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Abstract

Background: Mobile genetic elements comprise a substantial fraction of vertebrate genomes.
These genes are considered to be deleterious, and in vertebrates they are usually inactive. High
throughput sequencing of salmonid fish cDNA libraries has revealed a large number of transposons,
which remain transcribed despite inactivation of translation. This article reports on the structure
and potential role of these genes.

Results: A search of EST showed the ratio of transcribed transposons in salmonid fish (i.e., 0.5%
of all unique cDNA sequences) to be 2.4-32 times greater than in other vertebrate species, and
68% of these genes belonged to the Tcl-family of DNA transposons. A phylogenetic analysis of
reading frames indicate repeated transposition of distantly related genes into the fish genome over
protracted intervals of evolutionary time. Several copies of two new DNA transposons were
cloned. These copies showed relatively little divergence (11.4% and 1.9%). The latter gene was
transcribed at a high level in rainbow trout tissues, and was present in genomes of many
phylogenetically remote fish species. A comparison of synonymous and non-synonymous
divergence revealed remnants of divergent evolution in the younger gene, while the older gene
evolved in a neutral mode. From a 1.2 MB fragment of genomic DNA, the salmonid genome
contains approximately 105 Tc|-like sequences, the major fraction of which is not transcribed. Our
microarray studies showed that transcription of rainbow trout transposons is activated by external
stimuli, such as toxicity, stress and bacterial antigens. The expression profiles of Tcl-like
transposons gave a strong correlation (r2 = 0.63—0.88) with a group of genes implicated in defense
response, signal transduction and regulation of transcription.

Conclusion: Salmonid genomes contain a large quantity of transcribed mobile genetic elements.
Divergent or neutral evolution within genomes and lateral transmission can account for the
diversity and sustained persistence of Tcl-like transposons in lower vertebrates. A small part of
transposons remain transcribed and their transcription is enhanced by responses to acute
conditions.

Background eukaryotic genomes from mobile genetic elements
A large fraction of repetitive sequences originate in  (MGEs), which are grouped into 2 classes. Class I
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transposons require mRNA intermediates, whereas class I1
elements transpose directly as DNA. Tc1-like class II trans-
posons, named after the founder gene in Caenorhabditis
elegans, are probably the most widespread MGEs in
nature, and are found in fungi, plant ciliates, nematodes,
arthropodes, fish, amphibians and mammals (reviewed in
[1]). These genes contain a single reading frame that
encodes for the enzyme transposase, which is flanked
with terminal inverted repeating units. Transposition of
class IT MGEs is characterized by limited requirements for
host cellular factors, which can account for their remarka-
ble ability to undergo horizontal transfer across great tax-
onomic distances [2]. MGEs are regarded as parasitic
genes, and proliferation is deleterious for the host. There-
fore, transposition is commonly followed by inactivation.
MGE:s could play an important role in the evolution of tel-
eost fish, and comprise a substantial fraction of their
genome. Multiple copies of Tcl-like transposons were
found in several fish species from different orders [3-6],
however transcription of teleost Tcl-like genes has not
been documented. Recent high-throughput sequencing of
salmonid cDNA libraries has revealed surprisingly large
number of transposon transcripts. Most if not all these
sequences contain incapacitating mutations in the read-
ing frames, and can be regarded as transcribed pseudo-
genes or null-alleles. At present, rainbow trout
(Oncorhynchus mykiss) and Atlantic salmon (Salmo salar)
TIGR Gene Indices [7] contain 50773 and 31341 unique
cDNA sequences, respectively among which we found sev-
eral hundreds MGE, Tc1-like genes being most abundant.
This wealth of sequence information provides insight into
the structure and evolution of transposons. We also
cloned several copies of two rainbow trout Tc1-like genes
with complete reading frames, which adds to understand-
ing the transposon life cycle. Multiple gene expression
analyses with high-density ¢cDNA microarray indicate

Table I: Transcribed vertebrate transposons!.
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stimulation of rainbow trout transposons transcription in
response to stress, toxicity and pathogens.

Results

In order to search for transcribed transposons in salmonid
fish, we compared the unique cDNA sequences from TIGR
gene indices with 262 metazoan transposon proteins
retrieved from Swissprot. Blastx found matches in 273
rainbow trout and 163 Atlantic salmon sequences at a cut-
off value e < 1020 (Table 1). The ratio of transposons to all
cDNA sequences in salmonids was 2.35-31.6 times
greater than in other vertebrate species with available gene
indices, and a large fraction (68.3%) showed similarity to
11 proteins of the Tcl family. Tcl-like transcripts were
found in the gene indices of 4 other teleost fish species
and in the African clawed frog Xenopus laevis, but not in
higher vertebrates. To estimate an approximate number of
Tc1-like genes, 6 genomic clones of Atlantic salmon were
analyzed, covering 1.2 MB [Genbank:AC148723, Gen-
bank:AC149099, Genbank:AC148779, Gen-
bank:AC148618, Genbank:AC148617 and AC148616],
and a blastx search found 56 matches at a cutoff value of
10-20. The size of the haploid Atlantic salmon genome is
equal to 3 billion base pairs. Assuming a relatively
homogenous distribution of Tcl-transposons, about
140,000 copies can be expected, which is 3 orders of mag-
nitude greater than the number of Tc1-like sequences in
the salmonid fish gene indices. It is necessary to note that
TIGR contigs are produced by automatic assembly of EST
sequences that have at least 95% homology in overlaps of
minimum units of 40 base pairs [8]. Therefore, transcripts
of recently diverged transposon copies could be merged
unless they were flanked by differing 5'- and 3'-untrans-
lated sequences. The numbers of transcribed transposons
can be greater than the number estimated by searching
across gene indices, but it is likely that only a minor frac-
tion of salmonid Tc1-like genes is active.

Species Sequences Transposons Tcl-like
Rainbow trout (Oncorhynchus 50773 273 (0.538) 188
mykiss)
Atlantic salmon (Salmo salar) 31341 163 (0.52) 110
Medaka (Oryzias latipes) 26689 59 (0.221) 8
Zebrafish (Danio rerio) 93442 194 (0.208) 84
Killifish (Fundulus heteroclitus) 15538 3 (0.019) 3
Pufferfish (Takifugu rubripes) 112 I'1 (0.099) |
African clawed frog (Xenopus 77599 164 (0.211) 53
laevis)
Chicken (Gallus gallus) 116777 20 (0.017) 0
Rat (Rattus norvegicus) 147056 310 (0.211) 0

'Unique cDNA sequences from TIGR Gene Indexes were searched across 262 metazoan transposons from Swissprot and | | Tcl-like transposases
using blastx at a cutoff value of e < 10-20, Percentages for all cDNA sequences are in parentheses.

Page 2 of 10

(page number not for citation purposes)


http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AC148723
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AC149099
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AC148779
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AC148618
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AC148617 
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AC148616

BMC Genomics 2005, 6:107 http://www.biomedcentral.com/1471-2164/6/107

Xl

.‘TC46405 IX
\ J__A\' '.' B
) TC46463 v\ =
Il '8 \ A
\\.-r' 1 ‘n
% | ‘

F L
! Vil

VA, [/ TTC46394
.-/ I 4 P ~‘

Figure |

Structural relatedness of transcribed rainbow trout Tcl-like transposons. The ML tree is based on sequences encoding for at
least 170 amino acids at the C-termini. The TIGR sequences are designated by the accession numbers, transposons Barb and
Glan were identified in this study. Tree was produced using Dnaml (Phylip package), nodes with bootstrap values greater than
0.75 are indicated. Accession numbers of TIGR contigs in the clusters are: -] — BX884691; I-2 — TC46229; II-1 — TC52875; II-
2 —TC46539; lll-1 — TC46343; -2 — TC46498; I1l-3 — TC46491; 1ll-4 — CB488722; V-1 — TC46455; IV-2 — CA377451; IV-3 -
TC47500; IV-4 — TC47499; IV-5 — CA369142; V-1 — TC46391; V-2 — CA369399; VIII-1 — TC54663; VIII-2 — TC54666; IX-1 —

CB488927; IX-2 — TC46493; X-1 — TC46521; X-2 — TC46197; X-3 — TC46383; X-4 — TC46308; XI-1 — CA361855; X|-2 —
TC54683; XI-3 — CR368829.
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Most Tcl-like sequences from the rainbow trout gene
index contained incomplete reading frames. To analyse
the structural relatedness of these genes, we used 38 frag-
ments, which encode at least 170 amino acids at the C-ter-
mini. Thus, 31 sequences were from the TIGR database
plus 7 more were produced in this study (i.e., newly iden-
tified genes named Glan and Barb [Genbank: AY880883-
AY880888]). The maximum likelihood (ML) tree con-
sisted of 3 single genes and 11 clades, containing 2 to 5
sequences (Figure 1). Seven clades (I-VII) could be
regarded as a part of the multi gene family, as sequence
identity with the nearest neighbors was in the range of
35-73%; the remaining 4 clades were highly divergent.
Only 1 of 6 clades containing more than 3 genes (X in Fig-
ure 1) was split into clusters supported by high bootstrap
values. The highest sequence identity were observed for
Glan and Barb. However, divergence within other clades
could in theory be overestimated, due to forced assembly
of similar transcripts.

Sequencing of complete reading frames for 3 copies of
Glan and 4 copies of Barb allowed for the study of trans-
posons molecular evolution within the rainbow trout
genome. All 7 sequences include incapacitating muta-
tions, which prevent translation of transposase. Barb cop-
ies have diverged up to 11.4 + 1.4% (mean * SD) and
accumulation of deletions (Figure 2) impeded reconstruc-
tion of the ancestral protein. Low divergence of Glan cop-
ies (1.9 + 0.8%) suggest relatively recent transposition
into the rainbow trout genome. The consensus sequence
of 3 reading frames was identical to TIGR contig
[TGI:TC46394], which encoded a protein with character-
istic features of Tc1-like transposase, such as the presence
of domains required for nuclear localization, DNA bind-
ing, cleavage and joining and DDE motif found in the cat-
alytic units of diverse MGEs and retroviruses (Figure 3).
Noteworthy of mention is that all transcripts of Glan con-
tained mutations that prevented translation of trans-
posase, however the consensus contig sequence that was
assembled from a large number of EST from different
cDNA libraries appeared intact. Given that the rate of
spontaneous mutations in vertebrate germ cell lines is
~10°5 [9], transposition of Glan could have taken place as
recently as only a few thousand years ago. We also per-
formed PCR screen of this gene in fish from inland reser-
voirs of Finland, where it was detected in 17 species from
different orders (Table 2). Interestingly, three of the four
species in which Glan was not found (grayling, whitefish
and vendace) are more closely related to rainbow trout
than most of those species carrying this gene. Low diver-
gence of copies and discontinuous distribution are evi-
dence for horizontal transmission. We analysed the rates
of synonymous (Ks) and non-synonymous (Ka) substitu-
tions in newly identified rainbow trout transposons using
a sequence of the nearest Swissprot protein (hypothetical

http://www.biomedcentral.com/1471-2164/6/107

Table 2: Presence of Glan in genomic DNA of fish from inland
waters of Finland.

Species Result
Arctic charr (Salvelinus alpinus) Found
Brown trout (Salmo trutta) Found
Smelt (Osmerus eperlanus) Found
Grayling (Thymallus thymallus) Not found
Vendace (Coregonus albula) Not found
Whitefish (Coregonus lavaretus) Not found
Pikepearch (Sander lucioperca) Found
Perch (Perca fluviatilis) Found
Ruffe (Gymnocephalus cernuus) Found
Crucian carp (Carassius carassius) Found
Roach (Rutilus rutilus) Found
Bullhead (Cottus gobio) Found
Bream (Abramis brama) Found
Silver bream (Abramis bjoerkna) Found
Bleak (Alburnus alburnus) Found
Dace (Leuciscus leuciscus) Found
Rudd (Scardinius erythrophthalmus) Found
Ide (Leuciscus idus) Found
Burbot (Lota lota) Found
Northern pike (Esox lucius) Found
Eel (Anguilla anguilla) Found

transposase of plaice, with 77% homology [Gen-
bank:CAB51372]) as a reference (Table 3). With respect to
this transposase, the Ks/Ka ratio was high and signifi-
cantly greater in the younger gene (4.85 + 0.30 in Glan
and 3.35 + 0.04 in Barb). A comparison of copies indi-
cated a probability of divergent evolution in Glan (Ks/Ka
=0.69 + 0.05). In Barb the rates of synonymous and non-
synonymous substitutions approached unity (Ks/Ka =
1.03 + 0.12), which is consistent with the protracted accu-
mulation of mutations in a solely neutral mode.

We did not find sequences of any other known proteins in
the salmonid Tc1-like contigs and probably transposons
are transcribed from own promoters. Evidence for regula-
tion of transposon transcription rate was produced in
microarray analyses. We used a platform designed for
studies of responses to environmental stress, toxicity and
pathogens in salmonid fish [10,11]. Overall this platform
included more than 1300 genes, 7 of which were similar
to Tc1-like transposons. Five transposons showed marked
differential expression in response to external stimuli,
such as handling stress, exposure to toxic compounds and
injection of cortisol or bacterial antigens; the microarray
results were confirmed with real-time qPCR. A consensus
profile of transposons correlated with those of 27 protein
coding genes in 35 microarray experiments (Pearson r2 >
0.63); examples are presented in Figure 4. The highest cor-
relation (r2> 0.8) was shown by classical markers of cellu-
lar stress, such as the aryl hydrocarbon receptor, MAP
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Table 3: Synonymous (Ks) and non-synonymous (Ka) divergences of the rainbow trout transposons Glan and Barb. Plaice transposase
was used as a reference.

Genes Ks Ka Ks/Ka
Glan
Rainbow trout (3 copies) 0.016 £+ 0.007 0.022 £ 0.009 0.69 + 0.05
Plaice transposase 0.69 £+ 0.02 0.14 £ 0.0l 4.85+0.31
Barb
Rainbow trout (4 copies) 0.12 £ 0.02 0.11 £0.01 0.99 £ 0.13
Plaice transposase 0.68 + 0.02 0.20 + 0.00 3.35 £ 0.04
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Figure 2

Alignment of protein coding sequences of new transcribed rainbow trout TCl|-like transposases cloned in this study.
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Alignment of deduced amino acid sequences of rainbow trout transposon Glan with the Tcl-like transposon of plaice, Pleu-
ronectes platessa (Genbank: CAB51372), TPA of frog, Rana pipiens (Genbank: DAAO1561) and tcb| of the nematode, C. elegans
(Genbank: NP_741053). Homeodomain (indicated with box) is involved in the binding of DNA; the DDE/D motif (indicated

with arrows) is present in diverse MGE [1].

kinase 13 and hypoxia inducible factor. We also searched
for enrichment of Gene Ontology [12] categories in this
list of genes. Significant over-representation was demon-
strated by functional classes that are implicated in protec-
tive reactions to acute conditions (i.e., response to stress
and oxidative stress, defense and humoral immune
response, receptors and regulators of transcription, Table
4).

Discussion

Having a large number of transposons and a preponder-
ance of Tc1-like genes is a characteristic feature of salmo-
nid genomes [3-5]. Sequence analysis of the transcribed
genes (Figure 1) suggested repeated transpositions at pro-
tracted intervals. A wide distribution of Tc1 transposons is
believed to account for the limited requirements in the
host cellular factors. Sleeping Beauty, an artificially recon-
structed salmon transposon [13] is capable of integration
into genomes of a wide range of vertebrate species, how-
ever different efficiencies observed in various cell lines
point to possible involvement of the recipient's proteins
in transposition [14]. This is in line with a wide, though
limited, distribution of homologs for the transcribed sal-
monid DNA transposons, which have not been found
among EST of warm-blood vertebrates. The variety of sal-
monid Tcl-like genes is truly remarkable. Phylogenetic
analyses of 38 sequences, encoding homologous frag-
ments of C-termini, found 14 distinct types of Tcl-like
genes and the real number of different genes is probably
much greater. Our search was based on the similarity
between proteins that were available from Swissprot, and

many transposons could remain unidentified due to the
lack of known homologs. Furthermore, the rapid decay of
transposons could impede the discovery of ancient trans-
posed genes.

Despite the wide spread occurrence of Tcl-like trans-
posons in vertebrates, not a single active gene has been
identified to date [14]. Inactivation of salmonid DNA
transposons could take place within a relatively short
period of time after transmission. Cloning of 2 trans-
posons having a relatively low divergence rate indicates
the rapid accumulation of incapacitating mutations, such
as insertions or deletions, shifts of reading frames and pre-
mature stop codons (Figure 2). Analysis of synonymous
and non-synonymous substitutions suggest that inactiva-
tion of younger transposon could be preceded by selective
divergence within a limited period of time, whilst evolu-
tion of the older gene appeared entirely neutral. Results
from a study on recent transpositions in insects from four
different orders suggest that selective constraints operate
exclusively by horizontal gene transfer [15]. A comparison
of rainbow trout genes with Tcl-like transposon from
plaice confirm the conservation of functionally important
domains in distantly related proteins, which is gradually
obscured during the course of neutral evolution (K/K,
ratios in the younger Glan and older Barb genes are 4.85
+ 0.31 and 3.35 + 0.04 respectively).

Silencing of transposons takes place at the transcriptional
or post-transcriptional levels [16], and both of these
mechanisms could act in salmonid fish. Based on fre-
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Adenosine deaminase (0.78)
Alpha-2,8-sialyltransferase 8E (0.72)

Aryl hydrocarbon receptor (0.88)

C3a anaphylatoxin chemotactic receptor [(0.71)
Caspase recruitment domain protein 4 (0.66)
Catalase (0.65)

CD2 antigen [0.65)

Coatomer epsilon subunit (0.82)

Cyclophilin A1{0.66)

Cyclophilin A2 (0.64)

Glutathione reductase, mitochondrial (0.63)
Hypozia inducible factor [0.85)

Lymphoid cell activation antigen [0.64)
Macrophage receptor MARCO (0.72)

MAP kinase 13 [MAP kinase p38 delta). (0.88)
MAP kinase kinase kinase 5 [0.72)
Myeloperoxidase precursor [(0.68)

Nitric oxide synthase 2 [NOS2) (0.66)

Nucleoside diphosphate kinase, mitochondrial (0.67)

Peptide methionine sulfoxide reductase (0.68)
Peroxisomal targeting signal 2 receptor (0.65)
SAC2 suppressor of actin mutations 2-like [0.78)
Siah2 protein [Similar to seven in absentia) (0.72)
Stress-responsive protein 27 (0.77)

Thioredoxin (-0.72)

Transcription regulator protein BACH1 (0.75)
Zinc finger protein 148 (0.80)

Figure 4
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Differential expression of transposons in rainbow trout. The panel presents profiles of transposons and a group of genes that
showed coordinated expression in 35 microarray experiments (Pearson r2is indicated). Selected experiments are reported: |—
8 — exposure of yolk sac rainbow trout fry to model contaminants [10], B-naphthoflavone, low () and high (2) doses; cad-
mium, low (3) and high (4) doses; carbon tetrachloride, low (5) and high (6) doses; pyrene, low (7) and high (8) doses. Items 9—
12 — response to handling stress [| |, GEO:GSM22355], kidney, | day (9) and 5 days (10); brain, | day (I1) and 5 days (12).

quency in a 1.2 MB gene fragment, we can assume that
Tc1-like genes comprise nearly 5% of the Atlantic salmon
genome and only a minor fraction preserved transcription
after inactivation of translation. A survey of salmonid EST
found untranslated transposons in both sense and anti-
sense polarities, which is the main prerequisite for the for-
mation of double-stranded RNA. RNA interference

(RNAI) is implicated in the control of transposition in
germ cell lines of the nematode C. elegans [17], and exist-
ence of an RNAi pathway in rainbow trout was recently
demonstrated [18]. Suppression of intact transposases
with mutant genes was also reported in insects, and this
control mechanism is referred to as dominant-negative
complementation [19].
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Given efficient protection against transposition in ani-
mals, the tenacity and variety of transposons may seem
surprising. Sustained persistence of transposons can, in
theory, account for their residence in unknown reservoir
species; e.g, the role of parasites as potential vectors of
horizontal transfer across phylogenetically remote organ-
isms has been hypothesized [20]. However this can hardly
explain the remarkable diversity of these genes. The ML
tree (Figure 1) suggests that at each transposition event,
the rainbow trout genome was invaded with a new trans-
poson, although several genes could have a common
ancestor. If expression of translated genes is under control
of RNAI, successful recurring transposition of identical or
highly similar genes appears unlikely. Hence, the combi-
nation of neutral or divergent evolution within a genome
with transfer across phylogenetic boundaries can be the
most efficient strategy for the survival and diversification
of transposons. PCR screen detected Glan in genomes of
many fish species from phylogenetically remote taxo-
nomic groups (Table 2). Clades I-VII of the ML tree (Fig-
ure 1) can correspond to genes that evolved
independently. However it is also possible that descend-
ants of a founder gene has returned several times into the
rainbow trout genome, after passage through a chain of
co-evolutionary hosts.

Results of our microarray studies suggested that a large
fraction of transcribed Tc1-genes can be stimulated under
acute conditions, but it remains unclear whether or not
the transposon transcripts have any functional impor-
tance. In theory, they can be transcribed from cryptic pro-
moters, which are activated by the remodelling of
chromatin. However, input from stress-responsive pro-
moters is also plausible. Transcripts can be required for
the control of transposition through RNAi, however such
explanation appears unlikely for highly mutated genes
that were probably silenced long ago in evolutionary
time. Currently, there is a growing body of evidence to
support the involvement of non-coding RNA into the reg-
ulation of gene expression at different levels. The role of
small and large RNA in modification of the chromatin
structure was reviewed recently [21-23]. Stress-induced
transcription of short interspersed repeated sequences
(SINE) was reported in human, mouse and silkworm [24-
27]; and SINE transcripts were shown to enhance transla-
tion of reporter genes [28,29]. Stress also activates the
transcription of satellite III repeat [30]. Because this large
non-coding RNA is consistently associated with chroma-
tin, it can be required for the protection of sensitive
regions from stress-induced damage. Synthetic double-
stranded RNA enhances the expression of anti-viral pro-
teins in salmonid fish [31,32] and, in theory, endogenous
dsRNA can mimic a viral infection by launching protective
reactions.

http://www.biomedcentral.com/1471-2164/6/107

Tcl-like transposons are co-regulated with a group of
genes that are implicated in the defense response, signal
transduction and regulation of transcription. In this
respect, it is noteworthy to mention that Tcl-like frag-
ments reside in a number of immune and stress-related
salmonid genes, such as the non-classical MHC class 1
antigen  [Genbank:AF091779, Genbank:AF091780],
immunoglobulin heavy chain, IgD [Genbank:AF141605,
Genbank:AF278717], inducible nitric oxide synthase
iNOS/NOS2 [Genbank:AJ295231] and aryl hydrocarbon
receptor 2b, AhR2 [Genbank:AY463929]. Multiple copies
of Glan in sense and anti-sense polarity are found in rain-
bow trout MHC class Ia [Genbank: AB162342.1] and b
[AB162343.1] regions, in the vicinity of genes encoding
the complement proteasome subunit and several MHCI
loci. Modulation of gene expression that was due to the
insertion of transposons has been documented in many
studies (reviewed in [33]), and involvement of dispersed
repeated sequences into the co-ordination of gene expres-
sion with similar functions was hypothesized more than
three decades ago [34]. The role of transposon transcripts
in the regulation of gene expression was recently discov-
ered in yeast [35], where the induction of an RNAi-
dependent silent chromatin configuration resulted in
reduced transcription of several meiotic genes. A possible
involvement of transposon transcripts in the regulation of
gene expression in salmonid fish remains to be studied.

Conclusion

Information produced by the sequencing of salmonid fish
cDNA libraries and identification of recently transmitted
transposons provide new insights into the structure, diver-
sity and molecular evolution and life cycle of mobile
genetic elements. High expression levels in rainbow trout
tissues and marked responses to external stimuli indicate
potential functional roles of transposon pseudogenes,
which requires further investigation. These genes can be
used as sensitive molecular biomarkers of acute condi-
tions in salmonid fish.

Methods

Sequence analyses

The expressed transposons were analysed in rainbow trout
and Atlantic salmon TIGR Gene indices, and sequence
comparison was conduced with stand-alone blast [36].
Multiple sequence alignments were performed with Clus-
talW [37] and the conserved protein domains were
searched in Interpro [38]. Synonymous and non-synony-
mous substitutions in newly cloned genes were deter-
mined by Dnasp [39]. Maximum Likelihood (ML)
phylogenetic analyses were performed with Phylip [40].

PCR cloning
The conserved sequence in the untranslated regions of
rainbow trout Tcl-like transposases were inferred from
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Table 4: Over-presentation of Gene Ontology classes in a list of genes that showed co-ordinated expression with Tcl-like transposons.
The composition of microarray was used as a reference. The gene names and expression profiles are shown in Figure 4.

GO classes P Genes in list Genes on chip
Antimicrobial humoral response | x 105 7 31
Defense response 2 x 104 12 102
Signal transduction 0,008 10 113
Cellular defense response 0,009 3 12
Response to oxidative stress 0,03 3 18
Transcription regulator activity 0,03 5 47
Receptor activity 0,04 5 49
IExact Fisher's probability

EST sequences. RNA was extracted from rainbow trout = Abbreviations

brain and treated with Rnase-free Dnase (Promega). @ MGE - mobile genetic element; ML - maximum

Reverse transcription with SuperScriptlll (Invitrogen) was
primed with oligo(dT). PCR was performed with primer
5'-ATACAGTGCCITGCGAGAGTATTC-3' using a Triple-
Master kit (Eppendorf), and the product was cloned into
pcDNA3.1/V5-His-TOPO (Invitrogen). Seven of nine
sequenced clones contained complete reading frames.

PCR analyses of genomic DNA

The fish samples were collected from inland reservoirs in
Finland, and DNA from fin clips was prepared with salt
extraction [41]. In brief, fin samples were digested at 60°C
in 440 pl of buffer (1.8 mM EDTA, 9 mM Tris-HCI, pH 8;
1.8% SDS) containing 160 ug of proteinase K. After addi-
tion of 300 ul of 6 M NaCl, lysates were centrifuged at
12,000 g for 30 min. DNA in the supernatants was precip-
itated with isopropanol, washed with 70% aqueous etha-
nol and dissolved in water. The 654-base fragments of
Glan PCR were amplified using the Hot Master Taq kit
(Eppendorf). Primers (5'-TGAAGAATCGACAACAAGT-
GGGACA-3' and 5'-GCTITCTTCITGCCACTCITCCATA-
3') were annealed to templates at 68°C.

Microarray analyses

Fish experiments, design of the rainbow trout cDNA
microarray, hybridization protocol and data analyses are
described in detail elsewhere [10,11]. In brief, the plat-
form included 1,300 genes printed in 6 replicates each.
The dye swap design was used; each sample containing
RNA from 4 individuals was hybridized to slides with
reverse assignment of fluorescent dyes (Cy3- and Cy5-
dCTP from Amersham Pharmacia). Labels were incorpo-
rated at the stage of cDNA synthesis. The measurements in
spots were filtered by criteria I/B >3 and (I-B)/(S;+Sg) =
0.6, where I and B were the mean signal and background
intensities, respectively, and S; S; were the standard devi-
ations. Lowess normalization was performed and differ-
ential expression was analysed with the Student's t-test (p
< 0.01). The genes were ranked by the log(p-level).

likelihood.
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