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Abstract

Background: Transposable elements (TEs) are major players in evolution. We know that they
play an essential role in genome size determination, but we still have an incomplete understanding
of the processes involved in their amplification and elimination from genomes and populations.
Taking advantage of differences in the amount and distribution of the Long Interspersed Nuclear
Element (LINE), helena in Drosophila melanogaster and D. simulans, we analyzed the DNA sequences
of copies of this element in samples of various natural populations of these two species.

Results: In situ hybridization experiments revealed that helena is absent from the chromosome
arms of D. melanogaster, while it is present in the chromosome arms of D. simulans, which is an
unusual feature for a TE in these species. Molecular analyses showed that the helena sequences
detected in D. melanogaster were all deleted copies, which diverged from the canonical element.
Natural populations of D. simulans have several copies, a few of them full-length, but most of them
internally deleted.

Conclusion: Overall, our data suggest that a mechanism that induces internal deletions in the
helena sequences is active in the D. simulans genome.

Background

Genome evolution occurs by several processes, including
global genome duplications, segmental duplications and
the amplification/deletion of repetitive sequences.
Among the repeated sequences, transposable elements
(TEs), which constitute a high proportion in many
genomes, play an important role in genome evolution [1].
The transposition rates of these TEs depend on the
amount and type of the TEs present in the genome; they
are not constant over time, but are subject to amplifica-
tion bursts in certain species and populations [2]. As a

result, genomes contain widely differing amounts of TEs
that are not directly correlated to their activity levels. For
instance, the human genome is composed of at least 50%
of TEs, but only very few are active, and they are responsi-
ble for less than 1% of mutations [3]. In contrast, in Dro-
sophila melanogaster, only 18% of the genome is composed
of TEs, but a high proportion of mutations (more than
50%) is attributable to their transposition [4].

A TE life cycle can be viewed as successive waves of trans-
position/loss: invasion of the host genome by TEs being
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followed by their progressive elimination [5,6]. For exam-
ple, the LINE-1 (L1) element has colonized the entire
human genome by successful waves of transposition
[2,7], and today it is the most abundant TE family in this
genome. However, in humans, most of the elements have
been inactivated either by structural changes or by epige-
netic control, such as DNA methylation [7]. In D. mela-
nogaster, the I factor has recently reinvaded this genome
after being lost from the chromosome arms [8]. TE elimi-
nation from genomes is therefore a commonly observed
phenomenon, although no real-time observation of a TE
extinction has ever been reported. As TEs have a consider-
able influence on remodeling the genome structure [9],
we need to understand the dynamics of changes in their
copy numbers. One way to investigate these dynamics is
to analyze closely related species with differing TE
amounts, such as D. simulans and D. melanogaster. These
species diverged 2 to 3 million years ago [10] and have dif-
fering proportions of TEs: D. melanogaster contains more
than 18% of TEs, whereas D. simulans contains only 5%
[11].

D. simulans has fewer copies of most TEs [11], but there
are a few exceptions. The DNA-transposon hobo is more
abundant in D. simulans, the retrovirus-like gypsy and ZAM
elements have the same low number of copies in both
species, and the LINE-like element helena is present in the
D. simulans genome (10 insertion sites as determined by
in situ hybridization), but has not been detected in the
chromosome arms of D. melanogaster [11,12]. The striking
distribution of helena in natural populations of these two
species, and the fact that degenerated copies are found in
the sequenced D. melanogaster genome, make this LINE-
like element an ideal model system to study the real time
TE life cycle.

Petrov and colleagues [13] proposed that deletions are
common events in Drosophila, and based this suggestion
on the analysis of partial helena sequences from different
Drosophila species. However, it is difficult to extrapolate
this to other TEs, if we take into account the fact that
helena is one of the few degenerate TEs in the D. mela-
nogaster sequenced genome [14]. Comparing closely
related species with differing TE amounts, could be used
to test the importance of this deletion process in regulat-
ing TE genome invasions.

We analyzed the structure and activity of helena using the
sequenced genomes and of 41 natural populations of D.
melanogaster and D. simulans. We show that the elimina-
tion of helena from its host genomes is a very quick proc-
ess, and that it is mediated by massive internal deletions
in the element [15]. We conclude that the process of elim-
ination of helena is far advanced in D. melanogaster. but is
still in progress in D. simulans.

http://www.biomedcentral.com/1471-2164/9/149

Results

In silico identification of a complete copy of helena in the
D. simulans genome

Because no full-length copy of helena had previously been
described, we performed a bioinformatic search for such a
copy in the draft sequence of the D. simulans genome [16].
We found a 4912-bp copy of helena on the chromosome
arm 3R (at position 1506433 - 1511368 on the minus
strand) (Figure 1). Helena belongs to the jockey clade [17],
has a 25-bp poly A tail, and two overlapping open reading
frames (ORF1 and ORF2). The first ORF is 1737-bp and
codes a 579-amino acid (aa) protein that has high similar-
ities to the gag protein of other LINE-like elements, such
as X, jockey and HeT-A [18,19]. The gag-like protein con-
tains the major homology region (MHR), followed by a
cysteine-rich  domain (CX,CX,HX,C, CX,CX;HX,C,
CX,CX;HX,C). This region is common to all gag-like pro-
teins, and confers an RNA or DNA single-strain binding
property on these elements, as well as being essential for
gag oligomerization. Helena has a coiled-coil domain
located in the 5' region of the gag protein, something that
had previously only been seen in L1 elements from mam-
mals [20] and in some LTR retrotransposons from Dro-
sophila [21]. The second ORF, which starts on the last
base of ORF1, is 2721-bp, and codes a 907-aa protein cor-
responding to the pol gene, which is very similar to the
protein of the BS and jockey elements. The pol-like protein
contains all the domains necessary for its function: an
apyrimidic endonuclease and an exonuclease (from
amino acid 4 to 221), plus a reverse transcriptase domain
(from amino acid 493 to 746). Both ORFs are intact,
could produce transcripts, and are surrounded by two
untranslated regions (5'UTR and 3'UTR respectively).
Because the regulatory region is often defined in the
5'UTR [22], we performed a bioinformatic search for tran-
scription factors binding sites in this region. A single
region was detected containing several transcription factor
binding sites, such as SP1 and upstream stimulating fac-
tor-like (USF) binding domains. This region also displays
a binding site for a TATA-binding protein (TBP), and an
estrogen response element (ERE).

The copies of helena in the sequenced genomes of D.
melanogaster and D. simulans

Using the complete sequence of helena as a query, we
found 62 helena sequences in the D. simulans genome (see
Additional File 1 for details). Twenty-eight of these copies
were located on the chromosome arms, and the remain-
ing 34 were in the U part of the genome, that may corre-
spond to heterochromatin. The copies ranged in size from
107 bp to 5098 bp. However, it is difficult to determine
the exact size of some copies due to the presence of
numerous  undetermined  bases. Two  copies
(chr2R_13305831 and chrX_16602314) were longer than
the reference sequence due to insertions. In some other
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Figure |

helena structure. Full-length copy of helena in the D. simulans genome (3R: 1506433 — 1501 1368). DNA sequence: UTR,
untranslated region; ORF, open reading frame; AAA, polyA tail. 5'UTR: ERE, estrogen response element; GATA, SPI, stimulat-
ing protein |; USF-like, upstream stimulating factor-like; Protein sequences: MHR, major homology region; CCHC, cysteine
rich domain; AP, apyrimidic. See Materials and Methods for prediction information.

cases, we may be looking at fragments of the same copy;
however, the distances that separate them are too large to
allow us to find out with certainty whether they come
from the same copy. The estimated number of 62 copies
in D. simulans may therefore be an overestimation. The
average percentage identity is 96.1% for all copies, with an
average of 97.4% for the copies in the euchromatin, and
of 94.9% for the copies in the U part.

In the sequenced genome of D. melanogaster, we found 26
copies of helena (see Additional File 2 for details), which
ranged in size from 91 bp to 4805 bp. The average per-
centage identity was 80.4% for all copies, with an average
of 78.7% for the copies in the chromosome arms, and of
83.7% for the copies located in the U part. Most of the
copies in this genome have therefore been degraded, with
numerous internal deletions or insertions. All copies are
truncated on the 5' side, and are DOA (Dead on arrival)
copies, apart from the 31,_23487977 copy, although even
this displays some internal deletions.

We analyzed in greater detail any copies that could corre-
spond to the most recent insertions in both D. mela-
nogaster and D. simulans. We used specific blast criteria to
identify these copies: we selected matches with at least
90% identity, and a length at least 50% of that of the com-
plete copy, with e-values of less than 10e-10 (Figure 2). In
D. melanogaster, only the 3L_23487977 copy described
above met all the blast criteria. It is obviously an inactive
copy, since more than four deletions were detected within
its sequence. In D. simulans, six copies were found that
matched the blast criteria, including the complete copy on
the 3R chromosome (position 1506433 - 1511368 on the
minus strand); the other five copies had internal dele-
tions, and insertions were detected in four of them.

Chromatin localization of helena copies in natural
populations

We used in situ hybridization to estimate the number of
helena insertion sites located on the arms (euchromatin)
of the polytene chromosomes from salivary glands of
both D. melanogaster and D. simulans. Both species had
centromeric staining, but only D. simulans from natural
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Figure 2

Scheme of helena copies. Representation of helena copies in the D. melanogaster and D. simulans genomes with at least 90%
identity and 50% of the length of the complete copy, and with e-values of less than 10e-!%; Triangles = insertions; Spaces = dele-

tions.

populations presented euchromatic bands (mean copy
number 10.7 + 2.2) with no fixed sites (see Additional File
3 for details on insertion sites per population). With this
experiment we did not detect any insertions of helena in
the chromosome arms, which could be explained by the
short size of the elements and the divergence to the probe
used.

Inter-population polymorphism

We analyzed the inter-population helena copy number
polymorphism by Southern blot, using a restriction
enzyme that does not cut inside the element. This method
detects both heterochromatic and euchromatic sequences.
As shown in Figure 3, D. melanogaster had 8 to 11 bands
per population, and several bands were shared by differ-
ent populations. These copies could correspond to
ancient and fixed heterochromatic copies in the D. mela-
nogaster genome. D. simulans populations contained

numerous helena copies (19 to 30 copies per population)
with a high level of insertion polymorphism. Since the
enzyme used for the Southern blot did not cut inside the
element, all bands over 4.5 kb could correspond to a com-
plete element. Because both species harbored bands over
4.5 kb, they could have full-length helena copies.

PCR screening

Three sets of primers were used to amplify the whole
ORF1 and two fragments of the ORF2. No bands corre-
sponding to the ORF1 were observed in any of the D. mel-
anogaster natural populations in agreement with the
absence of this ORF in the sequenced genome. There was
a high level of size polymorphism for the D. melanogaster
ORF2, corresponding to the different internal deletions
already analyzed by Petrov et al. [13,23]. In contrast, D.
simulans displayed low size polymorphism for helena
ORF1 and ORF2. Indeed, only one population out of
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Figure 3

Southern blot analysis of D. melanogaster and D.
simulans populations. Lanes | to 9 are D. melanogaster
populations (Bolivia, Brazzaville, Canton, Chicharo, Reunion
Island, Arabia, Virasoro, Vietnam, and ISO for the 9t and 20th
lane). Lanes | to 19 are D. simulans populations (Amieu,
Eden, Valence, Canberra, Papeete, Moscow, Makindu, Zimba-
bwe, Cann River and Reunion Island). For both Southern
blots, the DNA size is estimated in base pairs.

twenty had two sets of ORF1 (Papeete). All D. simulans
populations had two to three sets of ORF2.

Analysis of helena copies in D. simulans populations

PCR fragments obtained from the D. simulans population
screening mentioned above were cloned and sequenced.
Surprisingly several common indels were detected at the
same positions in different sequences from all the popu-
lations analyzed. Phylogenetic reconstructions based on
the ORF1 and ORF2 (Figures 4 and 5, alignments from
Additional Files 4 and 5) showed that the sequences that
displayed the same indels are grouped in the tree. This
suggests that the deletion or insertion events were pro-
duced before the amplification of these sequences. Some
copies had only a few insertions, and might be inactive
since their reading frames were not preserved. However,
the amplification of some of these copies could have been
promoted in trans. We did not find any population that
had both complete ORFs. Nevertheless, some ORFs had
no internal stop codons in their sequence, suggesting that
copies bearing them could be active despite the deletions.

The percentage identity between the reference copy and
ORF1 ranges between 96% and 99%, meaning that these
copies have not diverged much. No relationship was
detected between the size and location of the deletions,
and the percentage identity. For the ORF2, we found cop-
ies with a percentage identity of more than 93% that
reached 100% for some copies. A common 401-bp dele-
tion was found in copies with 93% identity with the com-

http://www.biomedcentral.com/1471-2164/9/149

plete helena copy, but no correlation was observed with
the percentage identity for the other deletions or inser-
tions. Based on the age estimation of each copy, we found
that most of the oldest ORF2 fragments had the 401-bp
deletion. Several young copies of both ORF1 and ORF2
displayed major internal deletions, showing that the
mechanism leading to these deletions is much more pow-
erful than copy divergence in inactivating them.

Transcript analysis in D. simulans

To test the transcriptional potential of helena in D. simu-
lans, we performed northern blot and RT-PCR in various
populations (see Materials and Methods). Since the
sequenced genome was obtained from strains from North
America, we added three populations from this continent
(San Antonio, SW3-S2 and San Diego). No transcripts
were found by Northern blot in any of the populations.
However, the RT-PCR method detected transcripts of both
ORF1 and ORF?2 in the Valence population, an extremely
low signal for ORF1 and ORF?2 in three of the American
populations, and ORF2 transcripts in the Amieu popula-
tion. None of the other populations had any transcript for
helena, implying that this element is extinct in these pop-
ulations. Since the Northern blot technique is less sensi-
tive than RT-PCR, these findings suggest that helena is
transcribed at extremely low levels in the populations in
which some transcripts were detected by RT-PCR.

Discussion

Our in silico and experimental analyses of the D. mela-
nogaster genome show that helena copies are mostly DOA,
devoid of ORF1, and therefore unable to transpose auton-
omously. All these features have been associated with ele-
ments that are in the process of inactivation [20]. The
scenario for the helena copies in D. simulans is quite differ-
ent. Analysis of the sequenced genome of this species
allowed us to identify a full-length copy of helena with the
structures required for an active element: two intact ORFs,
a poly-A tail, and regulatory regions. The high level of
insertion polymorphism detected in the natural popula-
tions suggests that helena is an active element or has been
active recently. However, sequence analysis of the two
ORFs of helena in the natural populations revealed two
main points: first, both ORFs are intact in only very few
populations; second, even though the sequences of helena
are very similar at the nucleotide level, their deletion fea-
tures differ.

The first point was strengthened by the almost total
absence of helena transcripts in all natural populations of
D. simulans, which means that very few copies were
involved in transcription. Because a single master copy is
enough to maintain TE transposition [24], the putative
activity of helena in this species could reside in the full-
length copy probably present in some populations such as
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Figure 4

phylogenetic tree of the DNA sequences from the ORFI region. The reconstruction was performed on the cloned
DNA sequences of the ORFI region from the different populations of D. simulans, and from some sequences detected in the
sequenced genome (we eliminated sequences that were too short relative to the global length of the alignment). Colored
boxes identify sequences harboring common patterns of deletions and/or insertions. All the positions are given by reference to
the complete copy. Green box: sequences display the same deletions of |18 bp (at position 45), 3 bp (at position 839), 6 bp (at
position 846), | bp (at position 854) and a |-bp insertion (at position 415). Blue box: sequences display the same 28-bp deletion
(at position 1092) — those with a red star also have a 77-bp deletion (at position 508), and a 91-bp deletion (at position 593).
Yellow box: sequences display the same deletions of | bp (at position 160), 28 bp (at position 165), 19 bp (at position 954), 2
bp (at position 989), and 37 bp (at position 1006), and an insertion of | bp (at position 322). Orange box: sequences with no
deletion or insertion, very closely related to the complete copy chr3R_1506433. Black asterisks correspond to bootstrap val-
ues greater than 50%.
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phylogenetic tree of the DNA sequences from the ORF2 region. The reconstruction was performed on the cloned
DNA sequences of the ORF2 region from the different populations of D. simulans and from some sequences detected in the
sequenced genome (we eliminated sequences that were too short relative to the global length of the alignment). Colored
boxes represent sequences harboring common patterns of deletions and/or insertions. All the positions are given relative to
the complete copy. Green box:sequences display the same 4-bp deletion (at position 547) and the same 2-bp insertion (at posi-
tion |12). Dark blue box: sequences display the same |-bp deletion (at position 521). Yellow box: sequences display the same
deletions of 3 bp (at position 143), 8 bp (at position 335), 4 bp (at position 345), and an insertion of 2 bp (at position 460). Light
blue box: sequences display the same 401-bp deletion (at position 179). Orange box: sequences with no deletion or insertion,
very closely related to the complete copy chr3R_1506433. Black asterisks correspond to bootstrap values greater than 50%.

Valence, where we did observe transcripts. Hence, we
would expect sequences that are still similar at nucleotide
level to differ only in the 5' end truncation size, as usually
observed for LINE-like elements. However, as mentioned
in the second point, we actually observed many other
kinds of internal deletions that occurred throughout the
length of the element. Intriguingly this deletion-promot-
ing process appears to be quite powerful in inactivating
the elements, and could be even more powerful than
other mutation processes such as point mutations. This
means that a real-time loss of helena is ongoing in all D.
simulans populations.

The nature of the mechanisms leading to internally
deleted copies is still unknown. In humans, LINE ele-
ments can be spliced [25], a process that creates internal
deletions. We used bioinformatic analyses, but were una-
ble to find splice sites in the full-length helena sequence.
Also, although recombination between mRNAs can pro-
duce internal deletions [26], helena sequences are not suf-
ficiently divergent to allow us to infer the origin of a single

copy.

Helena appears to be extinct in D. melanogaster, and this
recalls the I element, which also disappeared from the D.
melanogaster genome in the past, and reinvaded it only
recently [27]. The I and helena elements are both LINE-like
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elements, leading us to wonder whether amplification/
loss of copies could be a characteristic of this type of ele-
ment. Waves of amplification/loss have been observed in
humans, where only the youngest L1 subfamily is active,
perhaps as a result of competition between different L1
subfamilies [2,7].

Our data show that helena has been almost entirely
removed from the D. melanogaster genome, and was not
subjected to the recent wave of transpositions reported for
other elements [14]. In D. simulans, we did observe an
insertion site polymorphism of helena, but this corre-
sponds to copies that are being internally deleted by an
efficient mechanism. This may be generalized on the basis
of data on the LTR retrotransposons 412 and tirant, which
have also internal deletions [28,29]. We still do not clearly
understand which mechanisms lead to a low copy
number in the D. simulans genome, but a mechanism pro-
moting internal deletions could be a major force at work
[30].

Conclusion

TEs are major players in genome evolution, and the way
they are controlled by the host genome is one of the most
fundamental questions in evolutionary genomics. Here
we show that two closely related species of drosophila
have a TE family at different stages in its life cycle. The
mechanism by which this is achieved in D. simulans
implies that a very efficient internal deletion mechanism
is acting on TEs, which is more powerful than the simple
neutral evolution of non-active elements. The difference
in the amount of TEs between D. melanogaster and D.
simulans could be explained by such a process, that doesn't
seem to be very active in D. melanogaster present popula-
tions.

Methods

Natural populations

We worked on fly samples collected from several geo-
graphically-distinct, natural populations (confer each
Method for natural populations investigated). These pop-
ulations were maintained in the laboratory as isofemale
lines or small mass cultures with around 50 pairs in each
generation.

In situ hybridization

Polytene chromosomes from salivary glands of third-
instar female larvae were prepared and treated with nick-
translated, biotinylated DNA probes, as previously
described [31]. Insertion sites were visible as brown bands
resulting from a dye-coupled reaction with peroxidase
substrate and diaminobenzidine. The insertion site num-
bers of the TE(s) were determined on all the long chromo-
somes arms (X, 2L, 2R, 3L, 3R), and were summed to give
the total number of labeled sites per diploid genome. We

http://www.biomedcentral.com/1471-2164/9/149

did not take into account the insertions located in peri-
centromeric regions 20, 40, 41, 80, and 81, because TE site
number estimations in these regions are difficult and not
reliable for all chromosomes or all squashes. We used a
probe (1278 bp) from helena of D. sechellia (AF012044).
The following populations of D. melanogaster were inves-
tigated: Portugal (Chicharo), Saudi Arabia, Congo (Braz-
zaville), Reunion Island, Argentina (Virasoro), Bolivia,
China (Canton), Vietnam, and Iso line. The D. simulans
populations analyzed were from France (Valence), Russia
(Moscow), Kenya (Makindu), Zimbabwe, Reunion
Island, Australia (Eden, Cann River and Canberra), French
Polynesia (Papeete), New Caledonia (Amieu).

Southern blot

DNA was extracted from one or five adult females by a
standard phenol-chlorophorm-salt method with protein-
ase K digestion. The D. melanogaster populations analyzed
were from Bolivia, Congo (Brazzaville), China (Canton),
Portugal (Chicharo), Reunion Island, Saudi Arabia,
Argentina (Virasoro), Vietnam, and ISO line. The D. simu-
lans populations analyzed were from New Caledonia
(Amieu), Australia (Eden, Cann River and Canberra),
France (Valence), French Polynesia (Papeete), Russia
(Moscow), Kenya (Makindu), Zimbabwe, and Reunion
Island. The DNA was cut using the HindlIIl enzyme, which
has no restriction site within the helena sequence, and
therefore allowed us to estimate the number of complete
helena copies. Electrophoresis of a 0.8% agarose gel con-
taining digested DNA was carried out for 17 h. The DNA
was denatured (NaOH 0.5 M), and then transferred over-
night to a Hybond-N+ nylon membrane. Pre-hybridiza-
tion and hybridization were carried out at 67°C using a
Denhardt 5x solution. The probe used for hybridization
(AF012044) was radiolabeled with 32P, using a random
procedure from Amersham.

Amplification of ORFI and ORF2

DNA was extracted from single flies by a standard phenol-
chlorophorm method. The following populations of D.
melanogaster were investigated: France (Valence and Saint
Cyprien), Portugal (Chicharo), Saudi Arabia, Senegal,
Congo (Brazzaville), Reunion Island, Guadeloupe, Argen-
tina (Virasoro), Bolivia, and China (Canton). The D. simu-
lans populations analyzed were from France (Valence),
Russia (Moscow), Egypt (Tanta), Congo (Brazzaville),
Kenya (Meru, Kwalé and Makindu), Zimbabwe, Tanzania
(Arusha), Puerto Rico, Japan, Australia (Eden, Cann River
and Canberra), French Polynesia (Papeete), Saint Martin,
Hawaii, New Caledonia (Amieu), and Portugal
(Madeira).

PCR was run using 1 pg DNA with the two following
primers - ORF1: Hifor (285 5' AAC TGT AAA ATG GAT
ACG AAC A 3'306), Hlrev (1808 5' GCC ACT TCA TAA
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ATT GIT CC 3' 1827). - ORF2: Hel2F (2325 5' CCG GGC
TGG GCGATATGG 3'2342), Hel2R (4548 CGT ACATAC
CAG GGG CAGTTG G 3'4569). PCR was run in 30 cycles
with annealing temperatures of 57°C (ORF1) and 56°C
(ORF2). We used Euroblue taq from Eurobio. DNA
amplified fragments were purified and cloned on compe-
tent bacteria (Qiagen kits). Four primers were used for
sequencing: M13 forward and reverse; Seql (5' CTC TTC
CTIT CAT TTG GTA CG 3') and Seq2 (5' AAG GGG AAA
CAG TGA GAA TA 3') for the complete ORF1; Seq3F (5'
TTA GAC CAT GCT CTC GGT TA 3') and Seq3R (5' TGT
CAA TTC CTG GAG CIT TA 3') for a fragment of ORF2.
Sequencing was performed by Genome Express. Accession
numbers (Genbank) from EU168807 to EU168844 corre-
spond to ORF1 fragments. Accession numbers (Genbank)
from EU170377 to EU170431 correspond to ORF2 frag-
ments.

RT-PCR

Total RNA was extracted from four adult females, four
adult males, 10 ovaries and 10 testes from D. simulans
populations (France (Valence), Congo (Brazzaville),
Kenya (Makindu), Zimbabwe, Australia (Canberra), New
Caledonia (Amieu), Portugal (Madeira), United States
(San Antonio, San Diego, Arena, SW3)) with the RNeasy
protect mini kit from Qiagen. RNA extracts were treated
with the Ambion's DNA-free kit. ThermoScript RT-PCR
system from Invitrogen was used to synthesize four differ-
ent cDNA pools (55°C for 90 min and 85°C for 5 min): a
control reaction with no retrotranscriptase to test DNA
contamination, a pool of total cDNA synthesized with
oligo-dt primers, two specific cDNA pools obtained with
HIR (ORF1) and Hel2R (ORF2), respectively, corre-
sponding to helena transcripts. All four cDNA pools were
tested for the presence of actin cDNA (house keeping

gene) by PCR with Act5cfw
(5'ATGTGACGAAGAAGTTG3") and Act5cRv
(5'TTAGAAGCACTITGCGGTGCA3') primers. Oligo-dt

and specific helena cDNA pools were analyzed by PCR
using ORF1 and ORF2 specific primers (HIR/H1F and
Hel2R/Hel2F).

Northern blot

Total RNA was extracted from adult females or embryos
from several D. simulans populations (Valence, Makindu,
Amieu, Brazzaville) with the RNeasy protect mini kit from
Qiagen. Total RNA extracts were treated with the
Ambion's DNA-free kit. Electrophoresis (MOPS, formal-
dehyde gel) was run for 3 h after RNA denaturing. After
washing (water and NaOH, 75 mM) RNA was passively
transferred to a nylon membrane, and cross linked for 2
hours at 64 °C. Blots were pre-hybridized in hybridization
buffer, then hybridized overnight at 42°C in hybridiza-
tion buffer containing a 32P-labeled helena cDNA probe.
The radiolabeled cDNA probe was prepared using a Meg-

http://www.biomedcentral.com/1471-2164/9/149

aprime DNA Labeling Kit according to the manufacturer's
protocol (Cat # RPN 1607; Amersham Biosciences, Little
Chalfont, Buckinghamshire, England). Following hybrid-
ization, blots were washed in 2 x SSC/0.1% SDS at 42°C
and then exposed to X-ray film (KODAK).

Identification of helena copies in the complete genomes

We retrieved the sequences of the chromosome arms 2L,
2R, 3L, 3R, 4, X and the unassigned part (named U) corre-
sponding to the first release of the mosaic assembly of the
genome of D. simulans available at the ftp site of the
Genome Sequencing Center at the Washington University
Medical School [32]. This mosaic assembly corresponds
to different strains of D. simulans. We also used the
sequenced genome of D. melanogaster [33]. We will refer
to the helena copies found in the genomes according to
the chromosome name and the start position of the copy
(for example chr2L._133500 corresponds to a copy found
on the 2L chromosome, and it starts at position 133500).

The helena element was only found in the databases as
fragments of the reverse transcriptase (RT). We retrieved
the longest sequences from D. yakuba (accession number
in Genbank AF012049), D. melanogaster (AF012030) and
D. wirilis (U26847) to build a chimeric, 1532-bp
sequence. Using this chimeric element we searched for
copies in the D. simulans sequenced genome using blastn
[34]. The reconstructed helena sequence (ID Helena_DS)
is available in Repbase [35]. Only matches with an e-value
of less than 10e-10 have been retained, and any separated
by distances of less than 300 bp have been merged. As the
query used corresponds to a small portion of the ORF2, in
order to search for longer sequences of helena, we retrieved
the matches after adding 5000 bp around their positions.
We then performed multiple alignments of these
sequences using clustalw [36] in order to detect the long-
est copies. By this procedure, we identified a sequence on
the chromosome 3R that was the longest of the matches
detected. The prediction of potentially coding parts was
made using the ORF finder program available on the
NCBI web site [37], and this allowed us to identify two
ORFs. It was not possible to use the presence of target site
duplication to determine the exact position of the begin-
ning of the sequence, because the copy was surrounded by
unidentified bases, and so we performed a blast search in
the draft sequence of D. sechellia, the closest relative to D.
simulans. This allowed us to find a homologous copy, and
to identify the beginning of the complete copy of helena.
Once this copy had been identified, it was used as a query
to perform blast searches in the D. simulans and D. mela-
nogaster genomes to determine the helena copy popula-
tions.
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Sequence analysis

The computation of the percentage identity was per-
formed using the DNADIST program in the PHYLIP pack-
age [38]. We used the sequence editor Seaview [39] to
visualize the sequences and the alignments. Splice sites
and transcription binding sites were predicted by the Soft-
berry tools [40] and Genomatix [41]; PEPcoil ([42]
allowed us to find the coiled coil domain in ORF 1. Con-
served domains in both ORF1 and ORF2 were predicted
with the "Conserved domain search" tool from NCBI
Sequenced copies were aligned with T_coffee [43]. Phylo-
genetic analysis were made using maximum likelihood
with HKY substitution model implemented in PhyML
[44]. The reconstruction was performed on the cloned
DNA sequences of the ORF1 and ORF2 region from the
different populations of D. simulans, and from some
sequences detected in the sequenced genome (we elimi-
nated sequences that were too short relative to the global
length of the alignment).

Age was estimated using the Bowen and McDonald
method [45] with the formula Age = K/(2r), where K is the
divergence between the two copies calculated from the
Kimura two-parameter distance via DNAdist, and r is the
synonymous substitution rate per site per million years in
D. melanogaster (r = 0.016 from Li [46]). It is important to
note that the age of helena copies is underestimated due to
the lack of knowledge about conversion and substitution
rates in D. melanogaster genome, and is also unreliable
when applied to old and highly diverged copies.
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