-rainy crop seasons on
the RIL population (M35-1 x B35) was used for QTL analysis. Sixty-one QTL were identified for various measures of
stay-green trait and each trait was controlled by one to ten QTL. The phenotypic variation explained by each QTL
ranged from 3.8 to 18.7%. Co-localization of QTL for more than five traits was observed on two linkage groups i.e.
on SBI-09-3 flanked by S18 and Xgap206 markers and, on SBI-03 flanked by XnhsbSFCILP67 and Xtxp31. QTL
identified in this study were stable across environments and corresponded to sorghum stay-green and grain yield
QTL reported previously. Of the 60 genic SSRs mapped, 14 were closely linked with QTL for ten traits. A genic
marker, XnhsbSFCILP67 (Sb03g028240) encoding Indole-3-acetic acid-amido synthetase GH3.5, was co-located with
QTL for GLB, GLM, PGLM and GLAM on SBI-03. Genes underlying key enzymes of chlorophyll metabolism were also
found in the stay-green QTL regions.

Conclusions: We validated important stay-green QTL reported in the past in sorghum and detected new QTL
influencing the stay-green related traits consistently. Stg2, Stg3 and StgB were prominent in their expression.
Collectively, the QTL/markers identified are likely candidates for subsequent verification for their involvement in
stay-green phenotype using NILs and to develop drought tolerant sorghum varieties through marker-assisted
breeding for terminal drought tolerance in sorghum.
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Background

Sorghum [Sorghum bicolor (L.) Moench] is an important
dry-land cereal of the world providing food, fodder, feed
and fuel [1]. Sorghum carries out C4 photosynthesis with
a specialized Kranz anatomy for efficient carbon fixation,
which makes it a well-adapted cereal crop to environ-
ments with high temperature and water limitation [2]
and emerged as a model crop species for tropical grass
genomics [3]. Globally, sorghum crop is grown on 40 m
ha area with grain yield productivity of 1400 kg h™* [4].
Among the sorghum growing countries, India ranks first
in area with 7.53 m ha with a productivity of 963 kg ha™
where crop is grown in two contrasting cropping seasons.
While rainy season (kharif) sorghums are grown on wet
soil profile with sufficient monsoon rainfall during the
months of June-September, the post-rainy season sor-
ghums are cultivated on the stored soil moisture after the
kharif rains in a vast area of the Deccan Plateau. There-
fore, the growth and development of the sorghum crop
during post-rainy season is typically dependent on the
available soil moisture, which gets depleted over a period
with the progress in crop maturity. While rainy sorghum
grain is typically used for non-food uses due to grain-
mold disease, the post-rainy sorghum grain is used pri-
marily for human consumption. Post-rainy sorghum grain
is highly valued for its pearly white, lustrous, bold and
clean grain, 98% of which is used for food [5]. Apart from
grain, sorghum stover is an important feed in the livestock
sector in India particularly in the dry seasons when other
feed resources are in short supply [5]. Thus, post-rainy
sorghum plays an important role in ensuring food and
fodder security for millions of rural families in the semi-
arid tropics. In these areas, since rainfall is low and highly
erratic, terminal drought stress is the major yield con-
straint. Moisture stress during post-flowering stage is the
most significant yield reducing factor in the semi-arid tro-
pics [6-11]. The economic benefit of successful mitigation
of drought damage by developing drought tolerant sor-
ghum varieties was estimated to be US$ 53 million per
year [12]. Under diminishing moisture regimes of post-
rainy environment, sorghum crop severely suffers from
drought-associated root and stalk rots leading to severe
crop lodging, besides loss of stover, grain quality, and
productivity [8].

In sorghum, stay-green (delayed-senescence) is a post-
flowering drought response [13], and is well character-
ized by the maintenance of green leaves (upper) and
green stems although the plants are under severe mois-
ture stress conditions. The genotypes possessing the
stay-green trait maintain more photosynthetically active
leaf area as compared to senescent genotypes, and con-
tinue to fill their grains normally under stress condi-
tions. Stay-green is also associated with resistance to
charcoal rot and stalk lodging, superior fodder quality
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and higher grain yield [7,8,13], increased cytokinin con-
centration [14] and stem sugars in basal nodes [15].
Moreover, the contribution of the stay-green to stable
yield production under post-flowering drought has been
documented [7]. The genotype BTx642 (formerly B35)
has been identified as a useful source of stay-green
[10,16-18] to unravel its genetic and physiological basis
and to develop commercial hybrids [13,19]. Apart from
sorghum, stay-green and its basis has been widely stud-
ied in rice [20-23], maize [24-28] durum wheat [29-35],
Festuca pratensis [36], soybean [37,38] and sunflower
[39,40]. Loss of chlorophyll is the visible symptom of leaf
senescence and the stay-green trait reflects impaired or
delayed chlorophyll catabolism [41]. Genes involved in
chlorophyll biosynthesis and degradation are cloned
[42,43]. Any impairment in the enzymatic steps respon-
sible for chlorophyll metabolism was associated with the
expression of stay-green phenotypes [44-47].

Stay-green is a quantitative trait controlled by nuclear
genes [48] and different types of stay-green phenotypes
were recognized [9,21]. Some are cosmetic and are not
photosynthetically active (non-functional), whereas others
are associated with greater biomass accumulation (func-
tional). High intrinsic chlorophyll concentration has also
been associated with improved stay-green in sorghum and
reduces post-flowering drought induced senescence [49].
B35 has Type A stay-green characterized by delayed onset
of leaf senescence [9,50].

The progress in genetic improvement of post-rainy
sorghum for drought tolerance using traditional plant
breeding practices has been slow, and the selection has
not been much effective due to complex interaction be-
tween genotype and environment. Several component
traits are involved in terminal drought tolerance, and
each component is genetically controlled by many genes.
In addition, the action of these genes is confounded by
environment and may involve epistatic interactions. This
complicates selection for higher grain yield, and there-
fore adversely affects gain from selection for an elite
genetic stock having drought tolerance and high yield
potential [51]. Sorghum breeders have been using stay-
green trait for indirect selection of drought tolerance
since two decades. For instance, potential use of stay-
green QTL contributing to plant water use, transpiration
efficiency in different genetic backgrounds was reported
[52]. More recently, the co-location of stay-green and
nodal root angle QTL in sorghum [53] highlights the
probable role of roots in retaining leaves green, and of-
fers an opportunity to use molecular breeding strategies
to improve drought tolerance through the manipulation
of nodal root angles. However, with limited knowledge
of genetics and physiology of this trait, the progress in
selection for the stay-green trait using traditional breed-
ing methods is slow. Several factors like on-set and
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intensity of drought stress, growth stage, heat, inability
to evaluate stay-green until plants reach physiological
maturity influence efficiency of selection [10].

In view of the above difficulties in unravelling genetic
mechanisms controlling stay-green character, QTL ap-
proach is appropriate to dissect stay-green at genomic
level. Earlier QTL studies for stay-green in sorghum
detected several genomic regions associated with its
expression [10,16,18,54]. Four major QTL namely, Stgl
(on SBI-03), Stg2 (on SBI-03), Stg3 (on SBI-02), and Stg4
(on SBI-05) are consistent across genetic and environ-
ment backgrounds and accounted 53.5% phenotype vari-
ance [18]. Stgl, Stg2 and Stg3 QTL also co-located with
chlorophyll content at physiological maturity [18]. Further,
[49] reported that these stay-green QTL reduced drought
(post-flowering) induced leaf senescence in the recipient
senescent genetic background of RTx7000. Several breed-
ing programs were initiated to incorporate stay-green QTL
in advanced breeding lines [50,55]. More recently, [52]
tested the performance of stay-green QTL using a set of
introgression lines (ILs) providing an insight into operation
of stay-green in combination with other component traits
of drought tolerance.

Therefore, stay-green trait is very relevant for the im-
provement of post-rainy sorghums in India as the crop
is grown on residual and receding moisture conditions
where occurrence of terminal drought coincides with
crop maturity and grain filling stage [56]. Any improve-
ment towards delayed senescence with active photosyn-
thesis during post-flowering stage will not only improve
grain filling but also improves fodder quality and char-
coal rot resistance. Thus, identification of QTL control-
ling stay-green in the genetic background of post-rainy
(rabi) genotype (M35-1) would validate their effect
under post-rainy growing conditions, and also increase
our genetic understanding of various components of
stay-green trait, clarify the relationships of QTL to can-
didate genes and provide the basis for MAS. The objec-
tives of the present study were to validate the expression
of stay-green QTL reported using B35 in the past, and
to identify new QTL if any, for the stay-green trait. This
study involved a new mapping population developed
from a cross between an important post-rainy sorghum
inbred variety M35-1, and the stay-green donor B35.
Secondly, we report the co-location of genes/key en-
zymes involved chlorophyll metabolism with QTL for
stay-green and grain yield.

Methods

Plant material

The experimental material of the study consists of a Fy
recombinant inbred line (RIL) population (245 RILs) de-
veloped from two sorghum parents, M35-1 and B35.
M35-1 is highly popular, tall, single gene dwarf, dual-
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purpose sorghum variety grown for its bold, lustrous
grains, excellent stover [57,58] and yield stability across
sowing dates [59].The other parent B35 is a 3-gene
dwarf genotype developed from a germplasm accession
from Ethiopian origin IS12555 [60] and is known for its
slower senescence [61]. B35 is well characterized for its
stay-green phenotype and several researchers [10,17,18,62]
have identified a number of stay-green QTL involving B35.

Field evaluation

The RILs and parents were evaluated during three con-
secutive post-rainy seasons of 2006 (PR06), 2007 (PR07)
and 2008 (PRO8) at the research farm of the ICAR-
Directorate of Sorghum Research (DSR), Rajendranagar,
Hyderabad, India. The material was planted in a com-
pletely random block design (CRBD) with three replica-
tions. The experimental units were one-row plots; with
each row 4-m long, plant-to-plant spacing was 15 cm
and, space between rows was 0.75 m. The crop was pro-
tected from insect pests such as shoot fly, mites and
stem borer following plant protection measures. Mean
monthly temperature ranged from 30 to 35°C and there
were no rainfall received during the cropping seasons
(Additional file 1: Table S4).

Phenotypic observation

The RILs were characterized for nine traits as a measure
of stay-green, besides recording grain yield data. All
phenotypic measurements were recorded from five ran-
domly tagged plants from each row in each replication.
The nine traits studied include

1. SPAD meter readings at booting (apparent leaf
chlorophyll content at booting, SPADB), measured
at boot leaf stage from five tagged plants in a plot at
five places on the second leaf from the top with a
SPAD-502 chlorophyll meter (Konica-Minolta, Co.
Ltd, Tokyo, Japan) and average values were calculated
for each plot;

2. SPAD readings at maturity (apparent chlorophyll
content at maturity, SPADM, measured at maturity,
similar to SPADB);

3. Total number of green leaves at booting (GLB);

4. Total number of green leaves at maturity (GLM);

5. Per cent green leaves retained at maturity (PGLM in
percentage obtained as ratio between GLM to GLB);

6. Green leaf area at booting (GLAB in cm? measured as
follows: length and width of all the green leaves from
the top to bottom was measured, and the area of each
leaves were estimated as leaf length x leaf width x 0.70.
[63,64]. The total green leaf area of each tagged plant
was calculated by sum of all the measured leaves);

7. Green leaf area at maturity (GLAM measured at
maturity similar to GLAB),
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8. Per cent green leaf area retained at maturity (PGLAM
in percentage determined as PGLAM = [GLAM/
GLAB] x 100, where, GLAB = Green leaf area at
booting (cm?) and GLAM = Green leaf area at
maturity (cm?),

9. Rate of leaf senescence (RLS in cm® day " determined
as RLS = [GLAB - GLAM]/number of days taken from
flowering and maturity (data not provided) and

10. Grain yield per panicle (GY, grain weight per

panicle after threshing in g).

Statistical analysis

The software SAS 9.2 package (Statistical Analysis Sys-
tems Institute Inc., Cary, N.C.) was used for statistical
analysis of phenotypic data on stay-green traits and grain
yield. Trait variances were partitioned using the random
effects ANOVA model y=p + E + G + G x E + error, where
E represents environment, G represents genotype, and
G x E represents the genotype by environment interaction.
The error term includes the variance between row means
for the three replicates of each genotype at each season.
We used Proc GLM procedure with replication mean data
of each trait in each season for studying the effect of geno-
type (RILs), environment and genotype x environment in-
teractions for observed variance among RILs by residual
maximum likelihood algorithm (REML) as suggested [65].
Broad-sense heritabilities (h*) and phenotypic correlations
were determined at the level of average performance over
three seasons using SAS code [66].

Linkage map construction

The genetic linkage map of M35-1 x B35 reported [67]
was used in this study. The linkage map comprised of
237 markers (174 genomic, 60 genic markers, and three
morphological markers spanning a genetic distance of
1235.5 cM) was used for QTL analysis. The details on
genotyping of RILs, linkage map construction were de-
scribed in our previous publication [68].

QTL analysis

The QTL analysis was performed with trait mean values
from individual season (PR06, PRO7 and PROS8) data, and
with across season mean data (AV) for each trait as de-
tailed in our recent publication [67]. The identified QTL
were designated with italicized symbol composed of a Q,
a trait name, a hyphen, name of institute, the symbol for
the chromosome in which the QTL is located, and, in
cases where more than one QTL controlling a trait were
detected in the same LG, they were numbered serially.
For instance, the QTL name QSpadb-dsr06-1 refers to
the SPADB QTL identified at DSR on sorghum SBI-06.
QTL were classified as major if the phenotypic variance
explained was larger than 10%, and minor when it
accounted <10% of phenotypic variance [69]. QTL for
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different traits were declared to be coincident (co-lo-
cated) when their positions with highest LOD scores
(peak) were located in the same markers intervals. The
co-location was “positive” when the additive effects had
the same algebraic sign (+or -) and “negative” when they
had opposite algebraic signs. QTL stably detected under
different environments [70] was referred to as constitu-
tive. In the present study, a QTL was said to be consist-
ent when it was detected in more than one season, with
average over seasons, in the multi-environment QTL
analysis and across genetic backgrounds in earlier re-
ports at the same locus.

QTL co-location

The genetic linkage map of the present study has been
published recently [67]. A comprehensive analysis of sor-
ghum QTL was reported [71] with the projection of 771
QTL relating to 161 traits from 44 QTL studies onto a
sorghum consensus map. All the meta- and unique QTL
positions relevant to the 10 traits of the study have been
projected onto the physical map using the flanking SSR
markers of each QTL to determine co-localization of
QTL with previous studies (Additional file 2: Figure S1).

E-mapping of chlorophyll metabolism related genes
Twenty key genes for enzymes involved in chlorophyll
biosynthesis [72]) and degradation [73] were in-silico
mapped on to the sorghum chromosomes by using their
physical positions. The information of remaining genes
involved in chlorophyll metabolism were searched in the
Plant Metabolic Pathways of Gramene (http://pathway.
gramene.org/ SORGHUM/class-tree?object=Pathways)
and the Sorghum Genome Annotation of Phytozome
(http://www.phytozome.net/search.php). These genes were
later placed on to the physical map of sorghum.

Results
Trait mean values of parents M35-1 and B35 and their
RIL population for nine stay-green traits and grain yield
over three seasons were given in Table 1. The parental
lines differed for most of the characters except for GLM.
However, wider range of variation for the traits in the
RIL population, normal distributions with transgressive
segregation suggested polygenic inheritance of the traits
(Additional file 3: Figure S2). The estimated broad-sense
heritability (h?) values for traits were moderate to high
and ranged from 0.42 to 0.82. The calculated F values of
traits in ANOVA analysis showed the presence of signifi-
cant differences among the RILs and highly significant
environmental effects on traits and genotype x environ-
ment interactions (Additional file 4: Table S1).
Phenotypic correlations between the traits were esti-
mated based on mean values over three seasons (Table 2).
Significant correlation coefficients were observed for most
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Table 1 Summary statistics for nine stay-green traits and
grain yield studied

Trait Parental lines  RILs® h?
M35-1 B35 Min Max Mean SEMz*

SPADB 529 60.9 482 625 55.2 0.19 0.74
SPADM 420 49.8 365 583 456 0.25 042
GLB (no.) 9.2 79 6.6 104 84 0.04 0.82
GLM (no.) 44 45 2.7 82 52 0.05 0.63
PGLM (%) 482 56.5 372 817 610 0.55 057
GLAB (cm?) 19159 11754 8505 25747 15271 216 0.70
GLAM (cm?) 8944 9458 1736 14323 7446 161 0.71
PGLAM (%) 47.5 824 157 855 53.0 0.87 0.63
RLS (cm? day"1) 10.7 15 12 209 94 0.30 049
GY (g9) 54.8 314 125 892 427 0.20 0.53

SEM + standard error of mean, h? heritability based on average performance
over three seasons, *Average over three seasons.

trait combinations. GY was positively correlated with GLB,
GLM, PGLM, GLAB, GLAM, and RLS. Highest positive
correlation of GY was observed with GLAB followed by
GLB. Its correlation with GLM, GLAM and RLS were
similar. GY was negatively correlated with SPADB and did
not show any correlation with both SPADM and PGLAM.

QTL mapping

QTL results for 10 traits relating to stay-green and grain
yield in the population are shown (Figure 1) and the QTL
statistics are summarized in Table 3. QTL for each trait
were identified initially by interval mapping, followed by
composite interval mapping with co-factors. A total of 61
QTL were detected of which, 47 QTL were detected with
LOD threshold of > 3.0, and the remaining 14 QTL (sug-
gestive QTL) were detected with 2.5 to 3.0 LOD.

SPAD at booting (SPADB)
Seven QTL for SPADB were identified in the population.
Two QTL on linkage groups SBI-09, and a QTL each on
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SBI-01, SBI-03, SBI-05, SBI-06 and SBI-07 were found.
Of the seven, five QTL were identified for mean data over
the three seasons and two of them were detected in multi-
environment QTL analysis. Increased SPADB values were
contributed by the stay-green parent B35 at six QTL. A
major QTL (QSPADB-dsr09-1) explaining 15% of the
phenotypic variance was identified on SBI-09 between the
markers Xisp318 and Xdhsbm10. Parent M35-1 contrib-
uted for the increased SPADB value at a QTL on SBI-03
between Xisp355-Xtxp38 markers. The phenotypic vari-
ance explained by each SPADB QTL ranged from 3.9 to
15%.

SPAD at maturity (SPADM)

Five QTL were identified for SPADM in the population,
and were distributed across five linkage groups with a
QTL each on SBI-01, SBI-02, SBI-07, SBI-09, and SBI-10.
Of the five, two QTL were identified for mean data over
the three seasons and two of them were detected in multi-
environment QTL analysis. A major QTL for this trait,
QSpadm-dsri0-2 was identified between SSR markers,
Xtxp337 and Xtxp20 on SBI-10 with a LOD of 6.0 explain-
ing 14.1% of phenotypic variance. At all QTL, stay-green
parent B35 contributed alleles for increased SPAD value at
maturity. The phenotypic variance explained by each QTL
ranged from 4.2 to 14.1%. The QTL (QSpadm-dsr09-1) on
SBI-09 was identified for SPADM co-located with QTL for
SPADB.

Green leaves at booting (GLB)

A total of eight QTL were detected for GLB, and were
localized on five chromosomes with two QTL each on
SBI-01, SBI-03 and SBI-04 and a QTL each on SBI-02
and SBI-09. Of the eight QTL, four QTL were identified
for average performance over the three seasons and
three of them were detected in multi-environment QTL
analysis. Three major QTL, QGIb-dsr03, QGlb-dsr09-3,
QGIb-dsr01-1a explaining 18.7%, 18.4 and 15.7% of pheno-
typic variance respectively were identified. The positive

Table 2 Phenotypic correlation co-efficient among 10 traits studied

SPADM GLB GLM PGLM GLAB GLAM PGLAM RLS GYPP
SPADB 0.30** -0.12* —0.15** -0.12 —0.27** -0.10 0.026 -0.07 -0.16**
SPADM 0.23** 0.42%* 0.35%* 0.21%* 043** 0.383** -0.12 0.10
GLB 0.55** 0.08 0.76** 0.56** 0.08 0.36* 048*
GLM 0.84** 0.58** 0.71* 0.48** 0.04 041
PGLM 0.21%* 0.52** 0.57** —0.19%* 0.18**
GLAB 0.71% 0.06 0.46** 0.56**
GLAM 0.68** 0.004 0.40**
PGLAM —0.55** 0.003
RLS 0.39%

**Significant at <1%; *Significant at 5%.
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Figure 1 Genetic linkage map of sorghum showing 61 QTL identified for the grain yield and nine stay-green traits in M35-1 xB35 RIL mapping
population. The useful alleles contributed for the traits by M35-1parent are represented by “asterisk” in the QTL name. The length of the vertical bars
indicates 1-LOD support interval. Maximum LOD for each QTL is indicated as a beak on the bar which shows QTL position.




Table 3 Quantitative trait loci (QTLs) detected for nine stay-green related traits and grain yield studied in M35-1 x B35 RIL population

Traits QTL name® Environment QTLxXE LG Position  Left marker Right marker LOD Increased R? (%) Additive Reference
effect effect®

SPAD values at QSpadb-dsr09-1 AV, 1L SBI-09-1 207 Xisp318* Xdhsbm10 6.5 B35 15.0 -1.00  New

Booting (SPADB) QSpadb-dsr09-3 M, AV, Il No SBI-09-3 20 518* Xgap206 38 B35 93 2109 [17,54]
QSpadb-dsr05 AV, I, 1l SBI-05 674 Stgnhsbm46* Xtxp091 4.1 B35 8.0 -149 [10,17,18,74,75]
QSpadb-dsr06-1 AV, I SBI-06-1 76,5 Xcup12* Xcup37 4.1 B35 6.9 -0.89 New
QSpadb-dsr07-1 M, Il Yes SBI-07-1 6.0 Xisp362* Xtxp40 4.8 B35 6.9 -083 [18,76]
QSpadb-dsr03 AV, | SBI-03 1120 Xisp355* Xtxp38 32 M35-1 50 0.73  New
QSpadb-dsr01-1 AV SBI-01-1 205 Unnhsbmés Xtxp302* 27" B35 39 -063 [17,54,76]

SPAD values at QSpadm-dsr10-2 M, AV, |, I, Il No SBI-10-2 9.7 Xtxp337* Xtxp20 6.0 B35 14.1 —-1.24 [76]

maturity SPADM) QSpadm-dsr01-1 M, AV, | Yes SBOT-1 165 Xtxp71 Unnhsbmés* 42 B35 85 218 [76]
QSpadm-dsr07-1 Il SBI-07-1 99 Xtxp40* Xisep0805 44 B35 7.8 -098 [18,76]
QSpadm-dsr02-3 AV SBI-02-3 504 Xtxp7* Xisep0841 32 B35 53 -093 [10,18,54,76]
QSpadm-dsr09-1 I SBI-09-1 187 Xisp318* Xdhsbm10 25" B35 4.2 -069 New

Green leaves at QGlb-dsr03a AV, 1L SBI-03 757 Xisep0114* XnhsbSFCILP67 6.6 B35 187 -033 [10,17,18,74-76]

booting (GLB) QGlb-dsr09-3 M, AV ILII Yes SBI-09-3 30 518* Xgap206 54 M35 184 029 [17,54]
QGlb-dsr01-1a M, AV, 1, 1I No SBI-01-1 120 Xisp314 Xtxp208* 6.5 B35 15.7 -0.25 New
QGlb-dsr01-1b Ml SBI-01-1 515 Xisp269* XnhsbSFCILP95 28" B35 6.6 -022 [17,54,76]
QGlb-dsr04-1 AV, | SBI-04-1  46.2 Xisp230* gpsb050 32 M35-1 56 0.28 New
QGlb-dsr03b M, 1l Yes SBI-03 84.8 XnhsbSFCILP67 Xtxp31* 2.7% B35 49 -0.23  [10,17,18,74-76]
QGlb-dsr02-1 Il SBI-02-1  20.1 Xtxp197* Xcup64 27" M35-1 48 020 New
QGlb-dsr04-3 Il SBI-04-3 1.0 Xtxp097* Xtxp104 26" B35 38 —0.17  New

Green leaves at QGIm-dsr03a AV, L1 SBI-03 84.8 XnhsbSFCILP67*  Xtxp31 8.1 B35 15.9 —-039 [10,17,18,74-76)

maturity (GLM) QGIm-dsr02-3a AV, 1, I SBL02-3 386 Xtxp348 Xisp259* 77 B35 139 032 [10,18,54.76]
QGIm-dsr09-3 M, AV, | 1I No SBI-09-3 00 S1g* Xgap206 6.4 M35-1 8.7 031 [17,54]
QGIm-dsr02-3b AV, | SBI-02-3 457 Xtxp100 Xtxp207* 42 B35 8.2 -038 [10,18,54,76]
QGIm-dsr03b M, AV No SBI-03 67.5 Xtxp267 Xtxp33* 47 B35 6.7 -023  [54]
QGIm-dsr07-2 AV SBI-07-2 338 Xtxp295 Xisp344* 4.0 M35-1 6.6 025 [76]
QGIm-dsr01-1 Il SBI-01-1 475 Xisp269 XnhsbSFCILP95* 3.5 B35 5.2 -025 [17,54,76]
QGIm-dsr02-3c M, 1l No SBI-02-3 494 Xtxp7* Xisep0841 39 B35 5.1 -023 [10,18,54,76]
QGIm-dsr04-1 M, 1l Yes SBI-04-1 472 Xisp230 gpsb050* 37 M35-1 50 0.24 New
QGIm-dsr09-2 AV SBI-09-2 6.0 Unnhsbm178 Stgnhsbm19* 26" M35-1 4.1 021  New
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Table 3 Quantitative trait loci (QTLs) detected for nine stay-green related traits and grain yield studied in M35-1 x B35 RIL population (Continued)

Per cent green leaves retained QPglm-dsr02-3a M, AV, |, II, Il No SBI-02-3 579 Xtxp296* Xtxp8 6.8 B35 149 —3.25 [10,18,54,76]

at maturity (PGLM) QPgIm-dsi07-2 AV, | SBL07-2 319 Xtxp295 Xisp344* 42 M35 103 271 [76]
QPglm-dsr07-1a AV, Il SBI-07-1 40 Xisp362* Xtxp40 35 B35 10.0 —2.84 [18,74,76]
QPglm-dsr09-3 AV, 1, 1l SBI-09-3 3.0 S18 Xgap206* 38 M35-1 7.2 405 [17,54]
QPglm-dsr01-2 Il SBI-01-2 176 Xtxp43* Xtxp329 46 B35 7.1 —2.15  [17,54,76]
QPglm-dsr04-2 I SBI-04-2 1181 Xisep0234 Unnhsbm265* 36 B35 6.4 —382  New
QPglm-dsr02-3b | SBI-02-3 494 Xtxp7* Xisep0841 3.1 B35 5.7 -365 [10,18,54,76]
QPglm-dsr09-2 AV SBI-09-2 9.0 Unnhsbm178 Stgnhsbm19* 28" M35-1 53 210  New
QPglm-dsr03 Il SBI-03 838 XnhsbSFCILP67*  Xtxp31 29" B35S 49 -184 [10,17,18,74-76]
QPglm-dsr07-1b M, || Yes SBI-07-1 258 Xisep0805 Xtxp312*% 28" M35-1 49 1.85 [18,74,76]

Green leaf area at booting (GLAB)  QGlab-dsr03a AV, 0,1 SBI-03 70.0 Xtxp33* Xisep0114 6.2 B35 15.5 —12563 [10,17,18,74-76]
QGlab-dsr09-3 M, AV, 11, 1l No SB-09-3 3.0 S18* Xgap206 52 M35-1 106 10077 [17,54]
QGlab-dsr01-1a M, AV, |, Il No SBI-01-1 505 Xisp269 XnhsbSFCILP95* 4.6 B35 93 -114.12  [17,54,76]
QGlab-dsr03b | SBI-03 1023 Xtxp218* SbAGET 29" B35 49 -9264 [10,18,76]
QGlab-dsr10-1 M, | Yes SBI-10-1 3.0 Unnhsbm105* Unnhsbm217 29* M35-1 49 9829 New
QGlab-dsr02-1 Il SBI-02-1  16.1 Xtxp197* Xcup64 32 M35-1 4.8 9152  New
QGlab-dsr02-2 Il SBI-02-2 270 Xtxp013* Xisp280 30 M35-1 47 9281 New

Green leaf area at maturity (GLAM)  QGlam-dsr03a M, AV, | 1111 Yes SBI-03 86.8 XnhsbSFCILP67*  Xtxp31 4.7 B35 126 -105.69 [10,17,18,74-76]
QGlam-dsr02-3a M, AV, Ii, Ill Yes SBI-02-3 559 Xisep0841 Xtxp296* 30 B35 10.7 —61.58 [10,18,54,76]
QGlam-dsr09-3 M, AV, I, I No SBI-09-3 0.0 S18* Xgap206 3.7 M35-1 63 89.54  [17,54]
QGlam-dsr03b AV, | SBI-03 68.0 Xtxp267 Xtxp33* 35 B35 59 —-60.56  [10,17,18,74-76]
QGlam-dsr02-3b AV SBI-02-3 427 Xisp259 Xtxp100* 33 B35 57 -60.31  [10,18,54,76]

Per cent green leaf area QPglam-dsr02-3 M, AV, |, 11, 1l Yes SBI-02-3 549 Xisep0841 Xtxp296* 5.1 B35 13.1 —5.04 [10,18,54,76]

at maturity (PGLAM) QPglam-dsr03 M, AV, 1,11l Yes SBL03 870 XnhsbSFCILP67*  Xtxp31 33 B3 84 ~430 [10,17,18,74-76]

Rate of leaf senescence (RLS) QRIs-dsr10-1 AV, L1 SBI-10-1 109 Xisep0604 Xisp326* 33 M35-1 10.5 120  New

Grain yield per panicle (GY) QGY-dsr06-1 M, AV, |, I Yes SBI-06-1 6.0 Xtxp6* Xtxp127 6.0 M35-1 114 268 [75,77]
QGY-dsr09-2 M, AV, I No SBI-09-2 30 Unnhsbm178* Stgnhsbm19 42 M35-1 73 208 [78]
QGY-dsr04-1 AV, | SBI-04-1  46.2 Xcup23 Xisp230* 35 M35-1 6.4 337 [77]
QGY-dsr09-1 M, AV, Il Yes SBI-09-1 119 Xgap15 Xcup2* 38 M35-1 59 229 [/8]
QGY-dsr03 AV, I SBI-03 124.9 Xisp332 Undhsbm314* 25" B35 4.0 -1.92  [77,79]
QGY-dsr09-3 Il SBI-09-3 0.0 S18* Xgap206 28" M35-1 4.0 195 [77,78]

*Nearest marker to QTL position. Seasons |, Il lll, AV (average) and M (multi-season) indicate QTL detected in the seasons Post-rainy 2006, Post-rainy 2007, Post-rainy 2008, across all seasons and in multi-season analysis,

respectively; *Additive effect of M35-1. A positive value implies that the M35-1 allele increased phenotypic value, whereas a negative value implies that the M35-1 allele decreased phenotypic value. A QTL effect with
bold and underlined indicates inversion of effect in Multi-season QTL analysis; ® R? (%) is percentage of phenotypic variation explained by individual QTL; *Suggestive QTL (LOD <3.0); ®QTL in bold are identified in

multi-environment QTL analysis also.
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alleles for the QTL on SBI-02 near Xtxpl197, on SBI-04
near Xisp230 and on SBI-09 near S18, for the increased
GLB were contributed by senescent parent M35-1, and at
QTL on other linkage groups, M35-1 alleles decreased the
trait value. The LOD scores ranged from 2.6 to 6.6 and
phenotypic variance ranged from 3.8 to 18.7%.

Green leaves at maturity (GLM)

A total of ten QTL for GLM were detected in the
present population and were distributed onto six linkage
groups with three QTL on SBI-02, two on SBI-09 and
SBI-03, and a QTL each on linkage groups SBI-01, SBI-
04 and SBI-07. Of the ten QTL, four QTL were identi-
fied for average performance over the three seasons and
four QTL were detected in multi-environment QTL ana-
lysis. Two major QTL, QGIm-dsrO03a on SBI-03, and
QGIm-dsr02-3a on SBI-02 explaining 15.9% and 13.9%
phenotypic variation respectively were identified in the
present study. The positive alleles for increased GLM
were contributed by senescent parent M35-1 at QTL on
SBI-09, SBI-07 and SBI-04 chromosomes and, for
remaining QTL on other linkage groups, stay-green par-
ent B35 contributed for increased number of green
leaves at maturity. From among 10 QTL for GLM, three
QTL were also common to GLB.

Percent green leaves at maturity (PGLM)

PGLM is an important measure of stay-green and ten
QTL distributing on six linkage groups with three on
SBI-07, two on SBI-02 and SBI-09 linkage groups, and a
QTL each on SBI-01, SBI-04 and SBI-03 were identified.
Of the ten, four QTL were identified for average per-
formance over the three seasons and two QTL were de-
tected in multi-environment QTL analysis. Three major
QTL, QPglm-dsr02-3a (14.9%), QPglm-dsr07-2 (10.3%)
and QPglm-dsr07-1a (10.0%) explained larger phenotypic
variance. The positive alleles for increased PGLM were
contributed by senescent parent M35-1 at QTL on SBI-
07 (near Xisp344), SBI-09 and a QTL on SBI-07 (near
Xtxp312) chromosomes, and alleles for the QTL on
other chromosomes were contributed by stay-green par-
ent B35. Phenotypic variance explained by each QTL
ranged from 4.9 to 14.9% and the LOD scores ranged
from 2.8 to 6.8.

Green leaf area at booting (GLAB)

A total of seven QTL, two QTL each on SBI-02 and SBI-
03, and a QTL each on SBI-01, SBI-09 and SBI-10 were
located for GLAB. Two major QTL, QGlab-dsrO3a
explaining 15.5% phenotypic variation and, QGlab-dsr09-3
explaining 10.6% phenotypic variation were identified in
the population. Of the seven, five QTL were identified for
mean data over seasons and two of them were detected in
multi-environment QTL analysis. Out of seven QTL that
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were identified for this trait, three QTL were identified for
average performance over the three seasons and three
QTL were detected in multi-environment QTL analysis.
The alleles for increased GLAB were contributed by stay-
green parent B35 at three QTL regions. Interestingly, at
QTL positions, QGlab-dsr09-3, QGlab-dsr010-1, QGlab-
dsr02-1, and QGlab-dsr02-2, the alleles for increased
GLAB were contributed by senescent parent M35-1 also.
The phenotypic variance explained by each QTL ranged
from 4.7 to 15.5% and the LOD scores ranged from 3.0 to
6.2.

Green leaf area at maturity (GLAM)

Five QTL were detected for GLAM in the population
with two QTL each on SBI-02 and SBI-03, and a QTL
on SBI-09. Four QTL were identified for mean perform-
ance over the three seasons and three QTL were de-
tected in multi-environment QTL analysis. The alleles
from B35 associated with higher green leaf area at ma-
turity were at the QTL regions QGlam-dsr03a and
QGlam-dsr03b on SBI-03, QGlam-dsr02-3a and QGlam-
dsr02-3b on SBI-02, while the alleles for this parent as-
sociated with less GLAM at the QTL, QGlam-dsr09-3.
The phenotypic variation explained ranged from 5.7 to
12.6%. A QTL, QGlam-dsrO3a was detected on SBI-03
and explained 12.6% of phenotypic variance.

Percent green leaf area at maturity (PGLAM)

Two QTL each on SBI-02 and SBI-03 for PGLAM in
the population were detected. A major QTL, QPglam-
dsr02-3 was detected on SBI-02 explaining 13.1% of
phenotypic variance. Both the QTL were identified for
average performance over the three seasons as well de-
tected in multi-environment QTL analysis. The positive
alleles were derived from B35 parent in the case of both
QTL. The QTL were detected with a LOD of 3.3 and 5.1
explaining 8.4 and 13.1% phenotypic variance respectively.

Rate of leaf senescence (RLS)

A single QTL was identified for RLS on SBI-10 explain-
ing 10.5% of phenotypic variance, and the alleles at this
QTL region were derived from senescent parent M35-1
which caused increased rate of leaf senescence (RLS).

Grain yield (GY)

For GY, a total of six QTL were detected with a distribu-
tion of three QTL on SBI-09 and a QTL each on SBI-03,
SBI-04 and SBI-06 were detected. Out of six QTL, five
QTL were detected for average performance over three
seasons and three of them were detected in multi-
environment QTL analysis. These QTL individually ex-
plained 4.0 to 11.4% of phenotypic variance, and to-
gether accounted for 39.0% of the grain yield variation in
the population. At majority of the QTL positions, the
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positive alleles were derived from high yielding parent
M35-1. However, a QTL on SBI-03 for grain yield, the
positive allele for increased grain yield was contributed
by low yielding parent B35. A major QTL, QGy-dsr06-1
was detected on SBI-06 which explains 11.4% of pheno-
typic variance with a LOD of 6.0. Of six QTL, detected
for grain yield, map position of five QTL coincided with
map position of QTL for PW. The increasing effects of
QTL alleles influencing the trait at these common QTL
regions were also from M35-1.

Discussion

Development of cultivars tolerant to terminal drought is
one of the important goals of sorghum breeding world-
wide, and is especially true for the post-rainy sorghums
in India. Broadening genetic diversity by employing di-
verse alleles for post-rainy adaptation drought tolerant
traits like stay-green is required. Identification of genetic
factors involved in stay-green would establish a base for
genetic improvement for drought tolerance. Earlier stud-
ies have identified important stay-green QTL. The
present study focused on mapping and validating stay-
green QTL using considerably a large (247) RIL mapping
population derived from M35-1 x B35 cross. The post-
rainy season is ideal for evaluating the expression of
stay-green trait as the crop depends entirely on stored
soil moisture, and undergoes a long, progressive stress
with high demands for evaporation [80] during grain fill-
ing. Responses of plant to drought stress are undoubtedly
affected by time of occurrence and intensity of stress [81],
which makes the genetic analysis of drought resistance
traits more complicated. Therefore, the pooled average of
three seasons data along with individual seasons data were
used for QTL analysis. The present study resulted in the
identification of 61 QTL for nine traits related to stay-
green measure and grain yield.

The significant phenotypic values for various stay-green
related traits confirmed the inherent potential of the stay-
green parent B35 [17,48,61]. High heritability (h%) values
observed for the component traits of stay-green and grain
yield in the present study substantiated high h* observed
for stay-green trait [10,82,83] and for grain yield [64].

GLB and GLAB are positively correlated. Both indi-
vidually showed highest positive correlation with GY in-
dicating their greater contribution towards filling the
sink under terminal drought. GLB also positively corre-
lated with GLAM which in turn showed positive correl-
ation with GY and SPADM. Therefore, GLB that is easy
to measure could act as criteria of selection for higher
grain yield under terminal drought. GY and PGLAM
were not correlated though GY showed significant asso-
ciation with GLAB and GLAM. This could be due to
GLAB, which showed no association with PGLAM. Pres-
ence of more green leaves or greater green leaf area either
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at boot or at maturity contributed for higher photosyn-
thesis and better availability of food reserves for higher
grain filling and enhanced grain yield. RLS is positively as-
sociated with GY, GLB, GLAB and negatively correlated
with PGLM and PGLAM. Positive correlation between
RLS and GY indicate physiological processes related to
grain filling during leaf senescence as the plants undergo
drought stress. Higher leaf senescence indicated higher
translocation of food reserve from leaves for better grain
filling and increased grain yields.

SPADB, a measure of chlorophyll content at booting
was negatively correlated with GY. This could be due to
its negative association with GLB, GLM and GLAB,
which were positively associated with GY. Thus, select-
ing for higher chlorophyll content at booting may not be
useful. However, one may select for SPADM (chlorophyll
at maturity) as it showed significant association with
GLB, GLM, PGLM, GLAB, GLAM and PGLAM as most
these traits individually correlated significantly with GY.

Of the 61 QTL identified for nine stay-green traits and
grain yield, 35 QTL (57.3%) were significantly identified
in combined analysis and at one or more locations and
averages across three seasons, while 25 QTL (45.4%)
were detected with only one of four datasets indicating
consistency of QTL detection. However, six of the ten
QTL for PGLM and six of the ten QTL for GLM were
identified in single environment. These QTL may be en-
vironment specific since stay-green expression at matur-
ity is triggered by the quantity or intensity of drought
stress at physiological maturity. Nevertheless, some of
the inconsistent QTL identified for PGLM and GLM
were co-located with stay-green QTL that were consist-
ently identified in more than one location from previous
studies and, or co-located with QTL for other compo-
nent traits of stay-green such as SPADB, SPADM, GLB,
GLM, GLAB and GLAM which were identified in more
than one season, indicating that these QTL can also be
considered consistent since these were highly related.

Earlier QTL studies using B35 as stay-green donor
[10,16-18,54] identified four major QTL viz., Stgl, Stg2,
Stg3, and Stg4 and were ranked in the order Szg2>
Stgl > Stg3 > Stg4 based on their phenotypic contribution
[10,49,52]. Stgl and Stg2 located on SBI-03 explained
20% and 30% [10,62] while Stg3 on SBI-02 accounted for
16% and Stg4 on SBI-05 controlled 10% of the pheno-
typic variance [62].

Introgression lines with Stg2 displayed lower rate of
senescence consistently over locations and seasons [49].
A meta-QTL was projected to co-locate with Stg2 QTL
[71]. In the present study too, nine QTL were observed
within the confidence interval of stg2 QTL for six mea-
sures of stay-green. Across measured traits, this QTL
accounted for an average of 10% trait variance indicating
its major role in delayed leaf senescence. This QTL
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functionally maintained more green leaf area (stay-
green) by slower rate of leaf senescence [49]. It is im-
portant to note that stay-green parent B35 contributed
favourable allele for increased trait values at each of
these QTL. Across seasons, B35 showed significantly
lesser (x10) rate of leaf senescence compared to senes-
cence parent, M35-1. Thus as reported earlier, Stg2 is an
important QTL for maintaining higher green leaf area
contributing for slow senescence. This QTL was also re-
ported to contribute for higher green leaf area at anthe-
sis and maturity by [64] and for percent green leaf area
at 45 days after flowering by [76] in different genetic
backgrounds. This demonstrates that the expression of
Stg2 QTL was consistent, and forms an important QTL
for marker-assisted improvement of post-rainy sorghum
lines for terminal drought tolerance.

Similarly, Stg3 was also identified as a meta QTL [71].
Several workers [10,18,54,76] reported this QTL using
different donor parents. [76] detected this QTL as a meas-
ure of per cent green leaf area at 15, 30 and 45 days after
flowering. Since the QTL was detected in different genetic
backgrounds and locations, this QTL with stable ex-
pression also important for improving terminal drought
tolerance. In the present study, QTL for five stay-green
traits viz., SPADM (QSpadm-dsr02-3), GLM (QGIm-
dsr02-3a and QGlm-dsr02-3a), PGLM (QPglm-dsr02-
3a and QPglm-dsr02-3b), GLAM (QGlam-dsr02-3a
and QGlam-dsr02-3b) and PGLAM (QPglam-dsr02-3)
were found to co-locate with Stg3 QTL. QTL for
chlorophyll content [10] and a major QTL for root dry
weight [71] were co-located with Stg3. Stg3 could be in-
volved in increased root mass for better moisture cap-
ture. As the pattern of water use after anthesis affects
grain yield [84], Stg3 QTL may positively influence
grain yield under post-anthesis drought stress.

QPglm-dsr02-3a, a major QTL explaining 15% was
identified on SBI-02 with the key stay-green QTL StgB
reported earlier. StgB introgression lines in the back-
ground of R16 (another post-rainy sorghum line) showed
improved stay-green trait [50], and modified the propor-
tion of water extracted before and after anthesis in the
S35 background [52]. StgB increased total biomass
(grain + stover) across genetic backgrounds of S35 and
R16. Interestingly StgB operated through different
physiological mechanisms to maintain stay-green de-
pending on the genetic background. In S35, StgB in-
creased water extraction while in R16 background it
increased transpiration efficiency. Therefore, stay-green
was possibly related to different components such as
transpiration efficiency, water extraction capacity or
both, both of which are likely to be an aggregate of differ-
ent mechanisms [52]. R16 is the pedigree derivative of
M35-1, the parent of the present population. It is therefore
possible that in the present study also StgB contributed for
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stay-green through increased transpiration efficiency.
Hence, StgB may be one of the key stay-green QTL for
MAS to improve post-flowering drought tolerance.

Stgl and Stg4 reported by [10] and [18], were also pro-
jected as meta QTL [71]. Several workers reported QTL
coinciding with Stgl [17,64,76,82]. In this study, one
QTL each at Stgl interval (QGlab-dsr03b ) and Stg4
interval (QSpadb-dsr05) were co-located. [83] also iden-
tified QTL St5 corresponding to Stg4.

Four meta QTL for stay-green viz.,, QSTG_metal.l,
QSTG_meta2.1, QSTG_meta3.1 and QSTG_meta4.1
were projected on SBI-01 [71]. In this study, six stay-
green QTL (QSpadb-dsr01-1, QSpadm-dsrO1-1, QGlb-
dsr01-1b, QGlm-dsr01-1b, QPglm-dsr01-2 and QGlab-
dsrO1-1a) were co-located overlapping with meta QTL
QSTG_meta2.1. QTL overlapping with QSTG_meta2.1
have been identified [17,76]. Thus, this QTL was consist-
ent in its expression across genetic backgrounds and loca-
tions. B35 contributed positive alleles for stay-green at this
meta QTL [17] which was validated in the present study
also. Similarly, [76] also reported the contribution of
favourable alleles from E36-1, another well-known source
of stay-green in sorghum at this meta QTL. It is therefore
likely that the allele at this stay-green QTL is different in
stay-green donors from the senescent sorghum genotypes.
SBI-01 also hosted a major QTL QGlb-dsr01-1a with 15%
trait expression, which was not reported earlier.

A major QTL cluster of eight QTL was observed
within two Mb on SBI-09. Interestingly, parent M35-1
contributed positive alleles for seven of the traits. Across
stay-green traits, this QTL accounted for 9% of trait
phenotypic expression. This QTL was also reported
[17,54,83]. Similar to our study, [54] also reported the
contribution of favourable allele from senescent parent,
QLA41 at this QTL. Due to its consistent expression in
different genetic backgrounds and in diverse test loca-
tions, this QTL is also a key QTL member of stay-green.
A meta QTL has been projected to co-locate at this gen-
omic position [71].

Two meta QTL (QSTG metal.7 and QSTG_meta2.7)
have been projected on SBI-07. In the present study, the
QTL for SPADB (QSpadb-dsr07-1), SPADM (QSpadb-
dsr07-1) and PGLAM (QPglam-dsr07-1a and QPglam-
dsr07-1b) were found co-located with the QSTG_metal.7,
while the QTL for GLM (QGIm-dsr07-2) and PGLM
(QPglm-dsr07-2) were co-located with QSTG_meta2.7.
Notably, M35-1 parent contributed favourable allele for in-
creased trait values of QTL in this clusters. Similarly, an-
other meta QTL (QSTG_metal.10) has been projected on
SBI-10. In the present study, the QTL for SPADM
(QSpadm-dsr10-2) was co-located with this meta QTL.
These QTL could be considered as reliable as they were
identified as meta-QTL, and form valuable genetic loci for
stay-green in sorghum.
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Co-location QTL for stay-green and grain yield

Of the six QTL identified for grain yield, four were co-
located with stay-green QTL. Co-localization of stay
green and grain yield QTL under drought stress, sug-
gesting that the gene (s) underlying stay green may also
result in enhanced yield performance under drought
stress [16]. QGY-dsr09-2 co-located with QTL for GLM
(QGIm-dsr09-2) and PGLM (QPglm-dsr09-2). QGY-
dsr09-2 QTL was reported to be meta-QTL [71], and
was co-located with QTL for grain yield component
traits such as panicle weight (QPW-dsr09-2), test weight

Page 12 of 16

(QTW-dsr09-2), panicle length (QPIl-dsr09-2) and plant
height (QPh-dsr09-2) ([67]). QGy-dsr09-1 QTL on SBI-09
was co-located with major QTL for SPADM (QSpadm-
dsr09-1) whereas QGy-dsr09-3 QTL was co-located with
QTL for SPADB (QSpadb-dsr09-3), GLB (QGIb-dsr09-3),
GLM (QGim-dsr09-3), PGLM (QPglm-dsr09-3), GLAB
(QGlab-dsr09-3) and GLAM (QGlam-dsr09-3). Sabadin
et al,, [83] also reported co-location of QTL for grain yield
and stay-green at the QGY-dsr09-3. Similarly, QGY-dsr04-
1 QTL on SBI-04 was co-located with QTL for GLB
(QGIb-dsr04-1) and GLM (QGIm-dsr04-1). A positive
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impact of stay-green on grain yield under terminal drought
was reported [7,8,50,74]. Co-location between an appar-
ently novel stay-green QTL and grain yield QTL in SBI-04
and SBI-09 suggests there is potential for indirect selection
for improved grain yield based on stay-green under post-
flowering drought stress.

Association of genic-SSRs with stay green QTL
Association of genic markers with quantitative trait loci
increase our understanding of genes influencing desired
traits [75,85-87]. In the present study, 14 genic markers
were found either as QTL locus or closely linked with
the QTL of ten traits studied, thus providing simple
PCR based markers for MAS of these traits (Table 3;
Figure 1). A genic marker XnhsbSFCILP67 (Sb03g028240)
encoding Indole-3-acetic acid-amido synthetase GH3.5
(Additional file 5: Table S3), was co-located with QTL for
GLB, GLM, PGLM and GLAM on SBI-03. The expression
of this gene was induced by auxin [88]. An EST derived
marker Stgnhsbm19, derived from a Chlorophyll A-B bind-
ing protein gene (CAB gene) was co-located with QTL for
GLM and PGLM. CAB proteins are essential pigment
binding proteins of light harvesting complex (LHC) which
is involved in photosynthesis [89,90]. CAB proteins also
play an important role in plant development [91] and leaf
senescence [73]. Therefore, the CAB gene may be a candi-
date for traits, which probably are influenced by photosyn-
thesis. However, further detailed genetic analysis of CAB
gene should reveal its molecular mechanisms underlying
stay-green and other related traits. Similarly, a genic
marker S18 (Sb09g030740) on SBI-09 was closely linked
with QSpadb-dsr09-3, QGlb-dsr09-3, QGlm-dsr09-3,
QGlab-dsr09-3, QGlam-dsr09-3 and QPglm-dsr09-3
QTL controlling SPADB, GLB, GLM, GLAB, GLAM,
PGLM and GY. This gene encodes Kelch-related pro-
teins, which are involved in cell development and pro-
grammed cell death. Biological studies indicate role of
these proteins in phyto-hormone response, embryo de-
velopment and programmed cell death [92,93].

Co-location of stay-green QTL and genes involved in the
chlorophyll metabolism

Comparative genomic analysis provides an excellent op-
portunity to learn from model crop plants like Arabi-
dopsis to deduce information on the relevant genes
involved in a trait expression. In chlorophyll metabolism,
15 enzymes catalyzing chlorophyll biosynthesis and five
enzymes catalyzing its degradation (Figure 2.) have been
identified and the genes coding these enzymes have been
cloned from this model plant. Search was made in the
genomic region of the sorghum stay-green QTL for the
existence of genes involved in chlorophyll metabolism
identified in model plant. Many of the stay-green QTL of
the present study overlapped with the genes controlling
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enzymes involved in chlorophyll metabolism (Additional
file 6: Table S2). For instance, the QTL QGLM-dsr04-1,
QGLB-dsr04-1, QGLB-dsr03, QGLAM-dsr03, QPGLAM-
dsr03, QGLM-dsr03, QPGLM-dsr03, QGLB-dsr0O3a,
QGLM-dsr03, QGLM-dsr03, QGLM-dsr03, QGLAB-
dsr03a, QGLB-dsr03a and QRLS-dsr10-1 co-located with
the genes involved in chlorophyll biosynthesis, while
the QTL QSPADB-dsr06-1, QGLB-dsr04-3, SPADB-
dsr01-1, QGLM-dsr02-3a, QSPADB-dsr05, QGLB-dsr03b,
QSPADB-dsr03 and QGLB-dsr03-1a found near to genes
involved in chlorophyll biosynthesis and degradation.
Comparing stay-green QTL and the genes controlling
chlorophyll biosynthesis and degradation in rice, the gen-
etic basis for stay-green could be through up-regulation of
chlorophyll biosynthesis- genes and down-regulation of
chlorophyll degradation genes [94]. Similar mechanism as
proposed in rice may also operate in sorghum in the ex-
pression of stay-green traits.

Conclusions

We validated important stay-green QTL reported earlier
and detected new QTL influencing stay-green. Major QTL
identified are reliable and can be employed for MAS to im-
prove drought tolerance of post-rainy sorghum varieties.
Stg2, Stg3 and StgB are key QTL identified in the study for
marker-assisted selection to improve terminal drought tol-
erance. The QTL linked markers would help sorghum
breeders to accumulate desirable allelic combinations and
accelerate development of improved drought tolerant sor-
ghum varieties. Understanding the genetic basis and mo-
lecular mechanisms of stay-green and cloning of the genes
responsible will have great impact in improving crop prod-
uctivity under drought stress not only in sorghum, but in
other major cereal crops as well.
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