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Abstract
Background: The most common application of microarray technology in disease research is to
identify genes differentially expressed in disease versus normal tissues. However, it is known that,
in complex diseases, phenotypes are determined not only by genes, but also by the underlying
structure of genetic networks. Often, it is the interaction of many genes that causes phenotypic
variations.

Results: In this work, using cancer as an example, we develop graph-based methods to integrate
multiple microarray datasets to discover disease-related co-expression network modules. We
propose an unsupervised method that take into account both co-expression dynamics and network
topological information to simultaneously infer network modules and phenotype conditions in
which they are activated or de-activated. Using our method, we have discovered network modules
specific to cancer or subtypes of cancers. Many of these modules are consistent with or supported
by their functional annotations or their previously known involvement in cancer. In particular, we
identified a module that is predominately activated in breast cancer and is involved in tumor
suppression. While individual components of this module have been suggested to be associated
with tumor suppression, their coordinated function has never been elucidated. Here by adopting a
network perspective, we have identified their interrelationships and, particularly, a hub gene
PDGFRL that may play an important role in this tumor suppressor network.

Conclusion: Using a network-based approach, our method provides new insights into the
complex cellular mechanisms that characterize cancer and cancer subtypes. By incorporating co-
expression dynamics information, our approach can not only extract more functionally
homogeneous modules than those based solely on network topology, but also reveal pathway
coordination beyond co-expression.
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Introduction
The recent development of microarray technology has sig-
nificantly facilitated the identification of disease-related
genes [1-4]. However, many disease phenotypes are deter-
mined not by individual genes, but by the coordinated
effect of many genes. Insight into the structure and coor-
dination of disease-related pathways is crucial to under-
standing the pathophysiology of complex diseases.
However, it has proved difficult to infer pathways from
microarray data by deriving modules of multiple related
genes, rather than individual genes. The major challenges
are: (1) Genes involved in a pathway may exhibit complex
expression relationships beyond co-expression, which
may be overlooked by standard microarray analysis meth-
ods such as clustering [5]. (2) Pathways are dynamic and
the current static annotation of pathways may not serve as
a good template. In fact, pathways are manual dissections
of the underlying dynamic gene regulatory network.
Under different conditions, different segments of the
ensemble network will be activated, leading to condition-
specific activation of pathways [6].

In this study, by integrating many microarray datasets we
propose a novel method to simultaneously infer pathways
and disease/phenotypic conditions under which the path-
ways are activated. The identified pathways may comprise
genes with complex expression relationships beyond co-
expression. Due to the existence of a large amount of can-
cer microarray data, we used cancer as our case study. We
collected a series of microarray datasets measuring differ-
ent types of cancers, and a series of datasets measuring
other cellular/physiological conditions. We first construct
a differential co-expression network, in which each node
represents a gene and each edge indicates a gene pair that
is frequently co-expressed in cancer datasets but not in
non-cancer datasets. We then dissect the networks into
cancer-subtype specific network modules by considering
(1) co-expression dynamics and (2) network topology.
Figure 1a illustrates the conceptual pipeline of our
method.

To measure co-expression dynamics, we use second-order
expression similarity, which we proposed previously [5].
Briefly, if we define first-order expression similarity as the
expression similarity of two genes from one dataset, then
second-order similarity measures whether two gene pairs
simultaneously exhibit either high or low expression sim-
ilarity across multiple datasets. In general, high first-order
similarity suggests the existence of a functional link
between two genes, and clustering based on the second-
order similarity captures multiple functional links always
activated and deactivated under similar conditions. Such
functional links are likely to comprise a functional mod-
ule. Interestingly, genes in a second-order cluster may not
always have high first-order similarity (see an example in

Figure 1b); therefore, second-order analysis allows us to
identify functional modules that are inaccessible to co-
expression analysis.

Given multiple gene pairs sharing high second-order sim-
ilarity, we further divide them into network components
based on their connectivity on the differential co-expres-
sion graph (see an example in Figure 1c). We observe that
genes within a connected network component are more
likely to participate in the same specific pathway than
those between different components (see Supplementary
document in Additional file 1), which, in turn, are likely
to be involved in different relevant pathways. This may
reveal high-order cross-pathway coordination. In fact,
hierarchical clustering of differentially co-expressed gene
pairs based on their second-order similarity results in a
hierarchical modularity in terms of relevance of func-
tional links. We designed a linear scaling model to select
modules by considering both module size (number of
edges) and within-module second-order similarity. Then,
given selected modules, we can further infer datasets (phe-
notypic conditions) in which a module is activated, i.e. in
which genes in the module coordinate.

Applying our methods to 32 cancer-related microarray
datasets, and 23 non-cancer related datasets, we derived
162 second-order clusters consisting of 224 network mod-
ules, activated either in cancer or in specific cancer sub-
types. In particular, we identified a breast cancer specific
network module that involved in tumor suppression via
platelet-derived growth factor (PDGF)-like signaling,
more importantly, a hub gene PDGFRL that may play an
important role in this tumor suppressor module.

Results
Network properties of the cancer differential co-
expression network
We curated 32 human microarray datasets (1,764 expres-
sion profiles in total) measuring cancers of 12 tissues, and
23 datasets (1,158 expression profiles) not related to can-
cer (e.g. normal tissues, chronic granulomatous disease,
Huntington's disease, inflammatory response). For details
of the datasets refer to the Supplementary Table 1 in Addi-
tional file 2. We first identify gene pairs which consistently
demonstrate higher correlation in cancer versus non-can-
cer datasets based on a robust correlation estimator, the
normalized Percentage Bend correlation (for details see
Methods). In following sections, if not specified, the term
correlation will by default refer to the normalized Percent-
age Bend correlation. These criteria result in 6,035 gene
pairs covering 1,967 genes. The 6,035 gene pairs, each rep-
resenting a potential conditional functional link, can be
represented as a differential co-expression network. In this
network, each gene is represented as a node and each dif-
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Overview of analysis procedureFigure 1
Overview of analysis procedure. (A) Flow chart of the analysis pipeline. (B) Schematic illustration of the concept of second-
order similarity. It is obvious that the overall expression similarity between the two gene pairs (genes 1 and 2 versus genes 3 
and 4) is not significantly high, but their first-order expression correlation profiles exhibit high second-order similarity. (C) 
Schematic illustration of the dissection of differential co-expression networks into network modules based on the co-expres-
sion dynamics and network connectivity. In the heat map, every column corresponds to a dataset and every row corresponds 
to a gene pair. Red, black, green and grey corresponds to positive, low, negative and missing correlations, respectively. By hier-
archical clustering, the gene pairs fall into two major second-order clusters. The 9 gene pairs in the green cluster comprise 
three connected network components, whereas the 6 gene pairs in the red cluster give rise to three connected components. 
Furthermore, by considering the second order cluster of a higher level of the hierarchy, which consists of both green and red 
clusters, the six networks are united to form two connected networks, reflecting the hierarchical modularity of cancer co-
expression networks.
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ferential co-expression relationship is represented as an
edge.

It has been reported that co-expression networks follow a
scale-free node degree distribution [7]. We observed that
the differential co-expression network also follows such a
topology, where only a small number of nodes act as
“highly connected hubs” (see node degree distribution in
Supplementary Figure 1 in Additional file 1). This indi-
cates that most gene-gene co-expression relationships dif-
fering between cancer and other phenotypes are
associated with only a few “hub” genes. Such hub genes
exhibit a high degree of coordination with many other
genes in neoplastic states, and are therefore likely to play
important roles in carcinogenesis and cancer progression.
In fact, most hub genes fall into two main functional cat-
egories: 1) core processes of neoplastic states such as cell
division and chromosome organization; or 2) dynamic
interactions between cancer cells and their microenviron-
ment such as angiogenesis, immune response, and cell
adhesion (see Supplementary Table 2 in Additional file
2). For those hub genes with unknown functions, we can
predict their cancer-related functions based on their
neighbor genes. For example, the 16 out of the 33 interact-
ing partners of the ADP-ribosylation factor-like 6 interact-
ing protein (ARL6IP) are involved in cell division
(hypergeometric test p-value 1.6 × 10-24). Thus, ARL6IP is
likely to be involved in cell proliferation, consistent with
its initial characterization as an interaction partner of the
Ras superfamily member ARL6 [8]. As another example,
while microfibrillar-associated protein 2 (MFAP2) has
long been known to bind to various components of the
elastic extracellular matrix [9], it has not been clear
whether it serves more than a mechanical function. We
found that 6 out of its 24 neighbor genes are involved in
cell adhesion (p-value 7.7 × 10-5). In fact, a recent study
found that MFAP2 binds to a neighbor gene Notch1 and
activates it [10].

Identification of pathway modules specific to cancer or 
cancer subtypes
The differential co-expression network provides a sum-
mary of co-expression links frequently active across all
types of cancers. However, it does not provide clues as to
which set of links tend to be simultaneously active and
inactive under which types of cancer. That is, the edges of
a differential co-expression network may not be active in
the same subset of datasets. In fact, the largest connected
component of the differential co-expression network con-
tains 5944 edges, which comprises 98% of all the edges in
the network. Thus, based on connectivity alone we cannot
break the network into functionally coherent and cancer-
subtype specific modules.

To dissect the networks, we integrate two types of infor-
mation, the co-expression dynamics and the network con-
nectivity, to extract cancer-subtype specific network
modules. First, we employ the second-order clustering
approach to utilize the co-expression dynamics informa-
tion. This includes two steps: (i) for any two genes con-
nected with an edge in the differential co-expression
network, we calculate the expression correlation in each of
the 32 cancer microarray datasets and store it in a vector,
termed the first-order expression correlation profile of the
genes; (ii) we then perform hierarchical clustering of all
the gene pairs based on the Euclidean distance between
the first-order expression correlation profiles. Unlike
commonly used clustering approaches, the unit of the sec-
ond-order clustering is a gene pair instead of a gene, and
the distance between units is computed based on the first-
order expression correlation profiles instead of the origi-
nal gene expression profiles, hence the term “second-
order” clustering [5]. Since each edge represents a fre-
quently occurring co-expression relationship in multiple
cancer datasets, it likely represents a functional link. If a
cluster of gene pairs follows the same co-expression pat-
tern across multiple cancer datasets, it represents a mod-
ule of functional links being turned on or off
simultaneously across different cancer phenotypes.

Given a second-order cluster of gene pairs, we further
identify connected network components among them.
We suggest that a set of gene pairs is more likely to be
functionally related if they form a connected component
(see Supplementary document in Additional file 1 for
supporting analysis). Given a second-order hierarchical
clustering tree, we traverse the tree bottom up to retrieve
connected network components. In general, the size of a
connected component (S, the number of edges) decreases
with the second-order diameter (D), defined as the largest
pairwise second-order distance. We found that S and D
show a linear scaling relationship in a logarithm scale (see
Supplementary Figure 2 in Additional file 1). We are espe-
cially interested in outliers – network components small
in D but large in S, which represent tightly clustered net-
work modules relative to their size. We define the modu-
larity score λ of a subnetwork using a linear scaling model
λ = α log2(S) – log2(D) – β, where α and β are estimated
using linear fitting. With our data, we obtain α = 0.13 and
β = 2.2. We select the top 60% of networks (S >= 4) ranked
by λ scores, removing those networks having D >= 0.34,
and merging heavily overlapping networks. This proce-
dure resulted in 162 second-order clusters comprising 224
connected network modules, with size ranging from 4 to
64 edges. Their composition, network topology, and acti-
vation status across various cancer phenotypes can be seen
in Supplementary table 3 in Additional file 2. 175 (78%)
modules are statistically significantly functionally homog-
enous based on the GeneOntology Biological Process
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annotation (hypergeometric test p-value <0.01). The most
predominant functional categories are cell cycle, cell divi-
sion, cell proliferation, response to stress, immune
response and cell adhesion (see Supplementary Table 4 in
Additional file 2), consistent with known pathological
mechanisms of cancer.

One main feature of our approach is that it can simultane-
ously discover network modules and the types of cancer in
which the modules are activated. Figure 2a shows a mod-
ule that is activated in most of the cancer datasets. The
genes of the module are mostly involved in cell division
and genetic stability, representing a cell proliferation sig-
nature, a key feature of cancer. Figure 2c shows a network
module which tends to be activated in only solid tumors.
The genes of the module are mostly involved in cell adhe-
sion and organogenesis, which is specific to solid tumor
versus blood cancers or neoplastic cell lines. In the next
section, we will detail two network modules which are
activated predominately in breast cancer data sets.

Network modules in the breast cancer cluster
Our analysis resulted in a second-order cluster containing
two connected network modules that tend to be more
active in all seven breast tumor datasets relative to the rest
of the datasets. The average correlation of these modules
in breast tumor and other cancer datasets are 0.49 and
0.23 respectively (the t-test of co-expressions between
breast tumor and the rest of cancer datasets gives a p-value
of 1.56 × 10-95).

A tumor suppressor network related to PDGF superfamily signaling
The module in Figure 3a contains 52 genes. Most of them
are extracellular or membrane proteins, and 23 genes have
previously been found to be involved in breast cancer. A
number of such examples are listed in Supplementary
document in Additional file 1. Among the 52 genes, 16
are involved in cell adhesion (p-value 7.4 × 10-11), and 14
are involved cell-cell signalling (p-value 7.9 × 10-6), sug-
gesting a role in tumor invasiveness of the module [11].

Most interestingly, we found one main function of this
network module appears to be tumor suppression via the
inhibition of PDGF superfamily signaling. A hub gene
with high degree of this module is the gene PDGF recep-
tor-like (PDGFRL) (degree 11). While its precise biologi-
cal function is not known, PDGFRL encodes a 375aa
product with significant sequence similarity to the extra-
cellular domain of PDGFR. Indeed, mutations in PDGFRL
have been found in individual cancer samples [12-15].
PDGFRL is located in chromosome 8p22-8p21.3, where
multiple studies have suggested the existence of a putative
breast cancer tumor suppressor gene [16], [17], [18].
Recently, an in-depth study of the region using microcell-
mediated chromosome transfer found that indeed PDG-

FRL expression is decreased in the majority of breast can-
cer cells [19]. Many genes in this network module have
been found to be involved in PDGF superfamily signaling.
For example, Cysteine-rich protein (SPARC) binds to
PDGF-AB and PDGF-BB dimers, inhibiting the binding of
these growth factors to their cell surface receptors [20] and
inhibiting PDGF-induced vascular smooth muscle prolif-
eration [21]. Also, connective tissue growth factor (CTGF)
has structural similarities with PDGF [22]. Recently, two
new PDGF ligands were discovered that have a N-terminal
complement subcomponent C1R/C1S, UEGf, BMP1
(CUB) domain [23]. Interestingly both C1R and C1S are
members of this network module. Also, LRP1 is a physio-
logical modulator of the PDGF signaling pathway [24]. In
total, we found direct Pubmed literature support for 19
out of the 52 member genes to be involved in (or related
to) the PDGF-superfamily signalling. Furthermore, it is
known that zinc finger protein (ZNF148) binds to the
PDGFR [25] gene promoter. We screened the promoter
regions of the 52 member genes, and found that the bind-
ing sites of ZNF148 are significantly enriched (hypergeo-
metric p-value 0.016). In addition, it has been reported
that PDGFR positively regulates collagen production (for
example [26], [27]). Our module showed the breast
tumor specific co-expression between PDGFRL and colla-
gens COL3A1, COL5A2 and COL6A3. Many of the above
evidences support the hypothesis that PDGFRL has an
agonistic function to PDGFR signaling.

Although abundant evidence suggests the individual
involvement of many of these genes in tumor suppres-
sion, their coordinated function has never been eluci-
dated. Here by adopting a network perspective, we have
identified their interrelationships and a gene (PDGFRL)
that may play a central role in this tumor suppressor net-
work.

A network module related to inflammatory response
Another identified breast cancer-specific network module
(Figure 3b) may be involved in the coordination of the
inflammatory response to cancer pathology. This network
consists of 5 genes: tumor necrosis factor receptor super-
family member 1B (TNFRSF1B); vascular cell adhesion
molecule 1 (VCAM1); leukocyte-associated immunoglob-
ulin-like receptor 1 (LAIR1); and Cathepsin L1 (CSTL).
They are arranged around the macrophage-associated
antigen (CD163). Several lines of evidence have impli-
cated these genes individually in breast cancer, for exam-
ple: increased plasma levels of VCAM1 is associated with
advanced breast cancer [28]; genetic variation in
TNFRSF1B may predict the late onset of breast carcinoma,
and relapse and death for patients with breast carcinoma
[29]; finally, the breast cancer cell line exhibiting the high-
est in vitro invasiveness also expressed the highest amount
of CTSL1 splice variant L-A3 [30].
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General cancer and solid tumor network modulesFigure 2
General cancer and solid tumor network modules. (A) A network module that tend to activate in most of cancer data-
sets, consisting 24 genes and 28 edges. Average correlation across all data sets is 0.42. Most of genes in the module are related 
to cell division and genetic stability.
(B) Another network module that is activated in most of cancer datasets, consisting 9 genes and 9 edges. The module is 
located in the same second order cluster as the one in figure 2a. Its average correlation across all datasets is 0.39. Most of 
genes in the module are related to nucleobase, nucleoside, nucleotide and nucleic acid metabolism.
(C) Left : a network that tends to be activated only in solid tumor datasets. Right, the co-expression heatmap of the edges 
across datasets. Six datasets are not shown in the heatmap due to lack of valid co-expression estimations. Average correlation 
in solid tumor datasets and other datasets are 0.61 and 0.17, respectively.
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Coordinated breast tumor network modulesFigure 3
Coordinated breast tumor network modules (A) A breast tumor network module that involved in PDGF signalling. 
Genes in round shape have promoter regions that are predicted to be bound by transcription factor ZNF148.
(B) A breast tumor network module related to inflammatory response, located in the same second-order cluster as the one in 
Figure 3a. Genes in round shape have promoter regions that are predicted to be bound by transcription factor POU2F1.
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Most of the genes of this module are related to tumor
necrosis factor (TNF), an inflammatory cytokine. It has
been reported that activation of rat CD163 on peritoneal
macrophages induces the production of pro-inflamma-
tory mediators including TNF [31]; TNF directly interacts
with TNFRSF1B [32] and is a mediator of TNF function in
the mouse ovary [33]. Finally, transcription of VCAM1 in
endothelial cells can be induced by TNF [34].

A transcription factor, octamer-binding transcription fac-
tor-1 (POU2F1, also known as Oct-1) has been predicted
to bind promoter region of VCAM1, LAIR1 and CTSL
(hypergeometric p-value 0.012). The binding of POU2F1
to VCAM1 promoter is indeed supported by the literature
[35-37]. Also, POU2F1 has been found to bind SP3 [38],
which is reported to activate the transcription of CSTL
[39].

The tight and coordinated expression of the genes in this
network module reveals an induced inflammatory
response that may be important in breast tumor progres-
sion [40].

Identification of pathway coordination beyond co-
expression
A major advantage of second-order clustering is that it can
identify functionally related genes beyond co-expression,
as illustrated in Figure 1b. We elaborate on this point in
this section. To allow readers to easily assess the magni-
tude of the correlation, only in this section we use the
Pearson correlation to measure the co-expression level.

Based on the definition of second-order clustering, con-
nected network components within the same second-
order cluster show coordinated activities, which implies
their functional relevance. In the example of the two mod-
ules in the general cancer cluster in Figure 2a and 2b, each
module may play different roles in the regulation of spe-
cific biological processes -- cell division and nucleic acid
metabolism, respectively; the latter is clearly required for
cell division. Given the fact that these processes belong to
the same second-order cluster, they may represent facets
of the same underlying neoplastic process. However,
member genes of the two modules exhibit distinct expres-
sion patterns: The average Pearson correlation between
genes of the two modules is only 0.13.

As another example, the two breast cancer modules
described in last section are also related. Indeed, the col-
laboration of PDGF signalling and TNF have long been
known to be required for tissue repairing [41], and their
abnormal expression play important but partially defined
roles in breast tumor development and progression [42].
On the other hand, member genes of the two modules
exhibit relatively distinct expression patterns. For exam-

ple, two hub genes of modules, PDGFRL and CD163, also
show very weak expression similarities across all seven
breast cancer datasets: the average Pearson correlation
between these two genes is only 0.24.

Besides the above examples, we found coordinated mod-
ules within the majority of identified second-order clus-
ters. Overall, from the total 162 second-order clusters,
25% give rise to more than one connected network mod-
ule. To estimate the amount of cross module co-expres-
sion within second-order clusters, for each second order
cluster, we first determined the active cancer datasets, in
which the average Pearson correlation of gene pairs in the
cluster is greater than 0.5. For 72% of those module pairs
within the same second-order cluster, the average gene
pairwise Pearson correlation between modules in the
active datasets is less than 0.5 (normalized Percentage
Bend correlation approximately < 0.35), and for 30%
module pairs the cross-module average gene pairwise
Pearson correlation is less than 0.3 (normalized Percent-
age Bend correlation approximately < 0.19).

Furthermore, even genes in the same network module are
not necessarily highly co-expressed when the module is
active, despite their high degree of functional homogene-
ity, as discussed previously. We found that in 32 of 224
(14 %) modules, the average pairwise Pearson correlation
of any two genes in the module is < 0.5 in the correspond-
ing active datasets. Such modules could therefore easily be
overlooked by traditional clustering methods.

Discussion
The rapid accumulation of microarray data provides
unprecedented opportunities to study the molecular
mechanisms underlying disease pathogenesis and pro-
gression. Although many studies utilized multiple micro-
array datasets to derive consistent lists of genes specific for
(subtypes of) cancer [43-45], little attention has been paid
to derive genetic networks characterizing different types of
cancer. Segal et al. [46] used predefined biologically
meaningful gene sets including known biological path-
ways, and have successfully identified activated or
repressed biological modules in a wide variety of neoplas-
tic conditions. The approach, however, relies on the
knowledge of pre-defined biological modules and has
limited use in the discovery of novel association between
genes. A recent study by Choi et al. [47] compared the two
co-expression networks summarized from 10 tumor and
normal datasets, respectively, and have identified func-
tional differences between normal growth and cancer in
terms of gene coexpression changes in broad areas of
physiology. However, due to the multifaceted nature of
cancer, interactions in such a derived summary network
may not be simultaneously active in individual datasets,
i.e. specific cancer conditions.
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In this study, we propose an unsupervised method that
integrates both co-expression dynamics and network
topology information to characterize cancer (subtype)
specific network modules. The identified modules, such
as modules activated across all cancer subtypes or only in
solid tumors, are novel, but consistent with known molec-
ular mechanisms. Importantly, we have discovered a
potential tumor suppressor network particularly active in
breast tumors, and provide compelling evidence that the
hub gene PDGFRL is a true tumor suppressor gene. Com-
pared to commonly used differential or co-expression
analysis, our approach has the following advantages: (1)
our unsupervised approach simultaneously discovers net-
work modules and the conditions (e.g. cancer subtypes)
in which they are activated, thus providing new insights
into the complex cellular mechanisms that characterize
cancer and cancer subtypes. (2) Compared to existing
approaches [47-51] which can only identify densely con-
nected network modules based solely on network topol-
ogy information, our approach incorporating co-
expression dynamics information (second-order similar-
ity) can extract more diverse types of modules regardless
of network density. It is known that many biological path-
ways do not necessarily form densely connected modules.
(3) Our approach can reveal coordination of pathways
beyond co-expression. (4) Our method can be applied to
any types of molecular networks beyond co-expression
network, when data of multiple networks under different
conditions are available.

In the current framework, the selection of biologically
meaningful modules still need certain amount of manual
intervention from biology expert. We are looking for more
systematic ways for module selection, especially by
putting the framework into the context of network statis-
tics to improve the robustness. For example, although the
scaling model we constructed is based on direct observa-
tion of the distribution of network properties S and D,
their log-linear relationship suggests that it should be
straightforward to make use of the exponential random
graph models that have been used in recent years to study
statistical aspects of networks [52]. In essence, such mod-
els linearly combine network properties and assign the
probability of observed networks as the exponential of
such linear combinations. Integrating this work with the
exponential family probabilistic models may provide
both better estimation of the coefficients in the linear scal-
ing model and more accurate selection of network mod-
ules via hypothesis testing. We intend to explore this
direction in future work.

The choice of datasets depends on the research question.
Ideally there should be a balanced and sufficient sampling
of different phenotypes (in particular different tissues for
this cancer study). Particularly, a paired Wilcoxon test

between cancer and normal samples of the same tissue
would significantly eliminate the amount of tissue-spe-
cific co-expressions. However, due to the limited amount
and the heterogeneity of existing data it is currently
impractical to achieve this goal. Using a weighted sam-
pling scheme could potentially bypass the imbalance
effects. We aim to investigate this strategy, and use statis-
tical models of the correlation values to determine the
weighting factors.

Methods
Datasets
We curated 32 cancer and 23 non-cancer human gene
expression datasets mainly from the Stanford Microarray
Database (SMD) and Gene Expression Omnibus (GEO)
databases, each containing more than 15 microarrays, on
either Affymetrix or cDNA platforms. In each dataset, if
there are multiple probes that correspond to the same
gene, we choose the one that contains the least amount of
missing values. For datasets containing absolute expres-
sion measurements, we convert all values <= 10 to 10,
then perform a base 2 log transform.

Estimation of Pairwise gene co-expression

We used Percentage Bend Correlation [53] (with β=0.05)
to obtain a robust correlation estimate. Percentage Bend
Correlation first detects outliers in expression values of
each gene then reduces the effects of those outliers in the
correlation calculation. Only gene pairs with a large
number of valid samples m>= 15 are used to calculate cor-
relation. To make the correlation estimates comparable
across different datasets of variable sample sizes and
among different gene pairs of different amount of missing
expression measures within the same dataset, we per-
formed Fisher's z-transform [54] to reduce sample size
effect. Given a correlation estimate r and sample size n,
the Fisher's Z scores (divided by its theoretical standard

deviation) is calculated as , which

theoretically has an asymptotically standard normal dis-
tribution. Note that sample size n may be different from
gene pair to gene pair due to missing values, and from
dataset to dataset. In reality, we observed that the distribu-
tions of the z-score are still different from dataset to data-
set: we therefore normalized z-scores to enforce the
standard normal distribution. After that, standardized
correlations r' are obtained by inverting the z-score with a
fixed n of 30.

Select differentially co-expressed gene pairs

We define a gene pair to be differentially co-expressed
between cancer and non-cancer if it satisfies the following

z
n r

r
= − +

−
⎛
⎝⎜

⎞
⎠⎟

3
2

1
1

log
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two criteria: (1) their expression correlation in cancer
datasets is sufficiently strong (can be either positively or
negatively high). This is done by setting threshold for
average summed square of correlations in cancer datasets.

i.e,  for the gene pair i, where there

are c valid correlation estimations (c=32 if there are no
missing values) and k is dataset index corresponding to all
valid correlation estimations; and (2) the Wilcoxon rank-
sum test of correlations between cancer and non-cancer
datasets gives a p-value <= 0.01.

Identify conditionally activated network module 
candidates

We hierarchically clustered the differentially co-expressed
gene pairs based on their expression correlation profiles
using the CLUSTER program [55] with complete linkage
and Euclidean distance. The Euclidean distance is aver-
aged to provide a simple estimation given the existence of
missing correlations (due to the missing value problem).

 where ri
(k) and rj

(k) are the cor-

relations of gene pairs i and j in the dataset k, respectively,
and c is number of valid correlations. In the hierarchical
tree, each leaf node represents a gene pair, and each inner
node corresponds to a second-order cluster of gene pairs
(edges) which may comprise zero, one, or more con-
nected network components. In cases where the size of the
differential network is too big to be processed using hier-
archical clustering (HC), the gene pairs were first sepa-
rated using k-means clustering then processed the smaller
clusters separately by hierarchical clustering. As for our
experience, the biologically meaningful modules nor-
mally contain less than a few hundred edges, thus k-
means clustering will keep most of modules intact.

Gene ontology function and transcription factor 
enrichment of modules
The functional enrichment analysis is done by the hyper-
geometric test on genes. We selected 419 Gene Ontology
(GO) functions (i.e. biological process terms) which are 4
levels below the root in the GO hierarchy. Each gene may
be directly or indirectly associated with some of these
functions. A set of genes will be considered to have a
enriched function when (1) the functional homogeneity
modeled by the hypergeometric distribution [56] is signif-
icant at a significance level 0.01 and (2) there are at least
2 genes in the set are associated with the function.

Identification of transcription factor binding
10kb upstream sequences for each gene were obtained
from NCBI Gene database. After applying RepeatMasker
[57], we used the MATCH program of TRANSFAC [58]
(version 9.2) to scan the sequences for the presence of
transcription factor binding sites based on position
weight matrices. We used vertebrate-specific matrices, and
chose cut-offs to minimize the sum of false positives and
false negatives. We kept only the top 3,000 hits per matrix,
sorted by the matrix similarity score. Altogether we
obtained 349,178 predicted transcription factor target
relationships of 180 transcription factors. A hypergeomet-
ric test was performed for each network module to search
for over-represented transcription factor binding sites.
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