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Abstract

Background: The cytokine tumor necrosis factor (TNF) initiates tissue inflammation, a process
mediated by the NF-xB transcription factor. In response to TNF, latent cytoplasmic NF-xB is
activated, enters the nucleus, and induces expression of inflammatory and anti-apoptotic gene
expression programs. Recently it has been shown that NF-xB displays two distinct activation
modes, monophasic and oscillatory, depending on stimulus duration. Characterization of temporal
expression patterns for the NF-xB network and determination of those genes under monophasic-
or oscillatory control has not been experimentally addressed.

Results: To identify the kinetics of NF-kB-dependent gene expression and determine whether
these two types of NF-xB translocation modes control distinct gene programs, a detailed kinetic
analysis of a validated microarray data set was performed on 74 unique NF-kB-dependent genes in
response to TNF. Hierarchical clustering identified distinct expression profiles termed the "Early",
"Middle", "Late" response groups, peaking |, 3, and 6 h after stimulation, respectively. These
expression patterns were validated by Quantitative Real Time PCR (Q-RT-PCR) and NF-xB
binding was demonstrated by chromatin immunoprecipitation (ChlP) assays. Each response group
was mapped to its molecular function; this analysis indicated that the Early group encodes cytokines
or negative regulators of the IKK-NF-xB pathway, and the Late group encodes cell surface
receptors, adhesion molecules and signal adapters. That similar coordinated sequential cascades of
gene expression were also seen in response to stimulation by the cytokine IL-1, and expression
patterns observed in MRC-5 fibroblasts indicated that the epithelial NF-xB program is relatively
stimulus- and cell type-independent. Bioinformatic analysis of the Early and Late gene promoters
indicates that although both groups contain similar patterns of NF-xB-binding sites, only the Early
gene promoters contain NF-kB-binding sites located in phylogenetically conserved domains.
Stimulation protocols designed to produce either monophasic or oscillatory NF-xB activation
modes showed that the oscillatory mode is required only for expression of the Late genes.

Conclusion: This analysis provides important insights into the TNF-regulated genetic response
program in epithelial cells, where NF-xB controls sequential expression patterns of functionally
distinct genes that depend on its oscillatory activation mode.
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Background

Tumor necrosis factor (TNFo, TNF ligand superfamily 2
[TNFSF2]) is a prototypical inflammatory and immu-
nomodulatory cytokine inducibly expressed by activated
macrophages, monocytes, neutrophils, T-cells and NK-
cells [1]. TNFa is a central mediator of the host inflamma-
tory response by its ability to activate adhesion molecule
expression, enhance leukocyte trafficking, and affect the
expression of secondary cytokine cascades controlling leu-
kocyte recruitment and activation [1,2]. TNF signaling is
mediated by binding and aggregating single-pass type I
transmembrane receptors (TNFR-I, ref. [3]) that then serve
as an anchor to recruit signaling proteins binding to the
death domains on the cytoplasmic receptor tails. Upon
assembly of this submembranous complex, two major
downstream signaling pathways are activated; these are
the jun NH, terminal kinase -activating protein-1- and the
IkB Kinase (IKK)-Nuclear Factor-kB (NF-xB) pathways
[4,5].

Nuclear Factor-kB (NF-xB) is a latent cytoplasmic tran-
scription factor maintained in a cytoplasmic location by
binding the IxB inhibitors, proteins that bind and specifi-
cally inactivate it by masking its nuclear localization
sequence, thereby preventing its nuclear entry [6]. NF-xB
is activated by TNF signaling pathway indirectly as a result
of targeted IkB proteolysis (reviewed in ref. [7]). Signal-
induced IxB proteolysis is mediated by activation of the
multiprotein cytoplasmic IKK (a.k.a., the "signalsome"ref.
[8]), a kinase that phosphorylates kB specifically in its
NH,-regulatory domain, making it a substrate for proteol-
ysis through the 26S proteasome and calpain pathways
[8,9].

As a result, liberated NF-xB rapidly enters the nucleus to
activate target gene expression by formating a nucleopro-
tein complex with chromatin-remodeling proteins,
kinases, and other transcription factors [10]. Recent single
cell fluorescence imaging experiments have shown that
TNF can induce two distinct modes of NF-«xB activation
patterns [11]. In the monophasic mode, the result of a
brief TNF stimulation, NF-xB enters the nucleus and
induces the expression of IxB inhibitory proteins whose
resynthesis redistributes NF-xB back into the cytoplasm,
restoring cellular homeostasis [12,13]. Conversely, oscil-
latory NF-xB activation, a result of tonic TNF stimulation
produces prolonged IKK activation and continued IxB
proteolysis, results in repeated rounds of NF-kB transloca-
tion and cytoplasmic recapture [11]. This latter activation
profile is characterized by a series of asynchronous,
damped oscillations of nuclear NF-xB [14]. These findings
explain the biphasic pattern of nuclear NF-xB binding that
has been observed in response to tonic TNF stimulation in
a number of distinct cell types [15,16], where the initial
oscillation is observed due to stimulus-induced syn-
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chrony in the cell population, but lost afterwards because
subsequent oscillations are asynchronous and appear
damped in the population [14]. Whether these two modes
of NF-kB activation produce distinct genetic programs has
not been systematically studied.

Although a body of isolated work has reported that NF-xB
controls expression of acute-phase reactants [17],
cytokines [18], anti-apoptotic proteins [19], and autoreg-
ulators of the IKK-NF-xB pathway [12,13,20], the full
spectrum of NF-kB-dependent genes are only beginning
to be systematically understood [21]. In this study, we
analyzed and validated a microarray time series experi-
ment of cells expressing a regulated NF-xB dominant-neg-
ative inhibitor in response to TNF. From this data set, we
have previously systematically identified known and
novel NF-kB-dependent genes [21]. Because these repre-
sent a time series experiment, the data may contain genes
that are under direct or indirect NF-xB control. That these
"NF-xB-dependent" genes were directly controlled by NF-
kB was verified by satisfying a series of experimental vali-
dation experiments: 1. Ectopic expression of constitu-
tively active NF-xB/Rel A transactivated the endogenous
"NF-kB-dependent" genes in the absence of TNF stimula-
tion; 2. TNF induced the "NF-xB-dependent" genes in the
absence of new protein synthesis; 3. NF-xB sites were
computationally identified and confirmed by EMSA; and,
4. Chromatin immunoprecipitation (ChIP) assays
showed the endogenous "NF-kB-dependent" promoters
bound NF-kB/Rel A in TNF stimulated cells [21]. Based on
these observations, we concluded that this was a robust
dataset containing genes directly under NF-xB control.

Here we performed a kinetic analysis of the time series
data set where, strikingly, four distinct kinetic groups were
identified by cluster analysis. Gene Ontology and Ingenu-
ity pathway analysis show that these response groups
encode distinct biological functions from one another,
with the Early group being composed of families of
secreted cytokine/chemokines and the Late group being
composed of cell surface receptors and adhesion mole-
cules. Stimulation experiments producing monophasic or
oscillatory NF-kB activation modes show that the oscilla-
tory mode is required for Late gene expression. These data
provide major new insights into the coordinated NF-xB
response program to inflammatory stimuli, where the cel-
lular response is dictated by the mode in which NF-«B is
activated.

Results

We have previously isolated and characterized HeLat™4/
FLAG-IxBaMut, 3 clonal cell line expressing a tetracycline-reg-
ulated NF-xB dominant-negative inhibitor [21,22]. When
doxycycline (Dox) is present in tissue culture medium,
tTA is inactivated, and FLAG-IxBa Mut levels are barely
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Schematic diagram of microarray data analysis. HeLaTetO-FLAG-
IkBa. Mut cells were plated in parallel into cultures in the
absence or presence of Dox (2 ug/ml). After four days, cells
were stimulated without (0 h) or with rhTNFa (25 ng/ml) at
6 h, 3 h,and | h prior to simultaneous harvest for RNA
extraction. Experiments were conducted four independent
times. Data sets were scaled for comparison. NF-xB depend-
ent genes were identified using 2-way ANOVA where Dox
treatment and TNF treatment were considered independent
variables. Those changed by Dox treatment at a p-values
[Pr(F)< 0.01] were then filtered for 3-fold change at any
point during the experiment (signal intensity with NF-xB vs
signal intensity without NF-xB).

detectable by Western immunoblot, resulting in a wild
type phenotype, with normal levels of activated NF-xB in
the nucleus being produced after stimulation [21,22].
Conversely, upon Dox withdrawal, tTA is activated, and
FLAG-IxBa. Mut expression occurs at similar levels to
endogenous IkBo [22]. These levels of FLAG-IkBa Mut
expression are sufficient to completely inhibit NF-xB
translocation and target gene expression [21,22]. HeLat™4/
FLAG-IkBo Mut ce]ls were plated in parallel cultures in the
absence or presence of Dox (2 ug/ml), and each group
stimulated tonically with TNFa to induce NF-xB activa-
tion in the oscillatory mode [11]. RNA was then subjected
to high density oligonucleotide microarray analysis. Rea-
nalysis of the raw data set was performed using less strin-
gent statistical filters to more fully identify the spectrum of
biological functions under NF-xB control, where we iden-
tified 74 probe sets (Figure 1). From these, the scaled sig-
nal intensities were subjected to hierarchical clustering to
identify coregulated genes, identifying 5 expression
groups based on their kinetics of expression (Figure 2a).
As an indicator of reproducibility, we noted that redun-
dant probe sets generally clustered with one another,
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where multiple NF-xB2 and IL-8 probesets group together
(Figure 2a). These findings indicated that the clustering
analysis is robust, grouping probe sets representing the
same genes based on similar expression patterns. Further
inspection of the hierarchical clustering results indicates
that TNF induces expression of five distinct groups: 1.
"Early" genes whose expression profiles peak at 1 h and
less; 2. "Middle" genes whose expression profiles peak at
3 h, falling thereafter; 3. "Late" genes whose expression
profiles begin to peak at 6 h and later; 4. "Biphasic", genes
whose expression profiles peak rapidly at 1 h, fall at 3 h,
and peak again at 6 h; and, 5. "Paradoxical" genes whose
expression is not significantly altered by TNF in the wild
type cells, but whose expression are induced by TNF in the
cells lacking NF-kB signaling (Figure 2a). Further, NF-xB
dependence for these probe sets is seen by comparing the
heat map profiles for each probe set obtained in the pres-
ence of Dox vs the profile obtained in the absence of Dox
(Figure 2a). For example, the strong induction of gene
expression in "Middle" genes at 3 h in the presence of Dox
is not seen in the absence of Dox. Similar findings are
made for the probe sets in the "Early", "Late", and "Bipha-
sic" genes.

To rigorously compare the expression profiles of the
major clusters, the scaled and normalized hybridization
intensities were retrieved for each gene and plotted by
group as a percentage of each gene's maximal expression
value during the time course (because of the limited
number of probe sets in the Biphasic group, these were
excluded from subsequent analysis). As seen in Figure 2b,
as a group, the Early genes had ~ 10 % maximal expres-
sion at time 0, and rapidly peaked at 100% maximal
expression by 1 h, falling to ~ 50 % expression at 3 h. The
Middle and Late groups tended to have higher basal
expression relative to their maximal induction. The genes
within the Late group were tightly synchronized showing
maximal expression at 6 h. As expected, the Paradoxical
group showed no significant induction by TNF in the pres-
ence of Dox, but their expression increased 2-fold in the
cells stimulated in its absence. As a test whether the TNF-
induced profile grouping was statistically significant, the
paired two-tailed Z-Test statistic was calculated to deter-
mine whether these three expression groups came from
different populations during the TNF response [see Addi-
tional file 1]. We found that the P values for the two-tailed
test statistic for Early gene group is significantly different
than the profiles of the Middle or Late genes at all times of
TNF stimulation, indicating that they come from a distinct
population than the members of the Middle or Late genes.
Similarly, the expression profiles of the Middle genes are
different from the Late genes also at 1, 3, and 6 h of stim-
ulation. Together this analysis indicated that the Early,
Middle and Late expression groups are separable popula-
tions with distinct gene expression patterns.
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Temporal Cascades of NF-kB Regulated Genes. (a) The Signal Intensity values from 74 probe sets identified as being NF-kB
dependent were Z-score normalized and subjected to hierarchical clustering. Red corresponds Z > +2.5, green indicates Z <0,
and black indicates Z > 0.5. Expression groups are indicated at right by vertical line. (b) Distinct Expression Profiles. The nor-
malized SI measurements for each of the genes in Clusters |-V are presented as a percentage of the maximum value for any

point across the stimulation.

To validate the gene expression kinetics and confirm their
NF-xB dependence, Q-RT-PCR assays were developed for
representative members of the Early (IL-6, IL-8, TNFAIP3/
A20) and Late (NF-xB-2, Naf-1 and TRAF-1) genes. We
then used these assays to measure mRNA changes in tonic
TNFo-stimulated in HeLatTA/FLAG-IkBa Mut ce]ls cultured in
the absence or presence of Dox. A rapid induction of
mRNA transcripts was observed within 1 h for the selected
Early genes (Figure 3a). Here, IL-6 mRNA abundance
peaked at 48 -fold within 0.5 h, whereas IL-8 and
TNFAIP3/A20 peaked at 900-fold and 125-fold at 1 h,
respectively. All mRNA signals then rapidly fell to < 30%
of the maximal signal at 3 h of stimulation (Figure 3a). In
addition, in the HeLatTA/FLAG-IkBa Mut cells cultured in the
absence of Dox, mRNA expression for all of these genes
were significantly inhibited, with IL-6 being induced no
more than 5- fold, and no detectable induction was seen
for IL-8 and TNFAIP3/A20 (Figure 3a). In contrast, mRNA
transcript abundance for the Late gene group peaked 6 h
after TNFo stimulation, with the exception of Naf-1,
whose mRNA abundance continued to increase until 9 h

(Figure 3b). Like the Early genes, TNFo-induced expres-
sion of the Late genes was also significantly inhibited in
cells cultured in the absence of Dox.

We next asked whether TNF-induced specific NF-xB subu-
nit binding to endogenous target genes. For this purpose,
Chromatin immunoprecipitation (ChIP) assays were per-
formed on representative members of the Early (IL-8, IL-
6) and Late (Naf-1, NF-xB2) genes. In this assay, control
or TNF-stimulated cells are exposed to protein-DNA cross-
linking reagents to covalently stabilize the chromatin. The
soluble chromatin is then extracted, sheared, and the tar-
get protein specifically immuno-precipitated (along with
its associated DNA). After elution of the DNA, the
crosslinks are reversed, and the presence of specific genes
detected by PCR. As seen in Figure 3¢, TNFo treatment
strongly induced NF-xB/RelA subunit binding the IL-8
gene. By contrast, TNF induced only weak c-Rel binding to
IL-8. For the DNA binding subunits, although NF-xB1
binding is detectable on IL-8 in the absence of stimulation
(compare signal in absence of TNF vs that produced by
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Validation of expression profiles and NF-kB dependence. (a) Early gene profiles. HeLatTAFLAG-lkBa Mut ce|ls were plated in paral-
lel in the absence or presence of Dox (2 pg/ml) and stimulated with rhTNFo.. Changes in mRNA abundance (normalized by
18S) determined by Q-RT- PCR from total RNA. For each of the indicated mRNA transcripts, values are expressed as fold
change relative to unstimulated cells and plotted on a logarithmic scale. +/-Dox, data obtained from cells cultured with or with-
out Dox. (b) Late gene profiles. Experiment and data analysis are as in Figure 3a. (c) ChIP for NF-xB subunit binding to Early
Gene promoters. ChIP was performed on control or TNFo.-stimulated (30 min, 20 ng/ml) Hela cells using the antibodies indi-
cated at left. Shown is an ethidium-bromide stained agarose gel of the PCR products performed under linear amplification con-
ditions. The target gene is indicated at the bottom. NC, negative control reaction (no template is added to the PCR reaction);
PC, positive control reaction (25 ng of genomic DNA is used as template in PCR). (d) ChIP for NF-kB subunit binding to Late
Gene promoters. ChlIP was performed on Hela cells stimulated as in Figure 3c.
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IgG, Figure 3¢), its levels increase in response to TNF treat-
ment. By contrast, no NF-kB2 binding is detectable either
in the presence or absence of TNF stimulation. Very simi-
lar patterns of NF-xB subunit binding are seen by ChIP
assay of the IL-6 gene (Figure 3¢, right panel). In Figure 3d,
basal- and TNF-induced binding of the same NF-xB subu-
nits is shown for two representative members of the Late
genes. Like the early genes, TNF induces RelA and to a
lesser extent, c-Rel, and NF-xB1 binding to both the Naf-
1 and NF-xB2 genes (Figure 3d). In contrast, constitutive
NF-kB2 binding is seen for both promoters. Because of
differences in PCR efficiencies, it is not possible to deter-
mine whether NF-xB2 subunits are binding more or less
strongly to the Late gene promoters than the Early genes.
These findings indicate that the selected Early and Late
genes directly and inducibly bind NF-kB/RelA, c-Rel, and
NF-xB1 DNA binding subunits in an apparently similar
pattern. Taken together, these studies validate the micro-
array profiles, confirm the relative cascades of gene expres-
sion, demonstrate their absolute dependence on intact
NF-kB signaling, and indicate the Early and Late members
show similar binding affinities for the transactivating NF-
«B family subunits.

To determine the functional activities of the various NF-
kB dependent groups, the individual probe sets in each
expression profile genes were mapped to their primary
Gene Ontology Biological Process and Molecular Func-
tion. Statistical analysis was performed on functional cat-
egories over-represented in the groups relative to the
functional representation within the human proteome
(Table 1, ref. [23]). For example, Cytokine Activity was
significantly enriched in the Early dataset, representing 32
% of the genes, whereas peptide transporter and protein
binding activity was enriched in the Late dataset, repre-
senting 12- and 31 % of the genes, respectively (Table 1).
To more clearly display this functional difference, the 74
NF-kB-dependent genes were annotated by primary bio-
chemical function and kinetic grouping (Table 2). From
this analysis, it is clear that the NF-kB-dependent genes
control a variety of cellular processes, including anti-
apoptosis, cytokine signaling, growth factors and secreted
proteins, metabolism, receptors and cell-surface adhesion
molecules, signaling molecules, transcription factors and
those with currently unknown function. Here, our analy-
sis reveals that groups of genes controlling distinct cellular
functions are sequentially expressed during the evolution
of the TNF response. For example, the Early gene group is
predominantly composed of secreted cytokines, including
IL-6, IL-8, CXCL-1 through- 3, TNF and CCL20/Exodus-1
(Table 2). Conversely, the Late gene group encodes cell-
surface adhesion molecules (ICAM, KLRC2), signaling
adapter molecules (TRAF1/3), and NF-xB2. The Middle
group functionally overlaps with those of the Late genes in
that they control expression of cell-surface receptors, sign-
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aling molecules, autoregulators of the IKK-NF-xB pathway
and metabolic enzymes. To avoid the potential problem
of bias inherent in expert classification, we employed
Ingenuity Pathways Analysis (IPA). IPA compares groups
of genes from each expression profile to an annotated
database generated from published protein and genetic
networks and displays a rank-ordered list of pathways
whose function is most likely to be affected by that expres-
sion pattern. For each pathway, its members and their
relationships (functional and physical) are displayed.
Consistently, the highest scoring IPA pathway for Early
gene group was an NF-xB-dependent pathway controlling
production of extracellular cytokines (Figure 4a). Simi-
larly, although the highest scoring pathway for Late gene
group was also an NF-xB-dependent pathway, the major
targets of this pathway are extracellular adhesion proteins
(Figure 4b). Together, our data suggests that NF-kB con-
trols waves of sequential expression of functionally dis-
tinct genes.

To determine whether the NF-kB-dependent gene expres-
sion cascades produced by TNFo are observed with other
NF-kB activating stimuli, we stimulated HeLatTA/FLAG-IxBa
Mut with IL-1c. IL-1a shares the ability to rapidly activate
the IKK- NF-xB pathway with indistinguishable kinetics
[20]. The mRNA expression profiles displayed as a heat
map shows four expression profiles (Figure 5). IL-8,
TNFAIP3/A20 and IL-6 (Early genes in response to TNF)
were also rapidly induced by IL-1, peaking 1 h after
stimulation. The genes encoding Naf-1, PTGES and
PSMB9Y (Late genes in TNF response) peaked 9 h after IL-
1 stimulation. NF-xB1, and NF-kB2 constituted a Middle
expression group. Together we conclude that similar tem-
poral expression programs and NF-kB-dependence are
seen in response to IL-1 signaling for members of the
Early- and Late NF-xB-dependent genes. To partially
address whether these expression profiles could be
observed in other cell types, a time course experiment of
TNFo - stimulated MRC-5 fibroblasts was analyzed for
changes in a representative member of the Early gene
group (IL-8) and a member of the Late gene group (Naf-
1) by Northern blot analysis. As seen in Figure 5b, IL-8 is
induced with an apparent plateau 2 h after TNF stimula-
tion. Conversely, Naf-1 expression is not detectably
induced at 2 h, but rather begins to increase after 3 h of
stimulation, apparently reaching a plateau 6 h and later
after stimulation. These findings suggest that these waves
of genomic NF-«B responses can be observed in other cell

types.

The promoters of the Early and Late response groups were
subjected to bioinformatics analysis, to determine
whether the kinetics of NF-xB-inducible transcription was
a function of the location or number of high-affinity NF-
kB-binding sites [24]. Within 1000 bp of the transcription
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Table I: GO Mapping of NF-xB-dependent genes. Affymetrix probe sets were mapped to Gene Ontology (GO) Biological Process and
Molecular Function categories [DAVID, Ref [23]]. For each group, the top 5 ranked processes or functions are tabulated with the
number of probe sets and the percentage of the dataset (%) that map to the given process or function, and the statistical significance

for enrichment (p value).

Early Middle
Molecular Function Num % p Value Molecular Function Num % p Value
CYTOKINE ACTIVITY 6 31.6 1.44E-06 PROTEIN BINDING 5.000 29400 0.048
RECEPTOR BINDING 7 36.8 8.1E-06 SUGAR BINDING 2.000 11.800 0.092
CHEMOKINE ACTIVITY 4 21.1  1.37E-05 CARBOHYDRATE BINDING 2.000 11.800 0.096
CHEMOKINE RECEPTOR BINDING 4 21.1  1.37E-05
G-PROTEIN-COUPLED RECEPTOR 4 21.1  1.52E-05
BINDING
Late Paradoxical
Molecular Function Num % p Value Molecular Function Num % p Value
PEPTIDE TRANSPORTER ACTIVITY 2 125 0.005 CTD PHOSPHATASE ACTIVITY 2.000 12.500 0.044
PRIMARY ACTIVE TRANSPORTER 3 188  0.059  Mg-DEPENDENT Ser/Thre PHOSPHATASE 2.000 12500 0.044
ACTIVITY
PROTEIN BINDING 5 31.3  0.063 MYOSIN PHOSPHATASE ACTIVITY 2.000 12.500 0.044
PROTEIN PHOSPHATASE TYPE 2B ACTIVITY  2.000 12500  0.044
PROTEIN PHOSPHATASE TYPE 2C ACTIVITY 2.000 12500 0.044
Table 2: Functional classification of NF-kB-dependent genes.
Function Name GenBank Locus Pr(F) Cluster Function Name GenBank Locus Pr(F) Cluster
Anti-apoptosis Receptors TAPI X57522 6p21.3 1E-08 Late
BID AF042083 22ql 1.1 |E-07 Middle TAPBP  AF029750 6p21.3 1.2E-07 Late
BIRC2 U37547 I1g22  0.00017 Middle NK4 AA631972  16pl3.3 4E-08 Late
TNFAIP3 ~ M59465 6923  4.67E-11 Early KCNGI  AL050404 20q13 1.21E-10 Paradox
Cytokine ITGB5 X53002 3gq21.2  0.003318 Paradox
IL8 M28130 4q13  4.02E-08  Early GPR49  AF062006 12q22  0.006668 Paradox
IL6 X04430 7p2l 8.89E-08  Early CHRNB4  U48861 15q24 0.00637 Paradox
TNF X02910 6p21.3 0.002926  Early F2RLI U67058 5ql3 2.67E-05 Paradox
CXCLI/ X54489 4q21 6.04E-07  Early AQP3 N74607 9pl3 0.008818 Biphasic
Gro-a
CXCL3/ M36821 4q21 4.62E-08 Early Signaling
Gro-g
CXCL2/ M36820 4q21 9.88E-15  Early IkBe Uoleleé 6p21.1 I.I0E-10  Middle
Gro-b
CCL20/ U64197 2q33 1.96E-07  Early BCL3 U05681 19q13.1 8.44E-05 Middle
Exodus-|
Growth Factors/Secreted Proteins TRAF2 Ul12597 9q34 0.001067 Middle
TNFAIP2  M92357 14q32  1.20E-09 Middle TRAFI Ul19261 9q33- 5.87E-07 Late
/B94 q34
Comp B L15702 6p21.3 1.2E-08  Middle TRAF3 U21092 14932.33 0.000139 Late
EFNAI M57730 Iq21 8.34E-05  Early IkBa M69043 14q13  5.55E-I5 Early
Follistatin ~ M19481 5qll.2  226E-05 Parado PTGS2 U04636 19252 3.43E-08 Early
x
CTGF X78947 6q23.1 3.6E-06 Parado PPPIR3C N36638 10g23-  0.000734 Paradox
X q24
SCGF AF020044 19ql3.3 0.002939 Parado DUSP4 U48807 8pl2 84E-06 Paradox
x
Metaboli PTGES AF010316 99343  0.002286 Late
c
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Table 2: Functional classification of NF-xB-dependent genes. (Continued)

SOD2 X07834 6q25.3 2.98E-07 Middle Transcription factor
GCHI U19523  14q22.1 3.93E-07 Middle NF-kBI M58603 4q24 1.73E-08  Middle
GFPT2  AB016789 5q34- 8.00E-10 Middle RELB M83221 19q13.32 4.00E-14 Middle
q35
TIMP2 U44385 17925 0.009703 Parado NFKB2 X61498 10924  3.62E-14 Late
x
HESI LI19314 328  0.000133 Parado REL X75042 2pl3 0.0001 1 Early
X
CYB5 L39945 18923  0.005638 Biphasi IRFI L05072 5q31.1 1.79E-06 Early
c
PSMB9  AA808961 6p2l.3 IE-09 Biphasi TRIMI6é  AF096870  17pll1.2  0.000221 Late
c
PSMB8 X87344 6p21.3 0.007828 Biphasi Unknown
c
Receptoricell Unknown  HG371- - 7.53E-05 Late
surface HT26388
KLRC3  AJoOI685  12pl3  0.000029 Middle TNIPI/  AJOI1896 5932 1.00E-11 Late
Naf-|
SDC4 D79206 20ql2  6.60E-08 Middle PLAU X02419 1024  0.000399  Early
SLC7A2 D29990 8p22  0.004933 Middle OLFML2  AL050002 9q34.11 0.000027 Paradox
A
CD83 Z11697 6p23 I.50E-11  Middle 31 HBEI Al349593  [Ipl55 2E-07  Paradox
IFNGR2 U05875 21q22.1 4.18E-06 Middle chimeric Y15915 - 0.005238 Paradox
|
ECEI 235307 Ip36.1 0.004074 Middle DLX2 U51003 2932 0.008043 Paradox
KLRC2  AJOOl684 12pl3 0.000822  Late Transgeli D17409 11g23.2 0.00012 Paradox
n
ICAMI M24283  19p13.3 0.000124 Late IFI35 u72882 17921  0.004532 Biphasic
IL27RA  AI263885 19pl3.1 6E-09 Late MVP X79882 16pl3.1  0.004212 Biphasic

The 74 NF-xB dependent probe sets were analyzed. Duplicate probe sets (e.g., those mapping to the same gene) were eliminated and unique genes
tabulated. For each gene identified, the primary cellular function (Function), the common name (Name), the Genbank Accession number
(GenBank), the chromosomal locus (Locus), the p-value indicating its significance that its expression is affected by NF-kB [Pr(F)], and its Cluster
location (Cluster). Clusters are colored according to indicated expression pattern. Abbreviations used are: BID, BH3 domain interacting agonist;
BIRC3, IAP homolog 3; TNFAIP3, TNF alpha induced protein3 (A20); IL, interleukin; CXCL, CXC motif ligand; CCL, CC motif ligand; Comp B,
complement factor B; EFNAI, ephrin-Al: CTGF, connective tissue growth factor; SCGF, stem cell growth factor; SOD, superoxide dismutase;
GCHI; GTP cyclohydrolase; GFPT2, glutamine-fructose-6-phosphate transaminase 2; PSMB, proteasome subunit; CYBS5, cytochrome B5, HES,
hairy enhancer of split; TIMP, tissue inhibitor of metalloprotein;, KLRC, SDC4, syndecan 4; SCLC7A2, human cationic transporter; IFNGR2, IFN
gamma receptor 2; ECE, endothelial converting enzyme; KLRC2, natural lectin killer receptor 2; ICAM, intercellular adhesion molecule; IL27RA,
interleukin 27 receptor alpha; TAP, transporter of antigen peptide; TAPBP, TAP binding protein; NK4, natural killer receptor 4; AQP3, aquaporin
3; KCNGIH, potassium voltage-gated channel; ITGBS, integrin beta 5; GPR49, orphan G coupled receptor 49; CHRNB4 beta 4 nicotinic
acetylcholine receptor; F2RLI, proteinase activated receptor -2; BCL-3, B cell lymphoma 3; TRAF, TNF receptor associated factor; PTGES,
prostaglandin endoperoxide synthase; PTGS2, prostaglandin synthase 2; PPPIR3C, regulatory subunit of protein phosphatase |; DUSP, dual
specificity phosphatase; IRF, interferon response factor; TRIM 16, tripartite motif containing- | 6/estrogen responsive B-Box protein; TNIP/Naf-1,
TNF inducible protein/Nef-associated factor-|; MVP, major vault protein; PLAU, urokinase plasminogen-activator gene; OLFML2A, olfactomedin-
like 2A; HBEI, hemoglobin epsilon chain; DLX2, distal-less homeobox2.

start site, between 1 to 6 high-affinity NF-xB-binding sites
were found in both expression groups [see Additional files
2, 3]; when subjected to unsupervised hierarchical cluster-
ing, neither the location or number of NF-xB-binding
sites was apparently predictive of target gene expression
pattern (Figure 6a). For example, Naf-1, a Late gene, co-
clustered with A20, an Early gene (Figure 6a). Both pro-
moters had >5 putative high-affinity NF-xB DNA-binding
sites in their promoters. To initially address the possibility
that the combinatorial context in which the NF-xB site
was located may determine its pattern of response, we
examined whether AP-1 binding sites were enriched in the
Early gene promoters. For example, previous promoter
analyses from our lab have shown that the presence of AP-

1 binding site affects the magnitude of IL-8 gene induc-
tion in response to TNFa [25]. The location of putative
high-affinity AP-1 binding sites in relationship to the NF-
kB binding sites are shown in Figure 6b. Although AP-1
binding sites are frequent in the promoters analyzed, with
31 sites found in the 26 promoters analyzed, the fre-
quency of those containing AP-1 was not different
between the expression groups. Here, 10 of 13 Early gene
promoters contained at least one AP-1 site, and exactly the
same number of Late gene promoters (10/13) contained
them.

However, when the location of NF-xB-binding sites
located within phylogenetically conserved domains was
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Ingenuity Pathway Analysis of biological pathways controlled by Early and Late genes. (a) Early gene pathway. Shown is a graph-
ical representation of the highest scoring pathway controlled by the genes in Cluster lll. Shown are labeled nodes representing
individual protein functions and their relationship represented by edges. Nodes are colored by changes in expression, with red
indicating > 10 fold change; pink > 2-fold and < = 10-fold change; no color indicating < = 2-fold change or data is not present.
Squares indicate cytokines, circles indicate chemokines, and ovals indicate transcription factor. For the edges, an arrow indi-
cates "acts on". Horizontal lines indicate the most likely subcellular location for the protein encoded by each node. See Legend
to Table Il for the index of relevant abbreviations. (b) Late gene pathway. Graphical representation of the highest scoring path-
way controlled by the genes in Cluster Ill. See Fig. 2A for explanation of figure and symbols.

considered, striking differences between the two groups
emerged. For the Early genes, promoter alignments
between human and mouse genes showed that the NF-kB-
binding sites were highly conserved, where the A10,
CXCL-1, CCL-20, IxBo, IL-6, IRF-1 and TNF genes con-
tained NF-xB-binding sites, representing 7 of the 9 genes
amenable for analysis (Figure 7a). Conversely, for the Late
genes, only CYB5 and ICAM-1 had NF-kB-binding sites
within phylogenetically conserved domains, representing
only 2 of the 9 genes (Figure 7b). Together, these data
indicate that the Early gene promoters may be under selec-
tive conservation pressure to contain NF-kB-binding sites,
whereas the Late gene promoters may not be. To further
explore the question of co-occurrence of AP-1-binding
sites, the frequency of AP-1 sites in phylogenetically con-
served domains was also examined. As seen by the green
asterixes in Figure 7a, only two phylogenetically con-
served domains in Early genes contained high-affinity AP-
1-binding sites. More work will be required to understand
the biological significance of these apparent differences in
binding patterns between the two groups.

TNF can induce two distinct modes of NF-xB activation
patterns- a single, synchronized "monophasic" NF-xB
translocation vs a series of damped, desynchronized
oscillations ("oscillatory") whose differential effects on
cellular genetic response has not been explored [11,14].
Pulse TNF stimulation rapidly activates IKK briefly over 5
15 min, after which the kinase inactivates, thereby allow-
ing newly resynthesized IxBo to recapture activated NF-kB
and return it to its inactivated cytoplasmic form. Con-
versely, tonic TNF stimulation produces a low level of per-
sistent IKK activity. This persistent IKK activity produces
continuous IxBa proteolysis and NF-xB binding [14]. To
illustrate, the DNA binding profiles of "pulse” TNFo stim-
ulation (15 min, Figure 8a) were then compared with
"tonic" TNFa stimulation. Over the first 1 h, NF-xB DNA
binding activity in EMSA was indistinguishable between
the "tonic" and "pulse" TNF stimulation (Figure 8b).
However, after 3 h, NF-xB activated by pulse TNF stimula-
tion is no longer detectable in the nucleus, being relocated
into the cytoplasm, whereas tonic TNF stimulation pro-
duced a low level of NF-xB binding (Figure 8b; compare
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(@) IL-1 induces sequential cascades of NF-kB dependent gene expression. HeLatTAFLAG-IkBa Mut cells were plated in parallel in
the absence or presence of Dox (2 pg/ml) and stimulated with IL-10. Changes in mMRNA abundance (normalized by 18S) was
then determined by Q-RT- PCR from total RNA. Shown is a Z-score representation, where red corresponds to Z > +2.5,
green indicates Z < 0, and black indicates Z > 0.5. The common name of each gene is indicated at right. (b) TNF sequential cas-
cades of NF-xB dependent gene expression in MRC-5 fibroblasts. Human MRC-5 fibroblasts were stimulated for the times
indicated at top with TNFc (20 ng/ml) and RNA extracted. Shown is a northern blot hybridization of 20 ug RNA using probes
specific to IL-8 (top) and Naf-1 (bottom). Asterix indicates apparent plateau of gene expression.
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IL-8 1L-8
IL-6 IL-6
c-Rel c-Rel
ICAMI1 ICAMI1
ECEI ECEI
NFkB2 NFkB2
CXCL-1 CXCL-1
CXCL-2 CXCL-2
CXCL-3 CXCL-3
IL27RA IL27RA
Cyb5 Cybs
A20 A20
NAF-1 NAF-1
TRAF3 TRAF3
CCL-20 CCL-20
IkBa IkBa
PTGS2 PTGS2
TAPI TAP1
IRF IRF
TNF TNF
PLAU PLAU
PTGES PTGES
NK4 NK4
TRAF1 TRAF1
KLRC2 KLRC2
TRIMI16 TRIM16
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(@) Hierarchical clustering of high-affinity NF-xB DNA-binding sites. The probability over 100 bp intervals for finding a high-
affinity NF-xB-binding site was used for hierarchical clustering (data from Table I) of the early and late NF-xB dependent gene
promoters. Data is shown as a heat map, where green =0, red = |. The common name of each gene is shown at right. Note
that there is no separation of early and late gene promoters based on the pattern or location of the NF-kB-binding sites. (b)
Co-occurrence of high-affinity NF-kB- and AP-I DNA-binding sites. Superimposed on the NF-kB binding site analysis is the
presence and location of high-affinity AP-1 DNA-binding sites. The location of each AP-I DNA-binding site is indicated in black.

3-and 6 h Tonic vs Pulse stimulated cells). Although high
resolution single-cell fluorescence microscopy indicates
this is due to a series of dampened oscillations, the
oscillations have desynchronous cycle times and presents
as an apparently tonic binding pattern in the homoge-
nated cell population (Figure 8b). As expected, cytoplas-
mic IkBa is rapidly reduced within 30 min in cells
subjected to either pulse or tonic stimulation, but only
those subjected to tonic treatment show persistent kB
proteolysis (see Western blot in Figure 8c), producing an
oscillatory NF-xB translocation profile (compare with Fig-
ure 8b). Using these two stimulation modes, we tested
their effect on the Early and Late gene expression profiles

by Q-RT-PCR. For the Early genes, we found that the
expression patterns for IL-8 and TNFAIP3/A20 gene
expression were quite similar (Figure 8d). Surprisingly, IL-
6 response to pulse stimulation was much greater than
that of identically cultured cells that were tonically TNF
stimulated (Figure 8d). Cells in the pulse-treated plates
are washed in PBS to remove the TNFa ligand after the 15
min exposure time. It may be possible that a secreted
TNFo-inducible inhibitor of IL-6 expression (such as an
arachidonic acid metabolite) is removed during this
processing, accounting for the enhanced IL-6 expression.
Nevertheless, and in marked contrast, Late gene expres-
sion patterns were significantly reduced in response to
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Figure 7

Phylogenetic analysis of NF-kB dependent promoters. (@) Early gene promoters. Promoters spanning from -1000 bp to the
first nontranslated exon were aligned between human and mouse genes. Shown are the VISA identity curves [49]. For each
curve, the percent sequence conservation is plotted over a sliding 20 base pair window (from 0—100% identity). Shaded regions
indicated significant regions of sequence conservation. The location of NF-kB-binding sites within these conserved domains are
displayed at top (location indicated by I). The presence of AP-1 sites is indicated by green asterix (*). (b) Late gene promoters.

For each late gene promoter indicated, analysis as in 7a.

pulse stimulation. Tonic TNF stimulation produced a 12-
fold induction of NF-xB2 and 120-fold induction of Naf-
1 mRNAs, whereas the pulse stimulation produced less
than 2-fold mRNA induction for either gene (Figure 8e).
Also, the Early expression of TRAF-1 (15 fold at 1 h) was
similar for both treatment conditions; however at later
times, TRAF-1 expression returned to unstimulated val-
ues. Together these data indicate that expression of the
Late genes are dependent on tonic stimulation producing
continuous oscillatory NF-xB activity, and suggest that the
Late genes are recruited into activated expression modes
by time-dependent NF-xB exposure.

Discussion

TNFa is a potent inflammatory and immunomodulatory
cytokine expressed by macrophages, monocytes, neu-
trophils, T-cells and natural killer (NK)-cells following
stimulation by bacterial endotoxin. Upon binding to
high-affinity cell surface receptors, TNFo. activates the

expression of secondary cytokine cascades and adhesion
molecules that, in turn, play important roles in tissue
inflammation by coordinating leukocyte activation,
chemotaxis and cell death [1,2,26,27]. The intracellular
signaling pathways in response to TNF are well under-
stood. Ligation of TNFRI induces protein recruitment to
its cytoplasmic death domains, assembling a submembra-
nous signaling complex composed of TRADD, FADD,
TRAF2 and other proteins. These, in turn, activate two
divergent intracellular signals, the JNK-AP-1 and the IKK-
NF-xB pathways responsible for producing homeostatic
genomic responses. Although the IKK-NF-xB pathway is
critical for inducing tissue inflammation and preventing
TNF-induced programmed cell death, surprisingly little is
known about its downstream gene targets and their kinet-
ics of induction. In this study, we have systematically
analyzed the kinetics of NF-kB-dependent gene expres-
sion. Our findings suggest that NF-xB controls distinct
groups of target genes whose pattern of expression appear
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Figure 8

Late gene expression requires the NF-xB oscillatory mode. (a) Experimental Strategy. Schematic diagram of the tonic and
pulse stimulation paradigm. Parallel plates of cells were stimulated with TNF continuously ("tonic" treatment), without remov-
ing the agonist. Pulse stimulated cells were exposed to TNF to activate the NF-xB pathway (activation is maximal within |5 min
of stimulation), whereupon the agonist is removed from the medium. At identical times after application of the stimulus, cells
are harvested for gel shift (Figure 8b) or Q-RT-PCR (Figures 8c, d). (b) NF-xB-binding in tonic- vs pulse-stimulated cells.
Nuclear extracts from tonic- or pulse stimulated Hela cells were prepared and NF-kB-binding measured. Shown is an autora-
diogram of the bound NF-kB complexes by EMSA. The specific NF-kB/Rel A and NF-kB| complexes previously identified by
supershift analyses are indicated at left (see Ref [21] for further details). (c) IkB proteolysis and resynthesis in tonic- vs pulse-
stimulated cells. Cytoplasmic extracts from tonic- or pulse stimulated Hela cells were prepared and abundance of IxB deter-
mined by Western blot. 1B is rapidly proteolyzed, with both treatments, however, the steady state levels are reduced 3 and 6
h in tonic treated cells compared to those pulse-treated. (d) Early gene expression profiles. Hela cells were treated as in Fig-
ure 8a, total RNA extracted and mRNA abundance (normalized by 18S) determined by Q-RT- PCR. For each of the indicated
mRNA transcripts, values are expressed as fold change relative to unstimulated cells and plotted on a logarithmic scale. (e)
Late gene expression profiles. Samples obtained as in Figure 8d. The mRNA transcript measured is indicated for each plot.
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to be an orchestrated cascade of Early, Middle and Late
target gene responses. These kinetically separable waves of
NF-kB-dependent gene expression control distinct bio-
chemical processes, with the Early gene group primarily
encoding for cytokines that mediate TNF's ability to
amplify local cytokine cascades in inflamed tissue. More-
over, we find the orchestration of distinct temporal gene
expression cascades is a general feature of cytokine-
induced NF-xB activation, being also observed in
response to stimulation with IL-1. Undoubtedly cell type-
specific influences may affect the precise timing of expres-
sion and composition of the kinetic groups that we have
identified here for epithelial cells, we nevertheless find
similar distinct temporal profiles of representative mem-
ber of the Early and Late gene groups in unrelated human
MRC-5 fibroblasts. Finally, our study identifies differences
in gene expression depending on NF-kB activation modes
that affect target genes within non-phylogenetically con-
served regulatory domains. These findings shed important
new insights into the genetic responses to cytokine action.

The Early genes are enriched in cytokines and regulatory
components of the IKK-NF-kB pathway as analyzed by
Gene Ontology, Ingenuity pathway analysis, and expert
classification. An important biological property of TNF is
to initiate the cytokine cascade in target cells, where the
expression of secondary (downstream) cytokines are pro-
duced, each with their own distinct biological properties
[1,27]. In this manner, TNF amplifies the inflammatory
process. We find that a major part of the Early gene group
is the CXC chemokine family. CXC chemokines are the
numerically largest of the chemokine families, responsi-
ble for inducing migration of neutrophilic leukocytes,
stimulating wound healing, initiating angiogenesis and
promoting tumorigenesis [28]. In addition, a CC chemok-
ine, CCL-20, is responsible for stimulating monocytes and
dendritic cells [29]. Another Early gene, the cytokine IL-6,
induces B cell differentiation and is a major mediator of
the hepatic acute phase reaction. Therefore, TNF stimula-
tion of epithelial cells rapidly induces secondary cytokine
cascades that control leukocyte trafficking, wound heal-
ing, angiogenesis, and systemic inflammation. Our phyl-
ogenetic analysis shows that the Early gene promoters
contain NF-xB-binding sites in evolutionarily conserved
regions between human and mouse, perhaps suggesting
existence of selection pressure for this rapid TNF response.
Moreover, since chemokine activity is produced as a
major portion for the most rapidly expressed genes, the
primary responses of the TNF-stimulated epithelium
appear to be the paracrine propogation of the inflamma-
tory response, with the induction of homeostatic factors a
secondary priority for the cell.

The other important members of the Early genes encode
intracellular regulatory molecules involved in inhibition
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of the IKK-NF-xB pathway itself. The NF-xB pathway is
tightly controlled by negative feedback loops at multiple
steps in its signaling pathway [14,30]. One level of
feedback inhibition involves the inactivation of nuclear
NF-xB and return to its cytoplasmic localization, a process
termed the NF-xB-IkB autoregulatory loop [13,15]. In this
loop, activated NF-xB produces enhanced expression of
IkBa mRNA. IkBa protein is then replenished to bind and
inactivate NF-kB/Rel A, returning it back into to the
cytoplasm to restore homeostasis. At a second level, acti-
vated NF-kB induces inhibitors of the activated IKK com-
plex. This inhibition is mediated by the TNFAIP3/A20
protein, a ubiquitin ligase that associates with RIP and
mediates its proteasomal degradation [31], resulting in
inhibition of IKK signal [14,31-34]]. Together, these
observations indicate that an additional effect of the Early
NF-kB response is to terminate the TNFR-IKK-NF-kB sign-
aling pathway at several levels whose effect is to restore
cellular homeostasis.

Conversely, the Late gene group encodes adhesion mole-
cules (ICAM, KLRC2), MHC I antigen processing/presen-
tation (TAP, TAPBP). These molecules play important
roles in cytotoxic T cell mediated cytolysis. The finding
that tonic TNF stimulation is required for adhesion mole-
cule expression and MHC I antigen presentation suggests
that tonically TNF stimulated cells, such as those pro-
duced in the context of persistent infection, would be tar-
geted for enhanced immune recognition and clearance.
Also in this group, the TRAF signal adapter molecules cou-
ple TNF receptors to intracellular responses. TRAF1 is dis-
tinct from other TRAF isoforms in that it apparently serves
to protect cells from apoptosis and plays a role in the neg-
ative feedback regulation of receptor signaling [35]. Simi-
larly TRAF3 has inhibitory functions to those of TRAF 2/6
in TNF induced NF-xB activation [35]. In this regard,
TRAF-1 and 3 dependence on tonic TNF stimulation sug-
gests a mechanism how the cell attempts to restore home-
ostasis in the presence of a strong pro-apoptotic stimulus
by additional down- regulation of the TNFR-IKK signaling
pathway. Our new findings that Late gene expression is
dependent on tonic TNF stimulation is mechanistically
significant because it means that TNF may produce dis-
tinct phenotypic responses depending on the stimulus
duration.

Although the mechanisms underlying the different pat-
terns of Early and Late gene expression control were not
the focus of this study, several findings merits further dis-
cussion. Our preliminary analyses indicate that expres-
sion of both classes of genes is absolutely dependent on
NF-xB translocation, because expression of both groups is
completely blocked by overexpression of the nondegrada-
ble IxBa inhibitor (Figures 2, 3). Bioinformatic analysis
shows that both groups contain high-affinity NF-xB-bind-
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ing sites (Figures 6, 7), many of which have been experi-
mentally verified [21,36]. Moreover, we show here that
members from both groups inducibly bind NF-xB within
their native chromatin environment (Figures 3¢,d). Addi-
tionally, we previously showed that TNFa robustly
induces expression of three members of the Middle gene
group (IxBe, NF-xB1, and RelB), and three members of
the Late gene group (TRAF-1, NF-xB2, and Naf-1) in the
absence of new protein synthesis [21]. Protein synthesis
independence excludes paracrine factors mediating Late
gene expression in epithelial cells, unlike those seen in
other cell types [37]. Finally, we have previously shown
that expression of a constitutively active NF-xB/RelA
transactivator is sufficient to activate expression of repre-
sentative Middle and Late genes, excluding a requirement
for other TNF-induced signaling pathways in expression
of these genes. Together, these data strongly argue that
TNFo. - induced NF-xB binding to high-affinity DNA-
binding sites in the Late gene promoters is necessary and
sufficient for their expression. NF-«B, therefore, is a direct
regulator of Late gene expression.

Recent studies suggesting that NF-xB binding occurs in
two distinct "waves" in LPS-stimulated macrophages [38]
raises the question whether Late gene expression could be
due to different rates of NF-kB recruitment. Unfortu-
nately, our findings do not support this as a mechanism
controlling Late gene activation by NF-xB in epithelial
cells. For example, we have previously shown that the
kinetics of the potent transactivating NF-kB/RelA subunit
binding to the Late gene, Naf-1, is rapid and indistin-
guishable from that for the Early gene, IxBo. [21]. It is still
possible that other Late genes not yet tested are bound by
RelA more slowly, but at least we can conclude that differ-
ences in rate of NF-kB binding cannot account for the late
pattern of Naf-1 expression. Alternatively, expression dif-
ferences could be due to different compositions of NF-xB
subunit binding to the Early and Late gene promoters.
Although the ChIP assays presented in Figures 3c and 3d
show that the RelA, c-Rel and NF-xB1 subunits bind sim-
ilarly to the Early and Late genes, NF-xB2 appeared to be
binding more strongly to the late genes. It therefore is pos-
sible that exchange of various transactivating subunits for
NF-kB2 may occur later in the time series, a possibility
that will require further investigation.

Another possible explanation for the different rates of
promoter activation may be through the environment in
which the NF-kB binding sites are located in the Early and
Late gene promoters. The rate of response of some NF-kB
dependent genes has been suggested to be modified by
adjacent transcription factor regulatory sites. In our previ-
ous studies of IL-8 gene expression, we found that the
magnitude of its TNF-induced transcriptional response is
partly dependent on an intact upstream AP-1 binding site
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[25]. Although our preliminary bioinformatic analysis
does not indicate any differences in the frequency of co-
regulatory AP-1 binding sites between the two groups
(Figure 6b), other sites or combinations of sites may be
important. For example, a rapid transcriptional response
of the A20 gene has been suggested to be due to a "pre-
assembled" pre-initiation complex that is nucleated by
the SP-1 transcription factor [39]. In this way, the A20
promoter is poised for rapid transcriptional induction
when NF-«B is activated. It will be interesting to compare
whether the Early genes are pre-loaded with TFIID or RNA
Polymerase by ChIP, and whether these patterns are dif-
ferent from the Late gene promoters. However, we note
from our previous genomic footprinting studies have
shown that TNF induces both NF-xB- and TFIID binding
simultaneously to the IL-8 promoter in epithelial cells
[18]. We therefore think SP-1 mediated promoter pre-
loading is not likely to be a universal mechanism explain-
ing Early gene expression.

Another possible explanation for the delay in Late gene
expression is that this group undergoes an additional rate-
limiting step necessary for promoter activation after NF-
kB binding has occurred. This step is apparently depend-
ent on a TNF stimulation protocol that induces oscillatory
NF-xB binding behavior. In a previous mathematical
treatment of this phenomenon at a single cell level, we
demonstrated that the Late gene expression profiles can be
simulated using a theoretical construct of two sequential
activator binding steps, the first one being NF-xB [40].
This second activator, yet to be experimentally identified,
could be chromatin modification, nucleosomal re-posi-
tioning, pre-initiation complex formation, or coactivator
recruitment (reviewed in [41-43]]). These possibilities
will require further experimentation.

Another conclusion from our study is that Early gene
expression is being actively terminated. Comparing the
microarray and Q-RT-PCR profiles with NF-xB binding
profiles show that IL-8 expression is falling to control lev-
els 3 h after TNF stimulation, even though NF-xB binding
continues to be detectable at these times. Both EMSA (Fig-
ure 8) and ChIP assays show NF-kB binding is strongly at
these times (See Figure 7F in [21]). To our interpretation,
these findings indicate a repressive activity is being
recruited to the Early gene promoters during the evolution
of the TNF response, an activity or factor which has yet to
be experimentally identified [see also discussion in [40]].

Finally, we have not addressed regulation of the Paradox-
ical genes. These genes are not affected by TNF stimulation
in the presence of intact NF-xB signaling pathway (Figure
2), but are induced by its absence. One possibility is that
they represent a group of genes whose expression is toni-
cally inhibited by basal NF-xB nucleo-cytoplasmic shut-
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tling. This could be through a competition for rate-
limiting, shared, coactivators. In the absence of NF-xB
translocation, these limiting coactivators are now able to
bind and activate expression of the Paradoxical genes.

Conclusion

This study is the first systematic dissection of the NF-kB
response profiles downstream of TNF. We have found evi-
dence for temporal waves of NF-kB-dependent target
expression encoding distinct molecular functions. The
expression profiles are stimulus-independent, being
induced in the same coordinated cascades in response to
IL-1. Finally, we have identified a subnetwork of the NF-
kB response program whose expression is dependent on
its oscillatory mode of activation. This finding is signifi-
cant in that it indicates distinct cellular phenotypes can be
produced depending on the duration of TNF stimulation.

Methods

Cell culture and treatment

HeLatTA/FLAG-IkBo. Mut - Tet-transactivator (tTA)-expressing
Hela cells stably transfected with a Tet Operator control-
led non-degradable IxBo (IxBo Ser32Ala/Ser3¢Ala) plas-
mid, were cultured as described [22]. For pulse TNF
stimulation, cells stimulated with 25 ng/ml recombinant
TNFa for 15 min, and rapidly washed 3 times with PBS
before returning to culture medium. For tonic stimula-
tion, 25 ng/ml TNF was added to the culture medium and
left for indicated times prior to harvest.

RNA analysis

Twenty micrograms acid guanidium-phenol extracted
RNA was analyzed by Northern blot as previously
described [21]. The washed membrane was exposed to a
Molecular Dynamics Phosphorlmager cassette for quanti-
tation. Quantitative real-time reverse transcriptase-
polymerase chain reaction (Q- RT-PCR) assays used com-
mercially available primer and probe sequences (ABI, P/N
4331182). For TNFAIP3/A20, the probe sequence was 5'-
CAATTGCCG TCACCGTTC-3'; the forward primer was 5'-
AGCTTGTGGC GCTGAAAAC-3', and reverse primer was
5'-ACTGAGAAGTG GCATGCATGAG-3'. The cycling
parameters for one-step RT-PCR were: reverse transcrip-
tion 48°C for 30 min, AmpliTaq activation 95°C for 10
min, denaturation 95°C for 15 s, and annealing/exten-
sion 60°C for 1 min (repeat 40 times) on an ABI7000
thermocycler. Duplicate CT values were analysed using
comparative CT(AA CT) method. The amount of target (2
-AACT) was obtained by normalizing to an endogenous
reference (18S RNA) and relative to a calibrator (one
experimental sample).

Oligonucleotide array data analysis
Four independent Hu95Av2 GeneChip (Affymetrix Inc,
Santa Clara, CA) hybrdiziations were performed using
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RNA isolated from control (0 h), 1, 3 and 6 h TNF stimu-
lated HeLatTA/FLAG-IkBa Mut cells in the presence or absence
of Doxycyline (2 pug/ml). For comparison of the fluores-
cent intensity (Signal Intensity) values among multiple
experiments, the Signal Intensity (SI) values for each
"experimental" GeneChip were scaled to that of the
"base" GeneChip and subjected to a 2 way analysis of var-
iance with replications (ANOVA, Splus 6, Insightful Inc.).
As seen in Figure 1 (supplementary information), 343
probe sets were changed by Dox treatment a p value
[Pr(F)] of < 0.01. The probe sets were then filtered to iden-
tify any that showed a 3-fold difference in SI at any time
during the TNF treatment (SI with NF-xB vs SI without NF-
kB), identifying 74 probe sets being under NF-xB control.
Agglomerative hierarchical clustering was performed
using the Weighted Pair-Group Method with Arithmetic
mean (WPGMA, Spotfire Array Explorer, v. 8, Spotfire
Inc.,, Cambridge MA) using Euclidian Distance. The
primary data has been deposited with GEO or can be
found at our website [44].

Functional annotation mapping was performed using the
NIAID DAVID database [23,45]). Pathways Analysis was
performed using individual clusters as input into the Inge-
nuity Knowledge Base database [46]. NF-kB-dependent
human promoters were obtained from the Human
Genome Browser gateway using the Human May 2004
(hg17) assembly (UCSC Genome Bioinformatics Site,
[47]. NF-xB-binding sequences were identified by TRANS-
FAC 4.2 filtering matrix scores by minimizing the sum the
false positive and negative error rates. Human and mouse
promoters were aligned using the VISTA genome browser
2.0 [48,49].

Protein extraction and analysis

Nuclear and cytoplasmic proteins were fractionated as
previously described [21]. 15 ug of nuclear extracts (NE)
were subjected to Electrophoretic Mobility Shift Assay
(EMSA) using the high-affinity NF-xB-binding site [22].
The complexes were fractionated on 6 % native polyacry-
lamide gels, dried, and exposed to Kodak X-AR film at
70°C. For Western blot, equal amounts of cytoplasmic
protein were fractionated by SDS-PAGE and transferred to
PVDF membrane. The membranes were incubated with
affinity purified rabbit polyclonal antibodies to IxBa
(Santa Cruz Biotechnology). Washed membranes were
then incubated with IRDye 800 labeled anti-rabbit IgG
antibodies (Rockland Immunochemicals, Gilbertsville,
PA), and immune complexes quantified using the Odys-
sey Infrared Imaging system (LICOR Biosciences, Lincoln,
NE.).

Chromatin immunoprecipitation (ChlIP) assay
The ChIP assay was as described [21]. On the day prior to
experiment, 2-4 x 106 cells were plated in 0.5 % BSA con-
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taining growth medium. Cells were stimulated for indi-
cated times, and sequentially crosslinked with
disuccinimidyl glutarate and 1 % formaldehyde in serum-
free medium for 15 min at 37°C. The cells were washed,
transferred to Eppendorf tubes, and solubilized in 400 ml
of SDS Lysis Buffer (1% SDS 10 mM Tris, ph 8.0, 1 mM
EDTA) with protease inhibitor cocktail (Sigma Aldrich).
The samples were sonicated 3 times, 15 sec at setting 2
until DNA fragments were 300-400 bp or less. Equal
amounts of DNA were immunoprecipitated overnight at
4°C in ChIP dilution buffer (50 mM NaCl, 1 mM HEPES,
pH 7.4, 1% IGEPAL-630, 10 % glycerol, 1 mM DTT) with
20 pg of indicated NF-xB subunit specific antibody (Santa
Cruz Biotech) or IgG as indicated. Immunoprecipitates
were collected with protein-A magnetic beads (Dynal,
Inc), and washed sequentially with ChIP dilution buffer,
high salt buffer, LiCl buffer and TE buffer (10 mM Tris, ph
8.0, 1 mM EDTA). DNA was eluted in 1 ml of Elution
Buffer 1 % SDS in 0.1 M NaHCO;). Samples were de-
crosslinked in 200 mM NacCl at 65°C, 1 h. DNA was phe-
nol extracted, ethanol precipitated and used for PCR. PCR
primers and conditions for semiquantiative PCR are in
[21]. PCR products were fractionated by agarose gel chro-
matography and stained with ethidium bromide.

Additional data files

Additional data are available with the online version of
this manuscript. File 1 is the data showing the Z-Test anal-
ysis of TNF-regulated genes. Files 2 and 3 are the NF-kB-
binding site predictions and human-mouse promoter
mapping for the Early genes and Late genes, respectively.
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Additional File 1

Contains the table showing the Z-Test analysis of TNF-regulated genes.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-6-137-S1.pdf]

Additional File 2

Contains the NF- kB-binding site predictions and human-mouse promoter
mapping for the Early genes.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-6-137-S2.pdf]

Additional File 3

Contains the NF-xB-binding site predictions and human-mouse promoter
mapping for the Late genes.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-6-137-S3.pdf]
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