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Abstract

Background: Ectopic vascular calcifications represent a major clinical problem associated with cardiovascular
disease and mortality. However, the mechanisms underlying pathological vascular calcifications are largely unknown
hampering the development of therapies to tackle this life threatening medical condition.

Results: In order to gain insight into the genes and mechanisms driving this pathological calcification process we
analyzed the transcriptional profile of calcifying vascular smooth muscle cells (C-VSMCs). These profiles were compared
to differentiating osteoblasts, cells that constitute their physiological calcification counterparts in the body. Overall the
transcriptional program of C-VSMC and osteoblasts did not overlap. Several genes, some of them relevant for bone
formation, were distinctly modulated by C-VSMCs which did not necessarily lose their smooth muscle cell markers while
calcifying. Bioinformatics gene clustering and correlation analysis disclosed limited bone-related mechanisms being
shared by two cell types. Extracellular matrix (ECM) and biomineralization genes represented common denominators
between pathological vascular and physiological bone calcifications. These genes constitute the strongest link between
these cells and represent potential drivers for their shared end-point phenotype.

Conclusions: The analyses support the hypothesis that VSMC trans-differentiate into C-VSMCs keeping their own
identity while using mechanisms that osteoblasts use to mineralize. The data provide novel insights into groups of
genes and biological processes shared in MSC and VSMC osteogenic differentiation. The distinct gene regulation
between C-VSMC and osteoblasts might hold clues to find cell-specific pathway modulations, opening the possibility
to tackle undesired vascular calcifications without disturbing physiologic bone formation and vice versa.
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Background

Vascular calcification in the tunica media of arteries and
blood vessels is often observed in the elderly population,
in patients with diabetes mellitus and/or chronic kidney
disease [1]. Vascular calcifications represent a major clin-
ical problem being in the origin of cardiovascular disease
and ultimately mortality [2]. Vascular smooth muscle cells
(VSMCs) are contractile cells located at the medial layer
of the vessel wall. VSMCs can be triggered to transdiffer-
entiate into calcified vascular cells (C-VSMCs), loosing the
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phenotypic markers responsible for smooth muscle cell
contractility [3,4]. Further physiological alterations of
VSMC include entering a synthetic state with abundant
production of extracellular matrix (ECM) proteins [1]
followed by matrix vesicle-mediated calcification [5,6].
It has been hypothesized that pathological medial cal-
cification is a process analogue to bone mineralization
with VSMCs entering an osteoblast-like differentiation
program [7]. Atherosclerotic plaques, of medial and
valvular origin, express several bone-related ECM proteins,
including osteopontin, collagen I, matrix GLA protein
(MGP), osteonectin and osteocalcin [7-9]. In addition,
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calcified vascular tissue expresses bone specific tran-
scription factors and bone morphogenetic proteins
(BMPs) [10-13]. Despite these similarities with osteoblast
differentiation the exact mechanism behind VSMCs trans-
differentiation into C-VSMCs remains largely unknown.
Some studies have suggested that only a subset of the
VSMC pool has osteogenic potential [10,14]. Patho-
logical vascular calcifications may arise due to loss
of mineralization inhibitors, which are continuously
expressed in healthy vascular tissue [15]. Mice lacking
MGP show spontaneous vascular calcifications [8], a
phenotype that is exacerbated when SPP1, another
mineralization inhibitor, is deleted [16]. Murshed and
colleagues [17] have explored this hypothesis further
showing that mineralization can occur in any collagen
type I rich tissue that expresses pyrophosphatases such
as alkaline phosphatase (ALP). While collagen type I is
ubiquitously expressed in the tissues, the co-expression
of this ECM protein with ALP is restricted to those that
mineralize. ALP is involved in the cleavage of pyro-
phosphate a potent mineralization inhibitor [18]. This
enzyme on its own was shown to be able of inducing
calcification in rat models of medial calcification [19].
Normally VSMCs do not express ALP but for unclear
reasons they can transdifferentiate into C-VSMCs that
show increased ALP activity [6,20].

In this study we aimed to reveal the processes whereby
VSMCs develop into C-VSMCs exhibiting a calcified
phenotype. We compared this pathological process to
the physiological mechanism regarded as an analogue
process, the differentiation of mesenchymal stem cells
into osteoblasts.

Under consideration were three hypotheses, 1) C-VSMCs
are osteoblast or osteoblast-like cells transdifferentiating
from the VSMC pool, 2) C-VSMCs initiate mineralization
using osteoblast-like mechanisms, and 3) C-VSMCs mine-
ralize using mechanisms unrelated to osteoblasts. To
address these hypotheses we used genome-wide gene
expression analysis during in vitro human VSMC de-
velopment into C-VSMCs and human mesenchymal
stem cell (MSC) differentiation into osteoblasts. We
investigated these processes in terms of their known
specific markers but also in an unbiased general per-
spective, using bioinformatics tools. Global expression
profiles and gene regulation were used to pinpoint the
transcriptional program and the identity of a C-VSMC
in comparison to the phenotype-resembling osteoblast.

Results

The complete VSMC population develops into an ALP
positive population under osteogenic stimuli

VSMCs and MSCs were cultured in osteogenic medium for
25 days to induce development into C-VSMCs and osteo-
blast respectively. During this period total ALP activity was
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measured. As shown in Figure 1A, ALP activity increased
in C-VSMCs and osteoblasts cultures compared to
their precursor cells with enzymatic activity reaching
higher absolute levels in osteoblasts than in their C-
VSMC counterparts.

In addition, we measured ALP expression at the indi-
vidual cell level by flow cytometry. This data (Figure 1C)
corroborated the ALP activity measurements. Further-
more it demonstrates that MSC and VSMC (trans)
differentiation is characterized by an expansion of the
ALP + cell pool (Figure 1D and E).

C-VSMCs and osteoblasts have distinct global gene
expression profiles

Next, we performed comparative genome-wide mRNA
expression analysis in osteogenic VSMC and MSC cul-
tures to characterize their transcriptional similarities and
dissimilarities. Five time-points (day 0, 2, 8, 12 and 25)
were analyzed during VSMC development to C-VSMCs
and MSC to osteoblasts. The data were normalized and
probes/genes expressed in neither VSMC/C-VSMC nor
MSC/osteoblasts were excluded from further analysis. The
overlap of expressed probes between osteogenic VSMC
and MSC cultures contained 14733 probes representing
11302 unique genes. These probes/genes were subse-
quently used for Principle Component Analysis (PCA).
PCA allowed simultaneous comparison of multiple time-
points in both cell types summarizing the relationship be-
tween them. The closer the data points appear in the PCA
plot (Figure 2), the more similar their gene expression pro-
files are. The PCA plot showed that VSMCs and MSCs at
the start of culture (day 0) represented two clearly distinct
clusters that upon osteogenic stimulation did not converge
into an indistinguishable cluster of similarity (Figure 2). In
other words, C-VSMCs and osteoblasts are two distinct
cell types in terms of global gene expression.

Several clusters could be identified during C-VSMC
and osteoblast development. For both cell types, day 2
represented an intermediate stage after the osteogenic
stimuli given to VSMCs and MSCs (day 0; Figure 2).
This transient stage is followed by a more stable period,
day 8-25, in which gene expression did not change so
dramatically (Figure 2).

VSMC calcifications are not dependent on the

down-regulation of smooth muscle cell contractile markers
In the subsequent analysis we investigated the expression
of (vascular) smooth muscle cell marker genes. We se-
lected established VSMC markers described in literature
[21], including alpha-actin-2 (ACTA2), smooth-muscle
myosin (MYH11), calponin (CNN1), smooth muscle
protein 22-alpha (TAGLN), telokin (MYLK), smoothe-
lin (SMTN), caldesmon (CALD1), vinculin (VCL) and
adipocyte enhancer-binding protein 1 (AEBP1) (Figure 3).
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Figure 1 Characterization of the C-VSMC development and osteoblast differentiation processes. ALP activity (A) and mineralization (B)
corrected for protein during the 3 week cell culture period. ALP + cell signal, measured by FACS until the second week of culture, is shown in
panel (C). Detailed scatter plots with the distribution of the ALP + signal between the cell populations are depicted in (D) and (E). Value means +
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We verified that expression of many of these genes was
increased in C-VSMCs compared to their VSMC pre-
cursors during osteogenic conditions. This result was
confirmed by qPCR but it could not be replicated in
C-VSMCs from a second independent donor (Additional
file 1: Figure S3). This data demonstrate that C-VSMC
are able to transdifferentiate without losing the con-
tractile phenotype markers of VSMC. In addition it
raises the idea C-VSMC do not necessarily acquire a full
osteoblast-like transcriptome, something also found to
be true for other models of vascular calcification [22].

Genes identically regulated by C-VSMCs and osteoblasts
are functionally annotated to extracellular region

To identify whether only specific groups of genes were
identically regulated by C-VSMCs and osteoblasts,
we have selected differentially expressed genes during
VSMC development into C-VSMCs and during MSC

differentiation into osteoblasts. Differential expression
was calculated for each cell type relative to day 0, when
osteogenic treatment was initiated. Probes/genes were
considered differentially expressed when on at least one
day during culture their log, fold-change compared to
day O was significantly (q-value < 0.001) higher than 0.5
(up-regulation) or lower than -0.5 (down-regulation).
During C-VSMC development and osteoblast differenti-
ation 3721 probes and 3114 probes met this criterion,
respectively. Considering the two cell types combined,
4782 probes were found to be differentially expressed
(Additional file 2: Table S1). Of these 4782 probes, 1638
and 1061 were exclusively differentially expressed in
C-VSMC s or in osteoblasts, respectively. Regarding the
direction of gene expression regulation, 1968 probes
were identically regulated while 150 were oppositely
changed during C-VSMC and osteoblast development
(Additional file 2: Table S1).
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Figure 2 Principal Component Analysis of the global gene expression changes occurring during C-VSMC development and osteoblast
differentiation. 14733 probes expressed by both VSMC/C-VSMC and MSC/osteoblasts (OB) at day 0, 2, 8, 12 and 25 were considered for analysis.
Distance between samples is directly proportional to gene expression differences. Each time point is represented by the average of 3 biological

principal components.

replicates with exception for day 0 where n=4. Between parenthesis in the x- and y-axis is the percentage of variance captured by the two

The temporal and directional expression dynamics of
the 4782 differential expressed probes during C-VSMC
development and osteoblast differentiation is resumed in
Figure 4. K-means clustering separated the differentially
expressed probes during C-VSMC development and
osteoblast differentiation into clusters sharing common
regulation patterns. On basis of Figure of Merit (FOM)
analysis we concluded to divide gene expression data in
6 clusters (Figure 4A). This number of clusters was
found to provide good predictive power for the k-means
algorithm (Additional file 3: Figure S1) without restrict-
ing the cluster size for functional annotation analysis.
Functional Gene Ontology (GO) annotation of genes
underlying these clusters revealed information about the
biological processes, cellular compartments and molecu-
lar functions during C-VSMC development and osteo-
blast differentiation (Figure 4B).

Clusters 1, 2 and 3 contained up-regulated genes while
clusters 4, 5 and 6 represented down-regulated genes in
both C-VSMCs and osteoblasts (Figure 4A). In clusters
1 and 2 C-VSMCs and osteoblast shared the over-
representation of genes linked to extracellular region
(GO:0044421 and GO:0005576, Figure 4B). In clusters

3, 4, and 5 several GO-terms were also shared by C-
VSMCs and osteoblasts but these were more general
GO-terms like cell cycle, RNA processing, chromosome,
biological response to organic substance, etc., related to
general cell function/metabolism. An exemption was
cluster 6 that only showed significant enriched GO
terms for C-VSMCs. This fact may be attributed to stat-
istical issues related to the lower number of genes fitting
this cluster in osteoblasts. Overall, cluster analyses did
not clearly identify sets of bone-related processes or
cellular components shared by C-VSMCs and osteo-
blast. Nevertheless, it was interesting to observe that a
common set of extracellular region genes from cluster
1 and 2 (Figure 4A and B) was similarly regulated by
both cell types indicating a shared mechanism involving
changes in the extracellular environment/matrix.

C-VSMCs express a subset of extracellular matrix genes
and genes involved in biomineralization

Considering the relevance of the extracellular environ-
ment for osteoblast differentiation and mineralization, we
analysed in greater detail the expression of genes linked to
extracellular region present in cluster 1 and 2. Cluster 1
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and 2 contained in total 58 extracellular region genes
(equivalent to 76 probes; Additional file 4: Table S2)
overlapping in C-VSMC and osteoblasts (Figure 5A).
Expression pattern analyses of the cell type-specific
genes from cluster 1 and 2 (43 and 42 for C-VSMCs
and osteoblasts respectively; Additional file 4: Table S2)
showed clearly distinct expression patterns for C-VSMCs
(Figure 5B) and osteoblasts (Figure 5C).

The observation that among the 58 extracellular re-
gion genes overlapping in C-VSMCs and osteoblasts was
a large subpopulation of ECM genes prompt us to iden-
tify differentially expressed ECM genes (GO:0031012)
identically modulated in both cell types. From the 126
(160 probes) differentially expressed ECM genes in total
57 (76 probes) were identically modulated in C-VSMCs
and osteoblasts (Additional file 5: Table S3). The expres-
sion pattern of these 57 genes is shown in Figure 5D.
Some of them are known to be involved in mineralization
process of both the bone and the vasculature. This is the

case for POSTN (periostin) and ADAMTS1 (ADAM
metallopeptidase with thrombospondin type 1 motif),
two genes showing consistent regulation across distinct
primary cell donors (Additional file 1: Figure S3).

In an alternative approach to compare osteoblasts and
C-VSMC we performed gene correlation analyses based
on a priori selected GO-terms that are relevant for bone
formation and mineralization. These GO-terms included
among others biomineral tissue development, osteoblast
differentiation and regulation of BMP signaling genes
(see the full list of GO-terms analyzed in the Material
and Methods section 2.7). To assess specificity, correl-
ation analyses were also performed for a randomly
selected set of expressed genes. Genes involved in
biomineral tissue development (25 genes; Additional
file 6: Table S4) showed the highest correlation between
C-VSMCs and osteoblasts (r* = 0.31; Figure 6A) with an
r* much higher than for a similar number of randomly
selected expressed genes (r* =-0.29; Figure 6E). On the
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Figure 4 Clustering of genes with similar expression patterns in C-VSMCs and osteoblasts and respective functional annotation of the
clusters. (A) Clusters of genes with similar expression pattern for C-VSMCs and osteoblasts were obtained using k-means clustering (k= 6). For
these analysis only differentially expressed genes were used. Average relative gene expression level (log, fold-change relative to day 0) for all
probes within each cluster at the different time points analyzed is shown. (B) Functional annotation for each of the 6 clusters in C-VSMCs and
osteoblasts. Only significant (Bonferroni p-value < 0.05) biological process, cellular compartment and molecular function annotations were considered
for analysis. Numbers within grid represent fold-enrichment levels of GO-terms in the distinct clusters. The number of probes/genes comprised in each
cluster is also indicated.

contrary, GO term such as regulation of osteoblast
differentiation and BMP signaling failed to correlate C-
VSMCs and osteoblasts (Figure 6B and C). In Additional
file 7: Figure S2 the expression pattern of a selection of
genes driving the correlation in the GO-term biomineral
tissue development and the anti-correlation in the GO-

term regulation of BMP signaling is shown. At least LEP
(leptin) and SOST (sclerostin), from the correlation and
anti-correlation group of genes respectively, could be vali-
dated distinct donors (Additional file 1: Figure S3). More-
over, we found good translation between leptin transcript
and protein levels, especially for the donor used in the
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array (Additional file 3: Figure S3). Altogether, our results
demonstrate that a specific subset of extracellular genes,
including ECM genes, together with genes involved in the
regulation of mineralization represent a common denom-
inator between C-VSMCs and osteoblasts.

Discussion

The current comparative global gene expression profil-
ing analyses of osteoblasts and C-VSMC demonstrate
that VSMC under an osteogenic stimulus only partially
mimic osteoblasts. Despite the fact that C-VSMCs had

an overall transcription profile distinct from osteoblasts,
the two cell types regulated identically subsets of ECM
and biomineralization genes. These results support
the hypothesis that VSMCs require specific osteoblast-
related gene modulation and mechanisms to transdif-
ferentiate into C-VSMCs.

The mechanisms responsible for the transformation of
a contractile VSMC into a stiff, mineral surrounded cell
are still poorly understood. We demonstrated that the
whole VSMCs pool has osteogenic potential and pro-
gresses towards ALP + cells when exposed to osteogenic
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stimuli. This indicates that C-VSMCs are not derived
from a small and specific vascular cell subpopulation
with osteogenic potential, as shown in other vascular
calcification models [10,14]. The relatively homogenous
C-VSMC population (based on ALP activity) observed
in our study enabled us to use global gene expression
profiles.

Genome-wide gene expression analyses in in vitro
models of pathological and physiological mineralization
revealed important characteristics of vascular calcifica-
tions. C-VSMC development (and osteoblast differenti-
ation) comprised three major phases. The first phase
contained VSMC before being triggered to transdiffer-
entiate (day 0; Figure 2). When VSMC were exposed to an
osteogenic stimulus, their transcriptional program was
quickly altered entering a transient intermediary stage
(day 2; Figure 2) after which transcriptional changes be-
came more subtle (day 8-25; Figure 2). We believe that
the intermediary phase represents a commitment period
responsible for the transition of VSMC into C-VSMCs.
In this respect, the clusters of genes identified to be
down-regulated (cluster 4-6; Figure 5) were particularly
interesting due to their annotation to GO-terms in-
volved in the regulation of cell cycle, cell division and
transcription. We believe that the modulation of genes
with such functions is possibly associated to the switch
of VSMC from proliferative into transdifferentiating
cells [3,4], an effect observed in osteoblasts under the
influence of glucocorticoids [23,24].

Regarding the comparative transcription profiling, we
identified 57 ECM genes identically regulated by C-
VSMCs and osteoblasts. Their common modulation pat-
tern strongly supports their structural and/or regulatory
role in both forms of calcification. On the other hand,
ECM genes that did not share identical expression in
both cell types are likely to be less crucial for mineral
deposition. However, ECM gene data are yet difficult to
interpret since little is known about the function of most
of the proteins encoded by these genes in matrix
mineralization. Genes like DCN, MGP and POSTN con-
stitute exceptions, being known for their crucial role
during bone formation and mineralization [8,25,26].
MGP for example is a potent inhibitor of calcification
both in bone and in the vasculature [8]. These genes
represent a strong evidence for the implication of the
other ECM genes, with yet unknown relationship to
matrix mineralization, in vascular calcifications. This
evidence is further substantiated by the fact that several
ECM genes (e.g. FBLN5, POSTN, TIMP4) are targets of
activin A, a potent inhibitor of ECM mineralization [27].
Recently we have identified over 1200 different proteins
present in bone tissue [28]. It is conceivable that ECM
proteins act in concert with each other and that the
combination of ECM proteins eventually determines the

Page 9 of 14

extent of mineralization. It will be a great challenge to
identify and characterize these interactions. The current
study demonstrating only a limited overlap in ECM gene
expression between osteoblasts and C-VSMC will facili-
tate this challenge by enabling to focus on the selection
of overlapping ECM genes. Additional studies focusing
on this subset of genes are essential to prove their in-
volvement in biomineralization and during the athero-
sclerotic process in particular.

Besides ECM, analysis of genes differentially regulated
during physiological and pathological calcifications re-
vealed that C-VSMCs share specific genes related to the
GO-term biomineral tissue development. ALPL (alkaline
phosphatase), GPNMB (glycoprotein nmb), LEP (leptin),
PTN (pleiotrophin) and SRGN (serglycin) were among
genes within this GO-term that have been already stud-
ied in the context of tissue calcifications. ALPL has been
shown to be fundamental for mineralization. This pyro-
phosphatase inactivates the mineralization inhibitory
pyrophosphate [29] facilitating not only bone but also
vascular calcifications [17,19]. Together with ALPL, LEP
and GPNMB are genes capable to promote calcifications.
LEP is an energy metabolism hormone that enhances
mineralization both in bone [30,31] and in vascular tis-
sue [32] while GPNMB, is a glycoprotein implicated in
end-stage renal disease (ESRD) a pathological condition
associated to ectopic calcifications [33]. Biomineral
tissue development genes did not include only genes
favouring mineral deposition. SRGN was recently de-
scribed as an inhibitor of osteoblast mineralization
[34]. Despite not described with respect to ectopic
mineralizations, the up-regulation of this gene during
C-VSMC development might represent a mechanism to
protect the vasculature from calcifications similarly to
what is described for MGP [15].

Our comparative gene expression profiling consti-
tutes a powerful tool to identify novel targets to con-
trol physiological as well as pathological calcifications.
Nevertheless, our bioinformatics approach was limited
to the identification of genes currently annotated in
GO databases as belonging to ECM or involved in
biomineralization. We hypothesize that more ECM
and biomineralization genes are involved in both forms
of calcification but because they are not yet annotated
as such they were missed in our analysis. A limitation
of our approach is related to the heterogenic response
across primary cell sources [35] leading to distinct tem-
poral dynamics during differentiation and mineralization.
Overall, results obtained by gene expression array
could be confirmed using qPCR within the same donor
(Additional file 1: Figure S3). However, analysis of 2
distinct donors revealed less consistent results, likely
due to the natural variability of these primary cells and
their donors [36].
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Correlation analysis of bone-related genes expressed
during VSMC transdifferentiation showed groups of
genes negatively correlated between C-VSMCs and oste-
oblasts, substantiating the uniqueness of the former cell
type. For example, genes of the important osteoblast
BMP/TGE-B/Activin signaling cascade (e.g. ACVR2A,
GREM1, SMAD7) were oppositely regulated by C-VSMCs
and osteoblasts. The divergence of these genes in C-
VSMCs and osteoblasts supports the concept of cell-
specific pathway modulations in both cell types. This
is something recently observed in other tissues/cells
[37,38] but not yet investigated with respect to medial
vascular calcifications and bone. Nevertheless, BMP7 is
a gene that appears to corroborate this concept since it
is described as promoter of normal osteoblast function
[39,40] and capable to prevent atherosclerosis [41,42].
More studies are needed to define the exact role of each
of these genes and most importantly their cross-talk to
other signaling pathways [43,44], like the Wnt signaling
of which we have identified genes distinctly modulated
between C-VSMCs and osteoblasts (e.g. SOST).

Conclusions

Altogether, the different analyses support the hypothesis
that VSMC transdifferentiate into C-VSMCs keeping
their own identity while using mechanisms that osteo-
blasts use to mineralize. Extracellular (matrix) genes and
genes involved in tissue mineralization constitute im-
portant common denominators between pathological
vascular and physiological bone calcifications. A limita-
tion of our study is that one still has to study heteroge-
neous MSC and VSMC populations that differ from
donor to donor in magnitude of gene expression and
temporal dynamics, which relates to differences between
donors we observed. Nevertheless the current study pro-
vides novel insights into groups of genes and biological
processes shared in MSC and VSMC osteogenic differ-
entiation. Our data ought to be tested in a wider pool of
primary cell donors in order to further discriminate the
consistently regulated genes. Finally, distinct gene regu-
lation between C-VSMC and osteoblasts might be of
interest to find cell-specific pathway modulations, open-
ing the possibility to tackle undesired vascular calcifica-
tions without disturbing physiologic bone formation and
vice versa.

Methods

Cell culture

Human bone marrow-derived Mesenchymal Stem Cells
(MSCs; PT-2501, Lonza, Walkersville, MD, USA) and
Vascular Smooth Muscle Cells (VSMCs; coronary artery
smooth muscle cells, CC-2583, Lonza) were cultured as
described previously [27]. Briefly, MSCs and VSMCs
were expanded in Mesenchymal Stem Cell Basal Medium
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(MSCBM, PT-3238, Lonza) supplemented with Mesen-
chymal Stem Cell Medium SingleQuot Kit (MSCGM,
PT-4105, Lonza) and Smooth muscle cell Basal Medium
(SmBM, CC-3181, Lonza) supplemented with Smooth
muscle Medium-2, SingleQuot Kit (SmGM-2, CC-4149,
Lonza) respectively. For induction of MSCs differentiation
into osteoblasts (referred also as MSC/osteoblasts) and
VSMC development into C-VSMCs (VSMC/C-VSMC),
cells were cultured in DMEM medium (GIBCO, Paisley,
UK) containing 10% FCS, penicillin/streptomycin, 1.8 mM
CaCl, (Sigma, St. Louis, MO, USA) and 20 mM HEPES
(Sigma), pH 7.5. Additionally, this medium was freshly
supplemented with 0.1 mM ascorbic acid (Sigma), 10 mM
3-glycerophosphate (Sigma) and 100 nM dexamethasone
(DEX, Sigma). In the present study 2 independent MSC
and VSMC donors were used, one for the gene expression
array and the other for validation purposes. All analyses
were performed on samples collected at the beginning of
cell culture (day 0, before induction of differentiation) and
during week 1, 2 and 3 of culture.

Alkaline Phosphatase and protein concentration

ALP activity was assayed as described elsewhere [45].
Results were corrected for the protein content of the cell
lysates. Protein concentration was determined using a
BCA kit (Pierce Biotechnology, Rockford, IL, USA) fol-
lowing the manufacturer’s instructions.

Flow cytometry analysis of ALP positive cell population
Cells were washed in PBS, trypsinized and fixed in 2%
PFA for 10 min at room temperature. Cells were perme-
abilized in 90% ice-cold methanol and after re-suspension
incubated for 10 min in blocking solution (PBS/0.5%
BSA). Cells were probed with a primary monoclonal
mouse antibody against Alkaline Phosphatase, Tissue
Non-Specific (1:100, 1 h; ab17973, Abcam). A goat anti-
mouse IgG R-Phycoerythrin conjugated antibody (1:50,
30 min; M30004-1, Invitrogen, Camarillo, CA, USA) was
used as a secondary antibody. Finally, cells were re-
suspended in PBS and the ALP + population was mea-
sured in the PE-A channel (excitation 488 nm) using a
Becton Dickinson FACS-Canto (BD Biosciences).

RNA isolation and quantification

Total RNA was isolated using TRIzol (Invitrogen) ac-
cording to the manufacturer’s instructions. An additional
step was introduced to remove calcium (derived from
ECM). RNA was precipitated by overnight incubation
with 4 M LiCl and 50 mM EDTA at -20°C. After pre-
cipitation and centrifugation for 30 min at 14,000 rpm
and 4°C, the RNA pellet was washed four times with
70% ethanol and dissolved in H,O. The RNA concentra-
tion was determined spectrophotometrically using a
NanoDrop ND-2000 (Thermo Scientific, Wilmington,
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DE, USA) and its quality accessed by RNA 6000 Nano
assay on a 21000 Bioanalyzer (Agilent Technologies, Santa
Clara, CA, USA), both according to the manufacturer’s
instructions.

lllumina gene chip-based expression

Gene-chip based expression was performed essentially
as recently described [46] using 3 biological replicates
per condition with exception for day O cultures for
which 4 replicates were used. Briefly, 150 ng of RNA
were amplified using the [llumina TotalPrep RNA Ampli-
fication kit (Ambion, Austin, TX, USA) as recommended
by the manufacturer. Single-stranded cDNA was gener-
ated using a T7 oligo(dT) primer and was followed by
second-strand cDNA synthesis. cDNA was further tran-
scribed in vitro using a T7 RNA polymerase generating
biotin-labeled cRNA. After cRNA purification its quality
was checked on a Bioanalyzer (Agilent Technologies) and
its concentration determined using a NanoDrop (Thermo
Scientific). Per array, 750 ng of cRNA were hybridized,
washed and detected using the standard Illumina protocol.
Slides were scanned on an iScan and analyzed using
Genome Studio v2010.1, both from Illumina.

Gene expression data processing
Gene expression data were processed as described else-
where [46]. Raw gene expression data were background
subtracted using Genome Studio and further processed
using the Bioconductor R2.10.0 lumi-package [47]. The
data were transformed by variance stabilization and
quantile normalized. Probes significantly expressed (Illu-
mina detection p-value < 0.01) in at least 3 samples from
VSMC/C-VSMC and MSC/osteoblasts were considered
as expressed and used for subsequent analysis, namely
multivariate Principal Component Analysis (PCA).
Probes differentially expressed relative to the starting
culture condition, ie. day 0 of culture, were identified
using the Bioconductor package ‘limma’ [48] with adjusted
p-values (g-value) to reduce the false discovery rate.
Differential expression was considered whenever a
probe had a log, fold-change >0.5 (up-regulation) or < -0.5
(down-regulation) relative to day 0 and a q-value <0.001.

Data analysis: clustering, correlation and functional
annotations

Differentially expressed probes were analyzed by k-means
clustering using Gene Pattern (http://www.broadinstitute.
org/cancer/software/genepattern/) [49]. Independent clus-
tering analyses were performed for C-VSMCs and osteo-
blasts. The predictive power of k-means clustering was
computed using FOM analysis in MultiExperiment
Viewer v4.7 (http://www.tm4.org/) [50]. The maximum
number of clusters and iterations was set to 15 and 50
respectively. From the FOM results we opted for 6
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clusters (k=6; Additional file 3: Figure S1) in both cell
types. Differentially expressed probes within each of the
groups identified by k-means clustering for C-VSMCs and
osteoblasts were analyzed using DAVID Bioinformatics
Resources 6.7 (http://david.abcc.ncifcrf.gov/) [51] to obtain
a comprehensive description of the over-represented
biological processes, cellular compartments and mo-
lecular functions. Redundant GO-terms were removed
using REViGO (http://revigo.irb.hr/) [52].

In an independent targeted analysis, we matched
expressed probes to GO-terms related to bone biology
(GO:0031012, ECM; GO:0031214, biomineral tissue devel-
opment; GO:0030282, bone mineralization; GO:0001503,
ossification; GO:0045667, regulation of osteoblast differen-
tiation; GO:0051924, regulation of calcium ion transport;
GO:0016462, pyrophosphatase activity; GO:0030510, regu-
lation of BMP signaling pathway). The Illumina probe/
gene symbol information underlying each GO-term was
retrieved using the Martview query from the BioMart
open source tool version 0.7 (http://www.biomart.org).
Genes underlying these GO-terms were subsequently used
for correlation analysis essentially as described elsewhere
[28,53]. Briefly, we calculated the geometric mean of the
intensities for each expressed probe set. The level of
expression of each probe set was then determined relative
to this geometric mean. The expression values were loga-
rithmically transformed (on a base 2-scale) to impute
equal weight to gene-expression levels with similar relative
distances to the geometric mean. Deviation from the
geometric mean was considered as differential gene
expression. Similarities and dissimilarities between VSMC/
C-VSMC and MSC/osteoblasts samples were visualized by
Pearson’s correlation using Omniviz (BioWisdom Inc.,
version 6.0.1). As a control, similar correlation analysis
were performed using randomly selected sets of expressed
probes containing similar number of genes as the
GO-terms analyzed.

Gene expression validation at mRNA and protein level

RNA isolation was done as described above. cDNA syn-
thesis and quantitative polymerase chain reaction (qPCR)
were carried out as described elsewhere [54] except that
the total amount of RNA was quantified spectrophotomet-
rically using NanoDrop technology. Primer and probe se-
quences (5 to 3’) were as follows: POSTN forward primer
TGT GGA CAG AAA ACG ACT GTG TTA and reverse
primer CGA TGC CCA GAG TGC CATA; TGFBI
forward primer CTA CAT TTG GAG CCT GGA CA and
reverse primer CCG GGT TAT GCT GGT TGTA; LEP
forward primer ACA CAC GCA GTC AGT CTC CTC
CAA and reverse primer AGG TCA GGA TGG GGT
GGA GCCG; SOST forward primer GAA TGA TGC CAC
GGA AAT CAT and reverse primer CGG ACA CGT CTT
TGG TCT CA; TAGLN forward primer GGC TGA AGA
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ACG GCG TGAT and reverse primer GAC CTT CAC
CGG CTT GGA; ACTA2 forward primer GAG CGA
GGC TAT TCC TTT GTGA and reverse primer ACG
TAG CAC AGC TTC TCC TTG AT; PTGS2 forward pri-
mer GAA TCA TTC ACC AGG CAA ATTG and reverse
primer TCT GTA CTG CGG GTG GAA CA; MGP for-
ward primer CCT GCT CCT TCT CTC CAT TCTG and
reverse primer TAG GAT TCC ATA CTT TCA TGA
CAT TCG; ADAMTSI forward primer GGA CAG GTG
CAA GCT CAT CTG, reverse primer TCT ACA ACC
TTG GGC TGC AAA and FAM/TAMRA probe CAA
GCC AAA GGC ATT GGC TAC TTC TTCG; WNT5A
forward primer GCT CCG CTC GGA TTC CTC and
reverse primer CCA ATG GAC TTC TTC ATG GCG;
GREMI1 forward primer CGC CGC ACT GAC AGT ATG
AG and reverse primer TCT TTT TCC CTT CAG CAG
CC. All primers were purchased from Sigma-Aldrich.

For leptin measurements, medium was collected during
VSMC/C-VSMC and MSC/osteoblasts cultures. Condi-
tioned medium was collected after 78 h incubation with
the cells. After centrifugation (5 min, 500 g), the medium
was stored at —20°C until further analysis. Cell lysates were
also collected to analyze the protein content of the corre-
sponding cultures. Leptin was measured in 50 pl medium
using the Human Leptin DuoSet DY398 ELISA kit (R&D
Systems).

Availability of supporting data

The gene expression data here analyzed is publicly available
and can be retrieved from the Gene Expression Omnibus
(GEO) at the National Center for Biotechnology Informa-
tion (NCBI) under the accession number GSE37558 (data
available at http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE37558).

Additional files

Additional file 1: Figure S3. Validation of the gene expression data. A
selection of genes regulated in VSMC/C-VSMC and MSC/osteoblast was
validated using gPCR in 2 independent donors (Donor 1 =main donor;
Donor 2 = biological replication donor). Leptin expression was also
confirmed at the protein level (ELISA) in the conditioned medium from
VSMC/C-VSMC and MSC/osteoblast cultures (bottom right panel).

Additional file 2: Table S1. Number of probes differentially expressed in
C-VSMCs and osteoblasts. Differential expression was calculated independently
for both cell types and relative to their initial time point, day 0. The 4782
probes regulated were divided in three categories, identical or opposite
regulation in the two cell types and cell-specific regulation. Only
significantly regulated probes (q < 0.001) were considered.

Additional file 3: Figure S1. Figure of merit (FOM) analysis to estimate
k-means clustering predictive power in genes differentially expressed by
C-VSMCs and osteoblasts. The lower the adjusted FOM value (y-axis) the
higher the predictive power of the k-means algorithm. k =6 (dashed
lines) was used for both cell types.

Additional file 4: Table S2. List of extracellular region probe/genes
present in cluster 1 and 2 of C-VSMCs/osteoblasts, C-VSMCs only and
osteoblasts only.
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Additional file 5: Table S3. List of ECM probe/genes differentially
expressed and identically regulated in C-VSMCs and osteoblasts.

Additional file 6: Table S7. List of biomineral tissue development and
BMP signaling probes/genes used for correlation analysis in C-VSMCs and
osteoblasts.

Additional file 7: Figure S2. Expression profile of a selection of
correlated biomineral tissue development genes and of anti-correlated
BMP signaling genes during C-VSMC development and osteoblast
differentiation. Expression is plotted as log, fold-change relative to dO.
Each line plotted represents a probe set. Probe/gene identifiers are
provided in Additional file 6: Table S4.
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