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Abstract

Background: The perfect phylogeny is an often used model in phylogenetics since it provides an efficient basic
procedure for representing the evolution of genomic binary characters in several frameworks, such as for example
in haplotype inference. The model, which is conceptually the simplest, is based on the infinite sites assumption,
that is no character can mutate more than once in the whole tree. A main open problem regarding the model is
finding generalizations that retain the computational tractability of the original model but are more flexible in
modeling biological data when the infinite site assumption is violated because of e.g. back mutations. A special
case of back mutations that has been considered in the study of the evolution of protein domains (where a
domain is acquired and then lost) is persistency, that is the fact that a character is allowed to return back to the
ancestral state. In this model characters can be gained and lost at most once. In this paper we consider the
computational problem of explaining binary data by the Persistent Perfect Phylogeny model (referred as PPP) and
for this purpose we investigate the problem of reconstructing an evolution where some constraints are imposed
on the paths of the tree.

Results: We define a natural generalization of the PPP problem obtained by requiring that for some pairs
(character, species), neither the species nor any of its ancestors can have the character. In other words, some
characters cannot be persistent for some species. This new problem is called Constrained PPP (CPPP). Based on a
graph formulation of the CPPP problem, we are able to provide a polynomial time solution for the CPPP problem
for matrices whose conflict graph has no edges. Using this result, we develop a parameterized algorithm for
solving the CPPP problem where the parameter is the number of characters.

Conclusions: A preliminary experimental analysis shows that the constrained persistent perfect phylogeny model
allows to explain efficiently data that do not conform with the classical perfect phylogeny model.

Background
Character-based phylogeny is a broad notion to represent
an evolutionary history describing the ancestral relation-
ships among extant taxa or individuals. Recent applica-
tions show that the model can be applied to study the
evolution of mutations related to various genomic infor-
mation, such as protein domains [1] or markers in tumors.
Thus in our formulation, it is not important whether we

are actually studying taxa or individuals or other genomic
data. We will follow the usual convention of calling species
the units of study. The main element of this notion is that
the instance is also made of a set of characters, and each
species is in a specific state for each character [2]. The
goal is to find a phylogeny where the known species are
the leaves, and the internal nodes are labeled–just as the
leaves–by a state for each character. For each edge (x, y) of
the phylogeny, the mutated characters along the edge are
those whose states are different in x and y. The simplest
case is when all characters are binary, that is only two
states (0 and 1) are possible, modeling the situation when
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each species has or does not have a given feature, such as
wings (a phenotypical trait) or the mutation encoding lac-
tase persistence (a genotypical trait).
Moreover, we are assuming a coalescent model, that is

the fact that a characteristic shared by a set of species
can be traced back to a single ancestral species. Assum-
ing that the state 1 encodes the fact that a species has a
given character (for example, the fact that the species
has acquired a given mutation), the coalescent model
implies that the phylogeny is directed. Restrictions on
the type of changes from zero to one and vice versa
lead to a variety of specific models [3].
The perfect phylogeny is one of the most investigated

coalescent models [2]. Conceptually the model is based
on the infinite sites assumption, that is no character can
mutate more than once in the whole tree. The binary
perfect phylogeny problem has received much attention,
culminating with the linear time algorithm when all
data is known [4] and an efficient algorithm when the
input data is incomplete [5]. While the infinite sites
assumption is quite restrictive, the perfect phylogeny
model turned out to be splendidly coherent within the
haplotyping problem [6,7], where we want to distinguish
the two haplotypes present in each individual when only
genotype data is given. More precisely, the interest here
is in computing a set of haplotypes and a perfect phylo-
geny such that the haplotypes (i) label the vertices of
the perfect phylogeny and (ii) explain the input set of
genotypes. This context has been deeply studied in the
last decade, giving rise to a number of algorithms [8,9].
Still, the perfect phylogeny model and the assumptions
that have been central in the previous decades cannot
be employed without adaptations or improvements. A
first generalization in the literature allows for more
states (but keeping the infinite sites assumption). In the
general case, the problem is NP-hard [10], but it has an
algorithm parameterized by the number of states
[11,12]. The special cases when there are three or four
possible states have more efficient algorithms [13-15].
Even allowing more states cannot explain the biologi-

cal complexity of real data, when homoplasy events
(such as recurrent mutations or back mutations) are
present. Two cases where those limitations are evident
are the study of carcinogenesis and protein domains.
Carcinogenesis consists of the factors and mechanisms
that cause the onset of cancer; it results from many
combinations of mutations, but only a few, called pro-
gression pathways, seem to account for most human
tumors [16]. The observation that tumors are evolving
cell populations leads to phylogeny-based studies. At the
same time the intrinsic nature of quickly and degener-
ately proliferating cancer cells, results in a relative high
amount of sites with multiple mutations (i.e., in viola-
tions of the infinite sites assumption). A protein domain

is a part of protein sequence and structure that can
evolve independently of the rest of the protein chain.
Many proteins consist of several structural domains,
while a domain may appear in a variety of different pro-
teins. In this case it is quite frequent to acquire a
domain and then to lose it [17].
Thus a central goal of this paper is to find a model

that is more widely applicable than the perfect phylo-
geny, while retaining its computational efficiency (in
fact, more general models such as the Dollo and the
Camin-Sokal models are NP-hard [3]). The problem of
constructing phylogenies where the deviations from per-
fect phylogeny are small has been tackled under the
name of near perfect phylogeny [11] or near perfect
phylogeny haplotyping problems [18]. Especially the
impossibility of losing a character that has been pre-
viously acquired is too restrictive, resulting in more ela-
borated models, such as the persistent character [1] and
the General Character Compatibility [19,20].
More precisely, the Persistent Perfect Phylogeny model

[21] allows each character to be lost (i.e., going from
state 1 to 0) in at most an edge of the phylogeny, while
the General Character Compatibility imposes some
restrictions on the possible mutations (that is on the pos-
sible states labeling the endpoints of an edge), while
allowing the input data to be a set of possible states for
each character of a species. In this paper we combine the
Persistent Perfect Phylogeny (PPP) and the General
Character Compatibility (GCC), introducing the Con-
strained Persistent Perfect Phylogeny problem (CPPP)
which generalizes the PPP by adding a constraint for
some characters c in the input data, given by the fact
they cannot be persistent for some species s (i.e., the
state of c does not go from 1 to 0 for any edge lying on
the path from the root to s). Since the CPPP problem is
equivalent to a case of GCC whose complexity is still
open [19,22], our results also apply to GCC.
Finally, we explore some algorithmic solutions for the

CPPP problem. In particular, we give a polynomial time
solution of the CPPP problem over matrices whose con-
flict graph has no edge. This result partially answer the
open problem stated in [21] of determining the computa-
tional complexity of the PPP problem. In the paper we
have run a preliminary experimental analysis showing that
our method can manage successfully binary characters
data incorporating back mutations. The results show that
the algorithm performs efficiently on simulated matrices
as well as on real data taken from the HapMap project.

The persistent perfect phylogeny
Our approach follows [21] to which we refer the reader
for a detailed discussion of PPP, while we give here only
a cursory treatment. The input of the PPP problem is an
n × m binary matrix M whose columns are associated
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with the set C = {c1, . . . , cm} of characters and whose
rows are associated with the set S = {s1, . . . , sn} of spe-
cies. Then M[i, j] = 1 if and only if the species si has char-
acter cj, otherwise M[i, j] = 0. The character c is gained in
the only edge where its state goes from 0 to 1 or, more
formally, in the edge (x, y) such that y is a child of x and
c has state 0 in x and state 1 in y. In this case the edge
(x, y) is labeled by c+. Conversely, c is lost in the edge
(x, y) if y is a child of x and the c has state 1 in x and
state 0 in y. In the latter case the edge (x, y) is labeled
by c−. For each character c, we allow at most one edge
labeled by c− [21,23].
Definition 1 (Persistent Perfect Phylogeny) Let M be

an n × m binary matrix. Then a persistent perfect phylo-
geny, in short p-pp, for M is a rooted tree T such that:
1 each node x of T is labeled by a vector lx of length m;
2 the root of T is labeled by a vector of all zeroes,

while for each node x of T the value lx[j] ∈ {0, 1} repre-
sents the state of character cj in tree T;
3 each edge e = (v, w) is labeled by at least a

character;
4 for each character cj there are at most two edges e =

(x, y) and e’ = (u, v) such that lx[ j] ≠ ly[ j] and lu[ j] ≠ lv[ j]
(representing a change in the state of cj). In that case e, e’
occur along the same path from the root of T to a leaf of
T; if e is closer to the root than e’, then lx[ j] = lv[j] = 0, ly
[ j] = lu[ j] = 1, and the edge e is labeled c+j , while e’ is
labeled c−j ;
5 each row r of M labels exactly one node x of T.

Moreover the vector lx is equal to the row r.
Let s be a species and let c be a character such that, in

a persistent perfect phylogeny T, the path from the root
of T to s traverses an edge labeled c−. Then c is called
persistent for s in T.
The Persistent Perfect Phylogeny problem asks to find,

if it exists, a persistent perfect phylogeny for a given
binary matrix M. We can restate the PPP problem as a
variant of the Incomplete Directed Perfect Phylogeny [5]
by transforming the complete input matrix into an
incomplete matrix, called extended matrix.
Definition 2 (Extended Matrix) Let M be an instance

of the PPP problem. The extended matrix associated
with M is an n × 2m matrix Me over alphabet {0, 1, ?}
which is obtained by replacing each column c of M by a
pair of columns (c+, c−), where ? means that the value of
such cell is not given. Moreover for each row s of M if
M[s, c] = 1, then Me[s, c

+] = 1 and Me[s, c
−] = 0, while

if M[s, c] = 0, then Me[s, c
+] =? and Me[s, c

−] =?.
In this case the characters (c+, c−) are called conjugate.

Informally, the assignment of the conjugate pair (?, ?) in
a species row s for two conjugate characters (c+, c−)
means that character c could be persistent in species s,
i.e., it is first gained and then lost. On the contrary, the
pair (1, 0) means that character c is only gained by the

species s. A completion of a pair (?, ?) associated to a
species s and characters (c+, c−) of Me consists of forcing
Me[c

+, s] = Me[c
−, s] = 0 or Me[c

+, s] = Me[c
−, s] = 1,

while a partial completion Me is a completion of some
of its conjugate pairs. Notice that M admits a persistent
phylogeny if and only if there exists a completion of Me

admitting a directed perfect phylogeny [21].
A fundamental contribution of [21], building upon [5],

is to frame the problem as a graph theory question. We
briefly recall here the two graphs that are used in the
description of the algorithm.
Let M be a binary matrix and let c1, c2 be two charac-

ters of M. Then the configurations induced by the pair
(c1, c2) in M is the set of ordered pairs (M[s, c1], M[s,
c2]) over all species S. Two characters c1 and c2 of M
are conflicting if and only if the configurations induced
by such pair of columns is the set of all possible pairs
(0, 1), (1, 1), (1, 0) and (0, 0). The conflict graph Gc =
(C, Ec ⊆ C × C) of a matrix M has vertices C and as
edges the pairs (ci, cj) of conflicting characters (see Fig-
ure 1). We also need some graph-theoretic definitions.
A graph without edges is called edgeless. A connected
component is called nontrivial if it has more than one
vertex.
The second graph used in the algorithm provides a

representation of a completion of characters of an
extended matrix. The red-black graph GRB = (V, E) asso-
ciated to an extended matrix Me is the edge-colored
graph where (i) the vertices are the species and the con-
jugate pairs of Me (that is for each two conjugate char-
acters c+ and c−, only c is a vertex of GRB), (ii) a pair
(s, c) is a black edge iff the conjugate pairs c+ and c− are
still incomplete in matrix Me and Me[s, c

+] = 1 and Me

[s, c−] = 0, (iii) (s, c) is a red edge iff the conjugate pairs
c+ and c− are completed as Me[s, c

+] = Me[s, c
−] = 1.

An algorithm to compute a persistent perfect
phylogeny
Let T be any persistent perfect phylogeny for a matrix

M and consider a depth-first visit of T, the sequence of
edge labels traversed during the visit is uniquely defined.
The converse also holds, that is given a sequence C of
edge labels, we can reconstruct the unique persistent
perfect phylogeny T (if it exists) such that C is the
sequence of edge labels traversed during a depth-first
visit of T [21].
The main idea is that we associate a partial phylogeny

P to each prefix of C, where each leaf x of P is labeled
with the submatrix Mx of Me such that Mx has exactly
the species and the characters that will be in the subtree
of T rooted at x. Recall that each matrix Mx has a graph
representation given by the red-black graph. Then deter-
mining the next edge label to be added to the prefix of
C is called to realize a character in the red-black graph
representing Mx as follows.

Bonizzoni et al. BMC Genomics 2014, 15(Suppl 6):S10
http://www.biomedcentral.com/1471-2164/15/S6/S10

Page 3 of 10



Let (c+, c−) be two conjugate characters of Me and let
GRB its associated red- black graph. Let C(c) be the con-
nected component of GRB containing the vertex c. A
character is in one of three possible states: inactive (the
initial state of all characters), active, and free. The reali-
zation of a character c in GRB consists of the following
steps:
1 if c is inactive then:
(a) for each species s /∈ C(c), poseMe[s, c

+] =Me[s, c
−] = 0;

(b) for each species s ∈ C(c) if (c, s) is not an edge of
GRB, add a red edge(c, s) and complete Me by posing Me

[s, c+] = Me[s, c
−] = 1;

(c) remove from GRB all black edges (c, s) and label c
active.
2 else if c is active and c is connected by red edges to

all species in C(c), then:
(a) all such red edges are deleted from GRB and c is

labeled free;
Notice that when (i) c is free, or (ii) c is active but

there exists a species s ∈ C(c) that is not connected to c
by a red edge, none of the stated conditions hold. In
these cases the realization is impossible.
Figures 2 and 3 illustrate the realization of characters.

Moreover, isolated vertices of GRB correspond to leaves
of the partial phylogeny P whose associated matrix has
only one species; that instance is trivially solvable, there-
fore isolated vertices can be removed from GRB.
We recall that, to obtain an algorithm for PPP, it suf-

fices to have an algorithm that finds the edge label to be
added to the prefix of C computed up to that point.
The sequence C obtained by a depth-first visit of the
tree is a sequence of edge labels whose realization
results in an edgeless red-black graph [21]. Such
sequence C is called successful c-reduction of the red-
black graph.
The rest of the paper is devoted to give a formal defi-

nition of the CPPP problem and to provide an efficient
algorithm to solve that problem. Moreover we will test
our algorithm on some instances that do not admit a
perfect phylogeny, showing that we are able to quickly
compute a persistent perfect phylogeny, hence giving a
possible phylogenetic interpretation of those data.

Results and discussion
We can now formally define the Constrained Persistent
Perfect Phylogeny (CPPP) problem where the fact that a
pair (c, s) (i.e., a character c and a species s) is con-
strained means that s and all its ancestors do not have
the character c. The input of the problem is a binary
matrix M and a set F = {(ci1 , si1 ), . . . , (cil , sil)} of con-
straints, such as M[sij , cij ] = 0 for each j. A solution for
such instance is a persistent perfect phylogeny T for M
such that, for each constraint (cij , sij), none of the edges
from the root of T to the leaf labeled by sij is labeled c+ij.

This implies that no edge from the root of T to the leaf
labeled by sij can be labeled c−ij .
The idea of the extended matrix Me applies also to the

CPPP problem. In this case, if M[s, c] = 1, then Me[s, c
+] =

1 and Me[s, c
−] = 0, if M[s, c] = 0 and (c, s) is a constraint,

then Me[s, c
+] = Me[s, c

−] = 0. Finally, if M[s, c] = 0 but
(c, s) is not a constraint, then Me[s, c

+] =? and Me[s, c
−] =?.

An immediate extension of the result in [21] shows that
Me has a directed perfect phylogeny if and only if (M, F)
has a constrained persistent perfect phylogeny.
Just as for the PPP problem, we first explore a graph

formulation of the CPPP problem based on the equiva-
lence of PPP to a problem of completing a matrix where
each character c has two columns c+, c−, with c+ (c−)
equal to 1 in a species s in the matrix corresponds to
the fact that s has gained (lost) the character c. The
graph formulation derives again by representing a com-
pletion in terms of red-black graph associated to
extended matrices. Notice that there exists a 1-to-1 cor-
respondence between completing entries of the matrix
and realizing characters of the red-black graph. When
considering the CPPP problem, some entries of a par-
tially completed matrix are constrained which means
that some characters in the associated red-black graph
cannot be realized. On the other hand, all characters in
a red-black graph for the PPP problem can be realized.
Thus it is quite easy to show that the main red-black
graph reduction characterization stated for the PPP pro-
blem can be extended to the constrained persistent per-
fect phylogeny problem, by simply adding the constraint
that some characters cannot be realized in a red-black
graph.
Now, the red-black graph reduction turns out to be

quite useful to investigate new algorithmic solutions to
the PPP problem. In this paper we are able to prove that
there exists a class of binary matrices that always admit a
positive solution for the PPP problem, that is they admit
a persistent perfect phylogeny that can be computed in
polynomial time. For this special case we also provide a
polynomial algorithm that works for the general CPPP
problem. Based on this polynomial time algorithm we
give a fixed-parameter (in the number of characters)
algorithm for the CPPP, based on the search tree techni-
que [24], improving the exponential time algorithm given
in [21].
We observe that the CPPP problem is a special case of

the General Character Compatibility problem (GCC)
[19]. An instance of the GCC problem is a matrix MG

having rows which are species and columns that are
characters. Each entry of the matrix MG is a subset of the
states that character c may assume in species s. Another
part of the instance is a specification of all allowed transi-
tions between states in a solution. A feasible solution is a
perfect phylogeny where for each species s and for each
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character c, the state is picked from the input set MG[s, c].
Given an instance (M, F) of CPPP, we obtain a matrix MG

as follows. If M[s, c] = 1, then MG[s, c] = {1}. If M[s, c] = 0
and (c, s) ∈ F, then MG[s, c] = {0}. Finally, if M[s, c] = 0
and (c, s) ∉ F, then MG[s, c] = {0, 2}. The only allowed
transitions are from the state 0 to 1 and from 1 to 2. This
case of GCC corresponds to cases 5 and 6 of Table 1 in
[19], whose complexity is reported as open. Thus the
results we give in the paper also apply to those cases.
We recall that a main result of [21] is that finding a

solution of PPP is equivalent to finding a successful
c-reduction, that is a sequence of edge labels (corre-
sponding to a depth-first visit of the tree) whose realiza-
tion makes the red-black graph edgeless. For the CPPP
problem a similar result holds, but we have to adapt the
notion of reduction, so that there is a third case when
the reduction is impossible; when for some species s,
with (c, s) ∈ F (that is Me[s, c

+] = Me[s, c
−] = 0), (c, s) is

also a red edge of GRB. Notice that, in order to obtain
an algorithm to compute a persistent perfect phylogeny,
it suffices to have an algorithm that finds the edge label
to be added to the prefix of C computed up to that
point.

Solving CPPP on matrices with edgeless conflict graphs
In the following, we will exploit some properties of the
red-black graph to show that a matrix M whose conflict
graph is edgeless always admits a persistent perfect phy-
logeny. Moreover, we provide a polynomial time algo-
rithm for the CPPP problem in this case.

Given M a binary matrix, the partial order graph for M
is the partial order P obtained by ordering columns of M
under the <relation which is defined as follows: given two
character c and c’, we will say that c < c’ iff M[s, c] ≤ M[s,
c’] for each species s. Moreover, we build a graph G = (V,
E), called adjacency graph for M : V is the set of columns
of M and (u, v) is an edge of G if and only if u, v are adja-
cent, i.e. there is a species s that is adjacent to both u and
v in the red-black graph for the extended matrix Me asso-
ciated with M. Our algorithm for solving the CPPP pro-
blem finds a successful c-reduction by simply computing
the maximal inactive characters in the poset P that can be
realized in the red-black graph.
In the following we give some Lemmas that are used to

show that maximal characters in the poset P can be rea-
lized without inducing in the red-black graph any red-
sigma graph: this is a graph of red edges consisting of a
path of length four and having two characters and three
species. Such a graph represents the forbidden matrix {0,
1}, {1, 0} and {1, 1} in the completion of the extended
matrix Me and thus whenever it is present in the red-black
graph it means that the completion does not admit a
directed perfect phylogeny [2]. In fact, by definition of red-
black graph associated to a completion, a red-sigma graph
corresponds to two completed characters a+, b+ in the
extended matrix such that Me[s1, a

+] = 1 = Me[s2, a
+] and

Me[s2, b
+] = 1 = Me[s3, b

+], while all other entries of Me

are 0 for pairs (a+, s3) and (b+, s1). The following property
is easily proved by induction on the length of a path in the
red-black graph connecting two maximal characters.

Table 1 Running times on unconstrained simulated instances

Species Characters Instances completed within 15 minutes Min time (sec) Max time (sec) Average time (sec) Standard deviation

10 5 100/100 0.00 0.01 0.00 0.00

10 7 100/100 0.00 0.25 0.01 0.03

10 10 100/100 0.00 1.93 0.11 0.30

10 12 94/100 0.00 12.95 0.84 1.93

10 15 84/100 0.00 43.89 5.71 9.80

20 10 100/100 0.00 4.72 0.08 0.47

20 15 97/100 0.02 18.12 1.15 2.53

20 20 93/100 0.13 95.03 10.44 19.14

20 25 79/100 1.09 253.68 41.98 60.35

20 30 63/100 3.84 247.03 59.06 63.81

40 20 100/100 0.06 89.02 2.04 8.93

40 30 98/100 0.99 156.16 22.03 33.17

40 40 80/100 7.23 598.32 128.47 154.92

40 50 45/100 19.14 585.42 198.81 146.39

40 60 19/100 50.26 577.1 319.25 183.10

60 30 99/100 0.64 222.79 14.36 33.21

60 45 90/100 8.76 590.03 123.05 148.48

60 60 51/100 37.63 593.06 252.34 168.92

All times are in seconds.
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Algorithm 1: Procedure Solve-CPPP-empty-conflict
Input : A constrained binary matrix (M, F) whose

associated conflict graph is edgeless.
Output : A realization Sc of the characters of M

resulting in a constrained persistent perfect phylogeny
for (M, F), if such a phylogeny exists.
1 Sc ¬ empty sequence;
2 P ¬ the partial order for M;
3 GRB ¬ the red-black graph for the extended matrix
Me of M.

4 while GRB is not edgeless do
5 CM ¬ maximal elements in P that are in the same
connected component of GRB;

6 D ¬ the subset of CM consisting of the characters
that can be realized;

7 if D = ∅ then
8 return no solution
9 else
10 Add to Sc all characters in D;
11 Realize the characters of D in any order, updating

GRB;
12 add to D the free characters in the graph GRB;
Lemma 3 Let M be a binary matrix with an edgeless

conflict graph. Assume that the extended matrix asso-
ciated with M induces a connected red-black graph and
let P be the partial order graph for M. Let CM be the set
of maximal elements in P. Then CM consists of elements
that are pairwise adjacent in the adjacency graph for M.
The following properties can be proved by as conse-

quences of the definition of realization of characters,
and assuming that the input matrix has an edgeless con-
flict graph.
Lemma 4 Let M be a binary matrix that has an edge-

less conflict graph. Let GRB be the red-black graph for the
extended matrix associated with M. The realization of
two characters a and b that are adjacent in the adjacency
graph for M adds at most two disjoint components con-
sisting of red edges. In this case one connected component
has the vertex a and the other one b.
Lemma 5 Let GRB be a connected red-black graph whose

conflict graph is edgeless. Let CM be the set of maximal
characters in GRB and let C′

M be the set of maximal charac-
ters in the red-black graph G′ obtained after the realization
of CM. Then: (1) the elements of CM are in at most two dis-
tinct connected components of G′ and (2) in each of such
disjoint connected component, each maximal character
c ∈ C′

M is either adjacent to all species of the component or
all active characters of CM are free.
Notice that, the absence of conflicts does not guarantee

that a solution actually exists. However, we are able to pro-
vide an efficient algorithm (Algorithm 1) for this case, which
will be a cornerstone for our algorithm for the general case.
Algorithm 1 builds a successful c-reduction Sc by

iteratively adding to Sc the maximal inactive characters

or free characters of the red-black graph GRB. Notice
that the successful c-reduction provides a completion of
the extended matrix that admits a perfect phylogeny.
The latter can be built using the classical linear time
algorithm [2].
Theorem 6 Let (M, F) be a binary matrix that has an

edgeless conflict graph. Then Algorithm 1 computes a
successful c-reduction of the red-black graph associated
to the extended matrix for M, if it exists. Moreover, if F
is empty then M admits a solution.
Proof First observe that the correctness of Algorithm 1

is a consequence of the fact that maximal characters are
realized before any character they include by the <-rela-
tion. Assume that c1 < c2 and let T be a persistent per-
fect phylogeny. If c2 is not persistent for s in T, then
also c1 is not persistent for s in T. In fact, assume to the
contrary that c1 is persistent for s in T and c2 is not per-
sistent for s. This fact implies that there exists a species
s’ such that has c1 and s’ and s share a common ances-
tor in the tree which is below edge labeled c+. Since
c1 < c2, it follows that species s’ has also character c2
and thus the edge labeled by c− is below the edge c+2.
But since s does not have character c2 and c2 cannot be
persistent we obtain a contradiction.
We show that at each iteration of Algorithm 1 each

connected component GRB has only black edges, or the
connected components with red edges has no red-sigma
graphs. Initially, by assumption, since no character is
active, no red edge is in the connected components of
the red-black graph. Then, by applying Lemma 3 and 4,
the realization of the maximal characters CM of poset P
does not induce any red sigma-graph, thus proving the
invariant. Now, a successive iteration of the algorithm
requires to add to Sc the free characters or the maximal
inactive characters of the red-black graph. By applying
Lemma 5, the red-black graph has connected compo-
nents without red edges or at most two components hav-
ing red edges, since the active characters by statement 1
are in at most two components. For the first type of com-
ponents, the invariant property is immediate since the
component does not have any red edge. Consider now
the second type of components. By Lemma 5, there are
at most two such components, moreover, either each
connected component has some maximal active charac-
ter that are free or the maximal inactive are adjacent to
all species of the connected component of the red-black
graph. Assume that the active characters in the con-
nected component having red-edges are free. Thus by
definition, these active characters are removed from the
red-black graph including all incident edges. Otherwise,
the maximal active characters are all adjacent to all spe-
cies and thus they are realized without adding new red
edges. In both cases, the invariant property holds. Clearly,
if all characters are in Sc after the application of the

Bonizzoni et al. BMC Genomics 2014, 15(Suppl 6):S10
http://www.biomedcentral.com/1471-2164/15/S6/S10

Page 6 of 10



algorithm, it is immediate that the red-black graph is
edgeless since all active characters are free (no red-sigma
graph is possible, indeed). Thus Sc is a successful
c-reduction. Observe that in case F is empty, all charac-
ters can be realized, and consequently, the sequence Sc
after the iterations of the algorithm includes all charac-
ters of the red-black graph, thus implying that a solution
always exists. □

An algorithm for CPPP
In this section we propose an algorithm for the CPPP
problem that is based on the procedure Solve-CPPP-
empty-conflict(M). Our algorithm is based on the
search tree technique [24], where we explore the tree of
all possible c-reductions. Since in a c-reduction each
signed character (c+ or c−) can appear at most once, the
search tree has at most (2m)! leaves. Therefore we only
need to describe a polynomial-time algorithm to com-
pute an edge of the search tree (which mainly consists
of realizing a signed character).
Just as the algorithm in [21], we transform the matrix

M of the instance (M, F) into an extended matrix Me

which is then analyzed to find a solution. In fact, (M, F)
has a solution if and only if there exists a successful c-
reduction for Me that can be associated to a constrained
perfect phylogeny. The algorithm in [21] explores all
feasible permutations of the set of characters (feasible
permutations means that c− must follow c+ and that all
constraints are satisfied) of Me in order to find one that
is a successful c-reduction, if such a c-reduction exists.
Clearly computing all permutation is not efficient,

therefore we implicitly build a decision tree, where at
each step we fix a character in a given position of the
permutation. To each node x of the decision tree, we
associate the matrix Me(x), obtained from Me by realiz-
ing the characters labeling the edges from the root to x,
and its associated red-black and conflict graphs (respec-
tively GRB(x), Gc(x)). When Gc(x) is edgeless, instead of
further exploring the decision tree, we apply Algorithm
1. At the same time, if GRB(x) contains a red-sigma
graph, then Me(x) does not admit a persistent perfect
phylogeny. A fortiori, in that case Me(x) cannot admit a
persistent perfect phylogeny, hence we can stop explor-
ing that portion of the decision tree. Moreover, we can
stop the search as soon as we find a solution, since we
have no optimization criterion to discriminate between
feasible solutions. In practice, all those criteria allow to
avoid exploring a large part of the decision tree, as
shown in our experimental analysis.

Experimental analysis
We have implemented our algorithm as a C++ program
and we have tested it over simulated data produced by

ms [25]. Moreover, we have tested our program on real
data coming from the International HapMap project
[26]. All tests have been performed on a standard
workstation.
The two different kinds of data correspond to two

separate goals. The analysis on simulated data is aimed
at studying the scalability of our approach for increasing
numbers of species and characters. More precisely we
have run our program for n = 10, 20, 40, 60 (recall that
n is the number of species) and for values of m (the
number of characters) ranging from n/2 to 3

2n. The rea-
son for the choice of m is based on some properties of
all persistent phylogenies. Let T be a persistent perfect
phylogeny consistent with a n × m matrix, and assume
that the input matrix has no duplicated rows or col-
umns. Then we can prove that n/2 ≤ m ≤ 2n.
Moreover, ms produces matrices that have a perfect

phylogeny, but can have duplicated rows and columns.
To introduce back mutations, we have randomly modi-
fied at most one state of each duplicated row. For each
choice of the parameters n and m we have produced
100 random instances, on which we have run our pro-
gram with a 15-minute timeout, without imposing any
constraint. The results are represented in Table 1.
Then, for the first 10 of the 100 instances of each para-

meter choice, we have modified the input matrices, by
introducing some random constraints, in order to deter-
mine if constraining the set of feasible solutions can help
in finding a persistent phylogeny. For each instance of
the first phase, we have produced 10 instances with 1 or
16 random constraints. For both cases we determine
when at least one of the 10 constrained instances is
solved more quickly than the unconstrained instance.
The goal is to determine when there is a sizable (in our
case 10%) probability that introducing some random con-
straints can help in computing a persistent phylogeny.
Moreover, we determine when the median of the 10 con-
strained instances is solved more quickly than the uncon-
strained instance. In this case the goal is to determine
when there is a 50% probability that some random con-
straints can help in computing a persistent phylogeny.
The most important result of this experiment is that

for instances where our implementation requires at least
a second (on average), the idea of introducing random
constraints is often beneficial. This fact suggests a direc-
tion for further improvements, that is incorporating into
our program some deterministic constraints, based on a
cursory analysis of the conflict and of the red-black
graphs. Actually, how we manage an edgeless conflict
graph is as an example of this idea. Table 2 summarizes
the experiment on constrained simulated instances.
Finally, the algorithm has been tested on real data

coming from the International HapMap project. The
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data are classified by type of population. In our case,
we used data from the set ASW (African ancestry in
Southwest USA). Each individual is described by the
two haplotypes (in our application the two haplotypes
correspond to two different species, i.e. two different
rows of the matrix). This experiment investigates the
usefulness of the constrained persistent model to man-
age haplotypes data that cannot be explained by the
perfect phylogeny model. In fact none of those instances
admits a perfect phylogeny, but our model and imple-
mentation are able to find a reasonable interpretation to
the data. The data set consists of binary matrices of
dimensions 10 × 10, 26 × 15, 26 × 25, and 26 × 30. For
each group we considered 10 matrices. In all cases the
matrices do not admit perfect phylogeny, and the number
of conflicts changes from a minimum of 4 to a maximum
of 138. Increasing the size of the matrix, and therefore the
number of conflicts, the percentage of matrices that admit
persistent perfect phylogeny decreases. More in detail,
80% of the tested matrices of size 10 × 10 admits solution,
only 20% of the tested matrices of size 26 × 15 admits
solution, and none of the sets 26 × 25, and 26 × 30 admits
solution. The results show that haplotype data may be
related by the persistent phylogeny in case they cannot be
explained by the perfect model. It would be interesting to
investigate the biological soundness of the persistent per-
fect phylogeny in this context.

Conclusions
The algorithms and models discussed in the paper may
have interesting applications in the construction of evo-
lutionary trees based on the analysis of binary genetic
markers, where variants of the perfect phylogeny have
already been considered, such as in the study of evolu-
tion based on introns [1] or progression pathways using
tumor markers or in discovering significant associations
between phenotypes and single-nucleotide polymorph-
ism markers [27] and also in haplotype analysis. In this
paper we have investigated the CPPP problem, which is
the general problem of computing a persistent perfect
phylogeny for binary matrices where some characters
may be forced not to be persistent in the tree. We pro-
vide algorithmic solutions for the problem: mainly a
polynomial time algorithm when the conflict graph is
edgeless and a fixed-parameter algorithm. In particular
we show that when no constraint is given and the con-
flict graph is edgeless, a solution for PPP always exists.
We experimentally show that the search tree technique,
combined with the use of constraints allows to obtain
efficiently solutions for matrices that otherwise would
require exponential time. Future research will be
devoted to experimental investigation of possible
improvements based on introducing a carefully crafted
set of constraints to speed up the computation. The
computational complexity of the CPPP problem is open

Table 2 Improvements of constrained simulated instances over unconstrained instances.

Species Characters Number of added constraints

1 16

Fastest Median Fastest Median

10 5 0 0 0 0

10 7 1 0 1 1

10 10 7 5 7 7

10 12 7 5 7 6

10 15 8 3 9 8

20 10 9 4 10 10

20 15 10 9 10 10

20 20 9 1 10 10

20 25 9 7 9 9

20 30 7 2 10 9

40 20 9 7 10 10

40 30 10 7 10 10

40 40 8 1 10 9

40 50 10 0 10 10

40 60 1 0 9 6

60 30 8 7 10 10

60 45 10 8 10 10

60 60 7 6 8 7

For each choice of the number of species and of characters, we state the number of instances where at least one of the 10 random constrained instances is
solved more quickly than the unconstrained instance (columns labeled Fastest). Moreover we state the number of instances where the median of the 10 random
constrained instances is solved more quickly than the unconstrained instance (columns labeled Median).
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and it would be interesting to solve the problem for the
unconstrained case.
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