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Abstract

Background: Growth hormone (GH) is an important regulator of skeletal growth, as well as other adapted processes
in salmonids. The GH gene (gh) in salmonids is represented by duplicated, non-allelic isoforms designated as gh/ and gh2.
We have isolated and characterized gh-containing bacterial artificial chromosomes (BACs) of both Atlantic and Chinook
salmon (Salmo salar and Oncorhynchus tshawytscha) in order to further elucidate our understanding of the conservation
and regulation of these loci.

Results: BACs containing gh! and gh2 from both Atlantic and Chinook salmon were assembled, annotated, and
compared to each other in their coding, intronic, regulatory, and flanking regions. These BACs also contain the genes
for skeletal muscle sodium channel oriented in the same direction. The sequences of the genes for interferon alpha-1,
myosin alkali light chain and microtubule associated protein Tau were also identified, and found in opposite orientations
relative to gh| and gh2. Viability of each of these genes was examined by PCR. We show that transposon insertions have
occurred differently in the promoters of gh, within and between each species. Other differences within the promoters
and intronic and 3'-flanking regions of the four gh genes provide evidence that they have distinct regulatory modes and
possibly act to function differently and/or during different times of salmonid development.

Conclusion: A core proximal promoter for transcription of both ghl and gh2 is conserved between the two species of
salmon. Nevertheless, transposon integration and regulatory element differences do exist between the promoters of gh/
and gh2. Additionally, organization of transposon families into the BACs containing gh/ and for the BACs containing gh2,
are very similar within orthologous regions, but much less clear conservation is apparent in comparisons between the
ghl- and gh2-containing paralogous BACs for the two fish species. This is consistent with the hypothesis that a burst of
transposition activity occurred during the speciation events which led to Atlantic and Pacific salmon. The Chinook and
other Oncorhynchus GH s are strikingly different in comparison to the other GHs and this change is not apparent in the
surrounding non-coding sequences.
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Background

Salmonids are used as models for studies in environmen-
tal toxicology, physiology, comparative immunology,
growth, gametogenesis, olfaction and osmoregulation [1].
Although considerable knowledge of the basic biology of
salmonids exists [1-3], the characterization of salmonid
genomes will better enable scientific decisions on the con-
servation and enhancement of wild stocks, improve
knowledge of fish health and increase the commercial via-
bility of aquaculture. Sequencing of salmonid genomes
also permits investigators to study fundamental questions
concerning genome evolution, genome duplication and
rearrangements, repeat-rich structures, transposon activ-
ity, gene silencing, and the re-establishment of a more sta-
ble diploid genome from a pseudotetraploid state.

Growth hormone (GH) plays a very important role in
many regulatory, metabolic and developmental processes
in various vertebrate tissues [4]. In salmonids, GH is the
principle stimulator of skeletal growth and plays a key
role in lipid mobilization, protein synthesis and feeding
behaviour [5]. In various fishes, GH also manifests some
functions not found in all vertebrates, such as activities
that influence sexual maturation and saltwater adaptation
[6,7]. The GH gene (gh) in salmonids is represented by
duplicated, non-allelic isoforms designated as ghl and
gh2 [8], which diverged at least 30 million years (MY) ago

[9].

In vertebrates, the major source of GH is the soma-
totrophic cells in the pituitary, from which it is secreted
into and borne by the plasma to act on receptors through-
out the organism [5,10]. Splice variants have also been
isolated from extrapituitary tissue in humans (placenta,
testis, blood mononuclear cells) and chicken (eye, heart)
[[11] and refs. therein]. In trout, gh transcripts have been
detected in the pituitary, liver, head kidney, spleen, thy-
mus, intestine and leukocytes and gut [12,13]. Improved
understanding of the chromosomal environment in
which gh genes reside in salmonids will assist our under-
standing of the transcriptional controls regulating these
genes. By analyzing two paralogous genes (e.g. ghl and
gh2) and doing so in two species (which have been sepa-
rated for approximately 20 MY; [9]), identification of
common conserved regions with presumed broad func-
tional importance can be achieved. Further, regions which
are found to be conserved only between species in one
paralogue type may be important for differential regula-
tory control between the paralogues, while differences
between species within a single paralogue type may help
identify regions not important to regulation. Regions
which are conserved between paralogues in only one spe-
cies are candidates for regions which have undergone gene
conversion subsequent to divergence between the two
species. While gene conversion does not appear to have
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occurred at salmonid GH loci when examined at the gene
level [9], an analysis of gene conversion has not been
examined at larger scales now possible with genomic anal-
yses. Understanding these sequence relationships has
important practical ramifications since complete genomic
resources are being developed for Atlantic salmon. It is
important to determine the degree of conservation of this
information with other important salmonid species such
as Chinook salmon for extrapolation of emerging
genomic information from one species to another.

Bacterial artificial chromosomes (BACs) containing ghl
and gh2 from both Atlantic and Chinook salmon were
assembled, annotated, and compared to each other in
their coding, intronic, regulatory, and flanking regions. A
core proximal promoter for transcription of both ghl and
gh2 is conserved between the two species of salmon. A
1600 bp insertion of a Tc1-like DNA transposon sequence
was found within the promoter region of both gh2 genes,
but not in the promoter of the ghl genes. Furthermore, a
Polinton-1 transposon is inserted in only the promoter for
Chinook salmon GH1. Other differences within the pro-
moters and intronic and 3'-flanking regions of the four
genes provide evidence that supports the notion that they
are regulated differently and thus may possess different
functions. Intriguingly, Chinook salmon GH1 has under-
gone more than twice as many changes than any of the
other GHs; changes not reflected in the surrounding non-
coding DNA.

Results

Confirmation that the Atlantic salmon BACs we isolated
were gh-containing BACs was performed by comparing
Hindlll-digested BAC fragment profiles to profiles on the
internet Contig Explorer version 3.4 (iCE 3.4) database
[14]. The gene for the skeletal muscle sodium channel
(scn) was also identified by PCR for each isolated BAC,
suggesting that each BAC contained the 5'-region
upstream of each gh gene. gh type (ghl vs. gh2) was deter-
mined for BACs in both Atlantic and Chinook salmon by
paralogue-specific PCR.

BAC and GH comparisons

Atlantic salmon (AS) and Chinook salmon (CS)gh loci
were analyzed using DIGIT [15], which identified the
presence, location, and direction of putative genes on
each BAC. Each of these putative genes were assessed by
BLASTX [16] to protein databases. BACs containing the gh
genes also bore the genes for scn oriented in the same
direction (Figure 1A). The sequences of the genes for inter-
feron alpha-1 (ifnal), myosin alkali light chain (mlc) and
microtubule associated protein Tau (mapt) were also iden-
tified, and found in opposite orientations relative to gh1l
and gh2 (Figure 1A). The Chinook salmon ghl and gh2-
containing BACs are similarly organized.
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Figure |

A) The genomic organization of growth hormone | and 2 gene loci in Atlantic and Chinook salmon. Approxi-
mate sizes of the sequenced bacterial artificial chromosomes are indicated in parentheses. Growth hormone | and 2 genes and
their flanking genes are represented by boxes with transcriptional directions indicated by arrowheads. The introns for the
genes are not shown. Pseudogenes are indicated by open boxes. B) A comparison of Atlantic salmon and Chinook
salmon ghl and gh2 loci shown in VISTA plots. Regions of high similarity (50 to 100%; vertical axis) are separated by gaps
that represent repeat sequences, deletions and insertions. Orthologous comparisons (AS gh! and CS ghl, and AS gh2 and CS
gh2) appear more similar than paralogous comparisons (gh/ and gh2).

An overall comparison of Atlantic and Chinook salmon
ghl and gh2 loci are shown in VISTA plots [17] (Figure
1B). This figure shows many regions of high similarity
separated by gaps that represent repeat sequences, dele-
tions and insertions. Visually orthologous comparisons
(AS ghl and CS ghl, and AS gh2 and CS gh2) appear more
similar than paralogous comparisons (ghl and gh2).

Using RepeatMasker [18] and a new salmonid repeat data-
base [19], 30% of the CS ghl, 28% of the CS gh2, 33% of
AS ghl and 35% of AS gh2 are repeated elements or simple
repeats (approximately 50% of the total repeats are 1.6 kb
Tcl-like transposons). With repeats removed from the

genomic sequences, paralogous comparisons showed that
Atlantic salmon ghl and gh2 have 89.5% identity over
46,425 bp, and Chinook salmon ghl and gh2 showed
87.9% identity over 52,782 bp. These alignments also
revealed numerous insertions and deletions among these
loci.

In comparisons of Atlantic and Chinook salmon BACs,
ghl showed 92.3% identity over 85,987 bp and gh2
showed 93.4% identity over 78,106 bp. Estimates of 93%
identity between Atlantic salmon and Chinook salmon
are similar to the 94% identity found between Atlantic
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salmon and rainbow trout (Oncorhynchus mykiss) over 125
kb [20].

Comparisons of the 210 amino acid residues of GH show
very strong similarity (Figure 2). Atlantic salmon GH1 and
GH2 shows 97.1% identity, while Chinook salmon GH1
and GH2 shows 93.1% identity, and Atlantic salmon and
Chinook salmon GH1 and GH2 shows 94.1% identity
and 97.1% identity, respectively. An analysis of these rela-
tionships indicates that the CS GH1 has undergone more
than twice as many changes than for any of the other GHs.
This change in CS GH1 is not apparent in the surrounding
non-coding sequences and indicates there may have been
a shift of natural selection pressures on the coding region
of the CS ghl.

Gene annotation

The gh paralogs were fully annotated and the genes consist
of 6 exons and 5 introns. All upstream positions we docu-
ment are presented in relationship to the translation start
site (in negative numbers) and, due to variations in inser-
tions and deletions between the gh genes within their
intronic regions, all downstream information is based on
nucleotide (nt) numbering as presented in Additional file
1.

http://www.biomedcentral.com/1471-2164/9/522

GH promoter and intron analysis

A TATA box for all four gh genes is found at position -94
to -87 [see Additional file 1]. Each gene has an asymmetric
cAMP-response element (CRE) (TGACG) at -217/-213 in
the proximal promoter and a palindromic CRE at position
3563/3570 within intron 4, but the gh2 genes have single
nt substitutions in the fourth base at this location [see
Additional file 1]. There are at least four potential pitui-
tary transcriptional activator-1 (Pit-1) binding elements
(coordinates: -351/-338, -249/-237, -147/-134, and -119/
-106) that are shared by each gene and two upstream,
reverse-oriented Pit-1 binding motifs in only the gh2 pro-
moters (TATGTTATTTAAAC). A retinoic acid receptor/
retinoid x receptor (RAR/RXR) binding element is also
located here at position -190 to -171. A potential estrogen
response element (ERE) can be found in each promoter
(GGCCAnnnTGACA), roughly 6,600 bp and 12,000 bp
upstream of the transcription start site in both the gh1 and
gh2 genes, respectively. Another potential ERE (GGT-
CAnnnnnTGAGC), found in only the gh2 promoters, is
located about 6,200 bp and 10,200 bp upstream of the CS
and AS gh genes, respectively.

Intron 3 of the gh2 genes are much shorter than the corre-
sponding intron for the gh1 paralogs, partly accounted for
by insertion of SSsp2201 microsatellites within them.
Intron 5 of CS ghl is at least 360 nts longer than for any
of the other genes. Also, numerous polymorphic loci exist

.10 .20 .30 .40 .50 .60 .70
ASGH2 1 :MGQVFLLMPVLLVSCFLSQGAAMENQRLFNIAVNRVQHLHLLAQKMFNDFEGTLLSDERRQLNKIFLLDF: 70
CSGH2 1 :MGQVFLLMPVLLVSCFLSQGAAMENQRLEFNIAVNRVQHLHLLAQKMFNDFEGTLLSDERRQLNKIFLVDEF: 70
ASGH1 1 :MGQVFLLMPVLLVSCFLSQGAAMENQRLFNIAVNRVQHLHLMAQKMFNDFEGTLLPDERRQLNKIFLLDF: 70
CSGH1 1 :MGQVFLLMPVLLVSCFLSQGAAIENQRLENIAVSRVQHLHLLAQKMFNDFDGTLLPDERRQLNKIFLLDEF: 70
consensus I um e

.80 .90 100 110 120 130 140
ASGH2 71:CNSDSIVSPIDKQETQKSSVLKLLHISFRLIESWEYPSQTLAISNSLMVRNSNQISEKLSDLKVGINLLI:140
CSGH2 71:CNSDSIVSPIDKQETQKSSVLKLLHISFRLIESWEYPSQTLTISNSLMVRNYNQISEKLSDLKVGINLLI:140
ASGH1 71:CNSDSIVSPIDKLETQKSSVLKLLHISFRLIESWEYPSQTLTISNSLMVRNSNQISEKLSDLKVGINLLI:140
CSGH1 71:CNSDSIVSPVDKHETQKSSVLKLLHISFRLIESWEYPSQTLIISNSLMVRNANQISEKLSDLKVGINLLI:140
consensus 7l:!!ttibbbbtxtr—prrrrrrrrrrrrrrrrrrrrrrrrrrr—rrrrrrrrr—rrrrrrrrrrrrrrrtrr 140

150 160 170 180 190 200 210
ASGH2 141:KGSQDGVLSLDDNDSQHLPPYGNYYQONLGGDGNIRRNYELLACFKKDMHKVETYLTVAKCRKSLEANCTL:210
CSGH2 141 :KGSQDGVLSLDDNDSLHLPPYGNYYQONLGGDGNVRRNYELLACFKKDMHKVETYLTVAKCRKSLEANCTL:210
ASGH1 141:KGSQDGVLSLDDNDSQQLPPYGNYYQONLGGDGNVRRNYELLACFKKDMHKVETYLTVAKCRKSLEANCTL:210
CSGH1 141:TGSQDGLLSLDDNDSQQLPPYGNYYQONLGGDGNVRRNYELLACFKKDMHKVETYLTVAKCRKSLEANCTL:210
consensus 141l:*!!t1IIxpbrpiiti«—tirrrrrrirrrirri~rrrrrrrrrrrrrrrrrrrrrrrrrrirri i 210

Figure 2

Amino acid residue alignments of Atlantic and Chinook salmon GHI and 2. Identical residues designated by excla-
mation marks; asterisks denote strong residue similarity.

Page 4 of 12

(page number not for citation purposes)



BMC Genomics 2008, 9:522

in intron 4 of the gh genes that have been previously char-
acterized for salmonids, including AS and CS (coordi-
nates: 2895/2917; 3060/3083; 3635/3673 and 3822/
3865) [8]. The sequences from position 3060 to 3083
match identically [see Additional file 1], but we show that
there is one nucleotide difference in the AS ghl paralogue
at position 3069. All of the other polymorphic loci match
identically.

There are three polyadenylation (poly(A)) tail signal
sequences (AATAAA) beginning at positions 5264, 5617
and 5717 [see Additional file 1]. All four gh genes have at
least one poly(A) signal sequence, but only the ghl genes
potentially possess three canonical signal sequences.

Transposon integration analysis

A Tcl-like DNA transposon sequence (Tss, [Gen-
bank:L12207]) is inserted into the promoter region of
both AS and CS gh2, approximately 2000 bp upstream of
the transcription initiation site (1897 bp in AS; 2057 bp
in CS) (Figure 3). This transposon is not found in the pro-
moters of ghl for either species. This places the insertion
of this transposon between the time of the gene duplica-
tion and when the two species diverged. A second Tc1-like
transposon, DTSsa2 [Genbank:EF685955], is inserted
approximately 7 kb upstream of the initiation site in only
the AS gh2 promoter. In addition, a 1.2 kb fragment of
SsaRT.3, a non-LTR long interspersed nuclear element
(LINE) sequence identified in AS (unpublished data), is
inserted approximately 1420 bp 5' of the transcription
start site in CS gh1 (Figure 3). This fragment is truncated
at the 3'-end, consistent with partial retrotranscription.
Furthermore, an unusual insertion 10 kb upstream of only
the CS ghl gene was found (Figure 3). This insertion is
approximately 20 kb in length containing a 10 kb palin-
dromic sequence which is part of a Polinton-1 transposon
(Figure 4) [21].

Tissue expression PCRs

To examine the functionality of the genes identified on
each gh-containing BAC, primers specific for each gene
were designed and used in PCRs on a panel of tissues for
each species [see Additional files 2 and 3]. This was not
done for genes that were clearly pseudogenic or for genes
for which information was incomplete, such as the genes
that encode dynein heavy chain (data not shown) and
microtubule associated protein Tau. Microtubule associ-
ated protein Tau is pseudogenic due to frameshifts and
stop codons within the gene in each species (data not
shown).

We conducted tissue expression studies of the 7 genes we
had characterized in the BACs to determine if similarities
existed in expression pattern between the two species; if
expression was confined to specific tissues and whether

http://www.biomedcentral.com/1471-2164/9/522

indeed each of these genes were functional. Of the 7 genes
examined, the expression of the gh paralogues was the
least diverse. The expression of ghl and gh2 was restricted
to only muscle, brain, gill or eye (pituitary gland was not
examined). Expression of the scn genes was not restricted
to just skeletal muscle, but indeed was found in every tis-
sue except the skin. It is also evident that ifnal has fairly
broad expression in the tissues examined here.

Myosin alkali light chain 1 also was expressed in a large
range of different tissues. However, myosin alkali light
chain 2 (mlc2) appears to not be expressed at detectable
levels in any of the tissues we examined in either species,
despite in silico analysis indicating the viability of the
mlc2 transcript. Each gene that encodes mic2 appears
intact, with no obvious problems for transcription or
translation.

Discussion

GH transcription

Transactivation and footprinting studies have been con-
ducted on the gh promoters of both Chinook salmon and
rainbow trout [22,23]. Assembly of at least part of the
transcriptional machinery was delineated to binding ele-
ments between positions -300 to -30. It was demonstrated
that cycliccAMP/PKA regulation of these promoters
required nucleation and recruitment of both pituitary
transcriptional activator-1 (Pit-1) and cAMP-response ele-
ment (CRE) binding proteins (CREB) [22,23].

We note strong sequence identity of potential Pit-1, CREB,
and retinoic acid receptor (RAR)/retinoid x receptor
(RXR) binding elements that form the core of the proxi-
mal gh promoters of both Atlantic salmon (AS) and Chi-
nook salmon (CS). An asymmetric CRE (TGACG) at-217/
-213 is flanked by at least four Pit-1 binding elements [see
Additional file 1]. The more distal Pit-1 binding elements
follow more strictly the core consensus sequence for Pit-1
(W5CAT) that is conserved in fish and mammals [24]. The
potential RAR/RXR response element present at position -
190/-171 could hypothetically permit interaction of
chicken ovulbumin upstream promoter transcription fac-
tor (COUP-TF), or retinoic acid, estrogen or thyroid hor-
mone receptors with an assembled Pit-1/CREB complex.
Different variations of GTCT-rich blocks immediately
upstream of each proximal promoter, as well as within the
introns of each gene, may make regulatory or structural
contributions to gh transcription. For example, some of
the CTCT blocks found in these regions could serve as
binding elements for GAGA-binding factors [25].

However, differences do exist between the AS and CS ghi
and gh2 promoters. For example, there is the potential for
Pit-1 to bind a reverse-oriented response element roughly
250 bp further upstream in each gh2 promoter that is not
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Transposon integration in Atlantic and Chinook salmon gh promoter regions. The insertion position of different
transposon DNA sequences for each promoter are designated by coloured arrowheads and their corresponding family names.
The arrow indicates the start of transcription, with approximately 7 kb shown for the promoter region, and 6 kb following the
transcription start. Scale is approximate. Light blue boxes: exons | to 6. Purple arrowheads: DTSsa7 DNA transposon [Gen-
bank:EF685960]; red arrowhead: DTSsa2 DNA transposon [Genbank:EF685955]; grey arrowhead: pTSsal DNA transposon
[Genbank:EF685966]; light blue arrowheads: Tss DNA transposon [Genbank:L12207]; brown arrowheads: BHMS202 microsat-
ellite [Genbank:AF256894]; dark blue arrowhead: SsaRT.3 LINE [unpublished]; orange arrowheads: Hpal SINE [Gen-
bank:AY703447]; green arrowheads: Sssp2201 microsatellite [Genbank:AY081807]; yellow arrowheads: SaSN2b SINE
[unpublished]; cream arrowheads: C43 sequence repeat [unpublished]; purple rectangle: palindrome-containing Polinton-like

insert (20 kb total).

present in the ghl promoters. No palindromic CREs are
found within 15 kb upstream of the gh genes, but one is
present in intron 4 of the ghl genes [see Additional file 1].
The different CRE, ERE and Pit-1 motif locations suggest
that the ghl and gh2 paralogues may have distinct regula-
tory modes and possibly act to function differently and/or
at different times of salmonid development.

GH expression and function

The more traditional models that have regarded diver-
gence among duplicate genes as a means for acquisition of
new functions have met with recent challenges. For exam-
ple, it has been demonstrated that mutation in many
duplicated genes of rice is much slower than in 'single-
tons' and less drastic in terms of amino acid change [26].
Conservation of the apparent crucial functionality of the
duplicates outweighs processes that lead to neofunction-
alizaton. Indeed, it may be more common for gene nov-
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Figure 4

The distribution of DNA transposons and LINE sequence elements in ghl- and gh2-containing BACs. The
growth hormone coding sequence (consisting of 6 exons) is aligned for the four BACs and connected by a light blue line. The
conservation of the order of transposon families is indicated by lines, connecting corresponding sequences.

elty to arise from preserved duplicates that are

subfunctionalized [27].

At the amino acid level, CS GH1 appears to be undergoing
change much faster than any of the other GHs (Figure 2).
In terms of retention of amino acid residue identity, the
CS GH1 ORF has more changes than any of the other
translated regions (nine differences overall compared to
no more than three for any other gene). These changes do
alter the polarity and charge of the proteins and therefore
may subtly effect the kinetics and affinity of hormone
binding to their receptor(s). We did find colocalized
expression of both cDNAs in the CS gill and brain [see
Additional files 2 and 3]. Interestingly, both GH receptors
have been found in various regions of the brain and in the
gill filaments of trout [10]. Furthermore, although the

very limited amount of change between all four genes
indicates that their functions are conserved, we do observe
that GH1 and GH2 may potentially have different sub-
functions. Our RT-PCR work demonstrates that some tis-
sue expression segregation has occurred, whereby only
gh2 appears to be expressed in muscle or eye [see Addi-
tional files 2 and 3].

To determine the function of locally expressed gh2 in the
gill, it will be necessary to elucidate the specific cells GH
synthesis is associated with and to determine whether
local production is a component of known osmoregula-
tory processes or some other activity (see [7]). It is also
possible that the gh2 expression observed in the gill is
from leukocyte accumulation as leukocytes have been
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shown to produce both ghl and gh2, with gh2 the pre-
dominant transcript [28].

Expression of genes linked with GH

Much less is known about the expression of the skeletal
muscle sodium channel (scn), microtubule associated
protein Tau (mapt), myosin alkali light chain (mic) and
interferon alpha-1 (ifnal) genes in salmonids. To the best
of our knowledge, for the other genes examined in this
study, only the promoters of two ifn genes have been char-
acterized in salmon. Two different AS type 1 ifn genes have
been demonstrated to each possess two promoters that
respond to different phases of infection or are tissue-spe-
cific in their transcriptional contexts [29].

The scn gene has been characterized in zebrafish [30] and
fugu [31]. Some subfunctional partitioning of the four
sets of duplicated zebrafish scn genes does exist, but there
is still expression overlap across neuronal and muscle tis-
sues [32]. The expression of the scn genes in the salmonids
examined here also are not restricted to skeletal muscle,
but their activities are found in a large number of different
tissues [see Additional files 2 and 3].

There appears to be a number of ifn genes in both the
Atlantic and Chinook salmon GH1 BACs analyzed (data
not shown). At least one functional ifnal gene and two to
five different ifna genes (that might be pseudo or partial
genes) exist at these loci for each species. It should be
noted, however, that this region was difficult to sequence
and assemble due to repetitive regions, therefore we can-
not conclude unequivocally on the number of ifn genes
present at these loci. A genomic BAC clone containing the
ifnal gene and seven other ifn genes has been character-
ized in Atlantic salmon (Robertsen, B: 7t International
Symposium on Fish Immunology. Abstract, 2007). How-
ever, to date, we find no other ifna genes present in our
database other than ifnal to enable us to conclude that
expression of these other ifn genes does occur. Zebrafish
also has two to three ifn genes in the 3'-flanking region
and the scn gene in the 5'-flanking region of the gh gene
on chromosome 3 [33].

Genome rearrangements

The gh2 genes have undergone some rearrangements in
comparison to the ghl paralogues (differences in pro-
moter sequences, partly due to variable transposon inte-
grations; deletions or lack of microsatellite insertions in
intron 3; intronic microsatellite variations in intron 4).
Part of this may be due to chromosome structure or posi-
tioning [8]. Also, some of the genomic variations
observed between the ghl and gh2 paralogues might be
due to vestigial effects caused by a rearrangement that led
to the rise of the Y-linked gh2 pseudogene [34]. Whether
the additional transposon insertions found in the AS gh2
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promoter can account for why we do see gh-Y in CS, but
not in AS [35], will require characterization of other
Pacific salmon gh regions. It should be noted, as an exam-
ple, that dramatic differences have also been found
between the promoters of the salmon form of gonadotro-
pin-releasing hormone in AS and sockeye salmon [36].

An indication of the changes that can occur when
sequences of various transposon families integrate into
the promoters of genes are shown in Figure 3. Insertions
such as these may help to shape the dynamism of
genomes by influencing modes of transcription through
the introduction of new regulatory elements, by changing
the distances between functional binding elements or by
disabling them. It can be envisaged how alterations to
transcription through these integration events could lead
to changes in the function of their translated products
over time. For example, note there are at least two differ-
ent transposon sequences found within the AS gh2 proxi-
mal regulatory sequences that are not present in any of the
other gh promoters (Figure 3). These integrated sequences
might impact the observed specific expression of gh2 in AS
compared to CS [see Additional files 2 and 3]. Also, the
presence of a Tss transposon in the 5' sequence of each gh2
and an Hpal short interspersed nuclear element (SINE) in
intron 3 of each ghl is consistent with speciation events
occurring after the gene or genome duplication events
(Figures 3 and 4).

Vertebrate genomes contain large numbers of transposon
sequences. The mouse and human genome contain
approximately 3 million such sequences and zebrafish
approximately 1.4 million. However, transposons occur
in certain genome regions more frequently than in so-
called transposon-free regions (which range from 5 to 66
kb in length), frequently associated with developmental
genes [37,38]. This association with such genes suggests
that transposons are deleterious to gene integrity possibly
through increased mutagenesis or recombination, or by
changing regulation. The presence of the Polinton
sequence found upstream of the CS GH1 gene might
therefore affect its genomic stability.

Conclusion

This is one of the first in a series of studies that are needed
to document coding and non-coding changes that have
occurred subsequent to a whole genome duplication. As
GH has been the focus of biotechnological advances in
aquaculture, it is important to investigate expression
changes and genomic organizational changes in impor-
tant economic traits such as growth. In this paper, we
report on the impact of repeat elements and transposon
integrations and show that in Oncorhynchus species the
GH1 duplicate has undergone a higher rate of change.
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Genomes, particularly salmonid genomes, are dynamic.
Part of the dynamism is the result of the purported whole
genome duplication and the past integration of SINEs and
LINEs into them. LINEs and SINEs introduce repetitive
elements that may misalign causing unequal recombina-
tion to occur, and thereby introduce deletions and inser-
tions among duplicated genomes. Coupled with this is
the integration of a wide assortment of transposon
sequences as described here and elsewhere [19]. Over
time, these genomic rearrangements have led to the crea-
tion of pseudogenes, structural differences between dupli-
cated genes and to differential regulation of paralogues.

In AS and CS, we show that transposon insertions have
occurred differently in the promoters of gh, within and
between each species. The organization of transposon
families in the BACs containing gh1 and in the BACs con-
taining gh2, is very similar within orthologous regions
(Figure 4). However, much less conservation is apparent
in comparisons between the ghl- and gh2-containing par-
alogous BACs for the two fish species (Figure 4). The
appearance of repeated elements and differential rates of
change in the ghl and gh2 regions is consistent with the
hypothesis that a burst of transposition activity occurred
during the speciation events which led to Atlantic and
Pacific salmon [19]. Genome and gene duplication (30 to
100 MYA; [39,40]) has taken place much earlier than the
speciation (14 to 23 MYA; [9,41,42]) and these data sug-
gest that after gene duplication, ghl in Oncorhynchus has
evolved much faster than gh2, possibly because the
genomic region for ghl has undergone more reorganiza-
tion compared to the region containing gh2.

Methods

Atlantic salmon (AS) CHORI-214 [43] and Chinook
salmon (CS) CHORI-217 [44] bacterial artificial chromo-
some (BAC) libraries were obtained from BACPAC
Resources, Children's Hospital Oakland Research Insti-
tute (CHORI) [45]. AS BAC library filters were hybridized
with an oligonucleotide probe (5'-TCCCAAACAAACAG-
CAACATACTCAACCGACCACCGCACT-3") designed
from the AS ghl EST [GenBank:X61938] that had been
end-labeled with gamma-32P-ATP (Amersham). The CS
BAC library filters were screened using a gh cDNA probe
(GH2-8) generated from sockeye salmon genomic
sequence by a PCR-based intron deletion methodology
[35]. The CS GH2-8 probe was labelled with alpha-32P
dCTP using the Rediprimell Random Prime Labelling sys-
tem, and purified through a Probequant G-50 micro col-
umn (Amersham). Filter hybridizations were conducted
as described by CHORI [45]. Probed BAC library filters
were visualized using a Molecular Dynamics Storm Phos-
phorlmaging system.
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BAC DNA confirmation

Confirmation of AS gh-containing BACs was performed
by comparisons of Hindlll restriction digests of the iso-
lated clones to in silico digests for each BAC. The entire
Salmo salar genome BAC library has been digested by Hin-
dIll and fragment profiles are available on the internet
Contig Explorer version 3.4 (iCE 3.4) database [14]. Fin-
gerprinting of the CS BACs was carried out by SnaPshot
(ABI) labeling of restriction-digested fragments and sam-
ples were analyzed on an ABI 3130xl genetic analyzer.
Data was processed utilizing Genemapper and finger-
printed contigs assembled as described by Luo et al [46].

BACs were assessed for whether they contained ghl or gh2
using gene-specific polymerase chain reactions (PCRs).
Primer sets were designed for AS ghl intron 2 (5'-AAAAC-
CAACGGCTCITCAAC-3' and 5'-GGAGTCAGAGTTACA-
GAAGTCCAG-3'), intron 5 (5'-GATGACAATGACTCTCA
GCAGC-3' and 5'-TGTATCTGGGAAACCGAACC-3'), as
well as for gh2 intron 3 (5'-ATCGTGAGCCCAATC-
GACAAGCAG-3' and 5'-GGGTACTCCCAGGATTCAAT-
CAGG-3"). Primer sets were also designed for exon 3 (5'-
ACATGCAGCAGGATGCTAAG-3' and 5'-TTTCAGACCTT-
TATTGTCATCACC-3') and exon 5 (5'-GGTTCTGTGGAC
ACTCAGTCC-3' and 5'-TCTTCGGAGGTGGCAAAG-3") of
the sodium channel (scn) upstream of the gh genes. Detec-
tion of the gh genes in the CS BACs was confirmed using
the primer set 5'-"AGCCTGGATGACAATGACTC-3' and 5'-
CTACAGAGTGCAGTTGGACT-3' which can distinguish
all forms of gh in the genome (GH1, GH2, and GH-P;
[35]) and for the scn gene with 5'-TTCCGCCACTITCAC-
CCITG-3' and 5'-AGGGGCGTGTTGAACAGCTC-3'.

PCRs were performed using 200 ng of BAC DNA utilizing
hot start PCRs: reaction mixtures without any enzyme
were heated to 94°C for 3 min, cooled to 80°C and then
0.625 U of Tag DNA polymerase (Invitrogen) was added.
Each PCR then underwent 35 cycles of the following
parameters: 94 °C for 20 sec, 50°C for 30 sec and 72 °C for
45 sec. AS ghl was contained on BACs 11-1-04 and 73-D-
15 and gh2 in BAC 63-1-10. The CS ghl was localized to
BAC 108-0-24 and gh2 to BAC 206-E-17.

BAC preparation and library construction

BAC DNA was isolated by an alkaline lysis procedure
using Nucleobond columns (Clontech) following the
manufacturer's protocol. The isolated BAC DNA was neb-
ulized and the DNA ends were made blunt by filling with
T4 polymerase. The blunt-ended, repaired DNA was size
fractioned by electrophoresis and the gel region corre-
sponding to 1.6 to 4.0 kb was excised and gel purified
(Qiagen). The fragments were blunt-end ligated into
pUC19 plasmid cut with Hincll (NEB) and transformed
into electrocompetent DH5a E. coli cells using a Bio-Rad
Gene Pulser system. Library quality was evaluated and
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high redundancy plating was followed by large-scale col-
ony picking (Genetix). Extracted recombinant plasmid
templates were sequenced on an ABI 3730 DNA
sequencer.

BAC contig assembly

Bases were called using PHRED [47,48]. High quality
sequence reads were assembled using PHRAP [49] and
then viewed and edited using Consed [50]. Some gaps in
BAC assembly were filled by designing primers to the con-
tiguous sequence ends, followed by amplification of the
BAC region by PCR and subsequent cloning and sequenc-
ing of the fragments. Each BAC has been deposited in
GenBank as follows: AS GH1 BAC 11-1-04 and BAC 73-D-
15 combined [GenBank:EU621898]; AS GH2 BAC 63-I-
10 [GenBank:EU621899]; CS GH1 BAC 108-0O-24 [Gen-
Bank:EU621900] and CS GH2 BAC 206-E-17 [Gen-
Bank:EU621901].

Dotter [51] and PipMaker [52] were used to compare each
BAC sequence to itself and to identify duplicated and
repeated regions. Identification of other repeat elements
was done with RepeatMasker [18] using repeat library
4.01 from Repbase [53], as well as a salmonid repeat data-
base [19]. Gene location and direction on each BAC was
determined using Digit Integrated Gene Identification
Tools (DIGIT) [15].

GH alignment, annotation, and comparison

AS ghl [GenBank:AY614010] and gh2 [GenBank:
M21573] gene sequences were used to align the ghl and
gh2 paralogues with BioEdit [54]. BioEdit was also used to
annotate the two paralogues and calculate percent similar-
ities between the two genes, their coding sequences, and
their amino acid sequences. Searches and comparisons of
regulatory elements for the two paralogues were also per-
formed using BioEdit. Identification of transposon inser-
tions was performed using Dotter plots, comparing 15 kb
of each promoter region with salmon transposon
sequences [19].

Reverse transcription and cDNA amplification

Total RNA was extracted in TRIzol reagent (Invitrogen)
from flash-frozen, adult AS (Mowi stock, DFO, West Van-
couver) and CS (Chehalis River Hatchery) kidney, muscle,
skin, gut, gill, spleen, brain, heart, testis, liver, eye and
pyloric caecum tissues. The extracted total RNAs were
cleaned using MEGAclear (Ambion) and then quantified
and quality-checked by spectrophotometer and agarose
gel, respectively.

The cDNAs were synthesized in 25-uL reactions from 1.0
g total RNA using oligo(dT),5; (Promega) and Supercript
I RNase H-reverse transcriptase according to the manu-
facturer's instructions (Invitrogen). The reactions were
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incubated at 37°C for 90 min and the transcriptase heat-
inactivated at 70°C for 30 min. Approximately 200 ng of
cDNA was used in each 25-pL PCR reaction containing
1.25 U Taq polymerase, 1 x Taq buffer, 1.25 mM MgCl,,
10 mM dNTPs (Invitrogen) and 15 pmol of each gene-
specific 5' and 3' primer [see Additional file 4]. Each PCR
was carried out under the following cycling parameters:
94°C for 2 min, then 35 cycles of 94°C for 30 sec, 55°C
for 30 sec, and 72°C for 1 min using a Perkin Elmer 9600.
The AS scnl and scn2 PCRs were similarly amplified but
the anneal temperature used was 57.5°C. The integrity of
each cDNA used was confirmed by control PCRs using
ubiquitin primers.

The PCR products were separated by electrophoresis on
1.25 to 1.30% agarose gels and photographs were stored
using an UVP GelDoc-It documentation system (UVP).
Representative products were isolated and cloned into
pCR2.1-TOPO vector (Invitrogen) and sequenced to con-
firm gene identities.
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Additional material

Additional file 1

Comparison of Atlantic and Chinook salmon growth hormone 1 and
2 genes. Exons are shaded in red. Potential transcription factor binding
sites and poly(A) termination signals are boxed. Characteristic insertions
or deletions reported by McKay et al. (2004) are underlined.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-9-522-S1.doc]
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Additional file 2

Reverse transcriptase PCR validation and cDNA expression profiles in
twelve different tissues. Reverse transcriptase PCR validation and cDNA
expression profiles in twelve different tissues: 1: kidney, 2: muscle, 3: skin,
4: gut, 5: gill, 6: spleen, 7: brain, 8: heart, 9: testis, 10: liver, 11: eye and
12: pyloric caecum. The integrity of each cDNA used was confirmed by
control PCRs using ubiquitin primer set. For each gene-specific PCR
experiment, a negative control with no template (NC) was included.
Abbreviations for gene names are as follows: GH: growth hormone; Scn:
skeletal muscle sodium channel alpha subunit; Mic: myosin alkali light
chain; IFN: interferon. The strongest marker band indicates a fragment
length of 500 bp.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-9-522-S2.ppt]

Additional file 3

Reverse transcriptase PCR validation and cDNA expression profiles in
twelve different tissues. Reverse transcriptase PCR validation and cDNA
expression profiles in twelve different tissues: 1: kidney, 2: muscle, 3: skin,
4: gut, 5: gill, 6: spleen, 7: brain, 8: heart, 9: testis, 10: liver, 11: eye and
12: pyloric caecum. The integrity of each cDNA used was confirmed by
control PCRs using ubiquitin primer set. For each gene-specific PCR
experiment, a negative control with no template (NC) was included.
Abbreviations for gene names are as follows: GH: growth hormone; Scn:
skeletal muscle sodium channel alpha subunit; Mic: myosin alkali light
chain; IFN: interferon. The strongest marker band indicates a fragment
length of 500 bp.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-9-522-S3.ppt]

Additional file 4

Gene-specific primer oligonucleotide sequences used in tissue expres-
sion studies. A list of primer identification and primer sequences for each
amplified gene of interest are provided.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-9-522-S4 xls|
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