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Abstract

Background: The impact of gene annotation quality on functional and comparative genomics makes gene prediction
an important process, particularly in non-model species, including many fungi. Sets of homologous protein sequences
are rarely complete with respect to the fungal species of interest and are often small or unreliable, especially when
closely related species have not been sequenced or annotated in detail. In these cases, protein homology-based
evidence fails to correctly annotate many genes, or significantly improve ab initio predictions. Generalised hidden
Markov models (GHMM) have proven to be invaluable tools in gene annotation and, recently, RNA-seq has emerged as
a cost-effective means to significantly improve the quality of automated gene annotation. As these methods do not
require sets of homologous proteins, improving gene prediction from these resources is of benefit to fungal researchers.
While many pipelines now incorporate RNA-seq data in training GHMMs, there has been relatively little investigation
into additionally combining RNA-seq data at the point of prediction, and room for improvement in this area motivates
this study.

Results: CodingQuarry is a highly accurate, self-training GHMM fungal gene predictor designed to work with
assembled, aligned RNA-seq transcripts. RNA-seq data informs annotations both during gene-model training and in
prediction. Our approach capitalises on the high quality of fungal transcript assemblies by incorporating predictions
made directly from transcript sequences. Correct predictions are made despite transcript assembly problems, including
those caused by overlap between the transcripts of adjacent gene loci.
Stringent benchmarking against high-confidence annotation subsets showed CodingQuarry predicted 91.3% of
Schizosaccharomyces pombe genes and 90.4% of Saccharomyces cerevisiae genes perfectly. These results are 4-5% better
than those of AUGUSTUS, the next best performing RNA-seq driven gene predictor tested. Comparisons against whole
genome Sc. pombe and S. cerevisiae annotations further substantiate a 4-5% improvement in the number of correctly
predicted genes.

Conclusions: We demonstrate the success of a novel method of incorporating RNA-seq data into GHMM fungal gene
prediction. This shows that a high quality annotation can be achieved without relying on protein homology or a
training set of genes. CodingQuarry is freely available (https://sourceforge.net/projects/codingquarry/), and suitable for
incorporation into genome annotation pipelines.
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Background
Whole-genome sequencing has enabled investigations
into the gene content of living many organisms and
forms the foundation for further study of gene expres-
sion, proteomics and epigenetics. After assembly of a
novel genome, gene annotation is often the first step in
analysing the gene content of an organism. Accurate an-
notation of the exonic structure of genes is crucial to the
success of all subsequent functional and comparative
analyses.
Problems that can potentially be caused by incorrect

gene annotation are numerous and can lead to incorrect
assessments of the lifestyle and ecology of an organism.
In comparative genomics where orthologous genes or
conserved functional domains are compared between
species/isolates, the estimated numbers of such genes/
domains can be distorted by less than perfect annota-
tions (as described by Hane et al. [1], S Text 1). Predic-
tion of extracellular secretion, which can be determined
by a short signal peptide at the N-terminus, can miss se-
creted proteins if the start codon of a gene has been in-
correctly annotated. Mis-annotating the start of protein
translation could either cut off the signal peptide or bury
it within the annotation. While a seemingly benign an-
notation error, the consequences for downstream re-
search could be detrimental, particularly as the biotic
interactions or industrial applications of microbes are
largely determined by their secretomes. Additionally,
translated protein sequences of novel species are often
submitted to databases such as NCBI [2] and Uniprot
[3]. It is commonplace to use these database entries to
support the annotation of related species or isolates,
meaning errors present in the pioneer annotation may
be repeated. When these new annotations based on false
assumptions are added to databases, there is not only a
propagation of errors, but also a perceived strengthening
of homology evidence for incorrect protein sequences.
In recent years, correction of in silico predicted gene

annotations with RNA-seq derived transcripts and read
alignments has enabled vastly improved genome annota-
tions and corrections of annotated gene structures [4-6].
Short read and/or assembled transcript alignments are
typically used to correct the coordinates of intron-exon
boundaries in existing gene annotations or predictions
[7], to train gene predictors [8], and can also be incorpo-
rated directly into gene prediction by hybrid gene predic-
tors [9,10]. Since their initial application to gene prediction
[11], generalised hidden Markov models (GHMMs) have
played an important role in genome annotation. Various
GHMM gene predictors [12-15] continue to be incorpo-
rated into annotation pipelines [16-18], some of which are
capable of making use of RNA-seq data. For example,
AUGUSTUS [9,10,14] allows the user to generate hint
files from RNA-seq read/transcript alignments that are
then used to improve prediction accuracy. More recently,
a new version of GeneMark-ES [15], named GeneMark-ET
[8] allows the incorporation of RNA-seq data into its auto-
mated gene model training. These gene finders are both
applicable to a broad range of eukaryotic genomes. A
number of pipelines have also been developed that utilise
available gene prediction software and RNA-seq data to
generate annotations. Some examples of such pipelines
are Maker [16,19], EVidenceModeler [7], JAMg [20],
SnowyOwl [18] and the insect genome annotation pipeline
OMIGA [21]. The continued development of pipelines
such as these relies on the availability and development of
component software such as GHMM gene predictors.
Fungal genomics has applications in areas such as

agriculture [22-24], medicine [25,26], biomass conver-
sion [27,28] and food/beverage production [29,30]. This
broad industry relevance and the continued growth in
the number of new fungal species with sequenced ge-
nomes emphasises the importance of fungal gene annota-
tion. Fungal genomes differ from those higher eukaryotes
in that they are gene dense with short introns [31,32].
They also exhibit less alternate splicing when compared to
other eukaryotes, with a higher proportion of mRNA iso-
forms arising from retained introns [33]. Manual annota-
tion is considered to be the most reliable method of
producing a high quality genome annotation, but this is
time consuming and can be a bottleneck in genome stud-
ies [34]. Consequently fungal genome annotations are typ-
ically derived from ab initio predictions, spliced EST/
transcript alignments and protein homology [34]. For
many fungi, closely related species have either not been
sequenced or their genomes have not been annotated in
detail. This can mean that sets of homologous proteins for
use in protein homology annotation are either small or
unreliable. In such cases, gene prediction relies more on
EST/transcript alignments and ab initio predictions.
Currently available gene prediction software and pipe-

lines are typically intended for application across a broad
range of eukaryotes, with comparatively few being spe-
cific to fungi. GipsyGene [35] is a GHMM gene pre-
dictor that was developed for fungi, with particular
attention given to modelling fungal introns correctly. A
version of GeneMark-ES [15], a self-training GHMM,
also uses an intron model designed for fungi. However,
neither of these incorporates RNA-seq data. SnowyOwl
[18] is a recently developed pipeline designed specifically
to annotate fungal genomes using RNA-seq data and
homology information. Although designed for fungi,
SnowyOwl selects from GHMM predictions made by
AUGUSTUS [9,10,14], a gene predictor that was opti-
mised for application across a broad range of eukaryotes.
In this study we present the gene prediction tool

CodingQuarry. It is designed to make protein-coding
gene sequence predictions through the use of assembled
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or aligned RNA-seq transcripts in both GHMM training
and prediction. CodingQuarry is differentiated from
other gene predictors by the combined use of gene pre-
dictions made directly from both transcript and genome
sequences.
The choice to tailor CodingQuarry to the prediction of

fungal genes and to use assembled, aligned transcripts
rather than raw read alignments relates to some key dif-
ferences between fungal genomes and those of higher
eukaryotes. Firstly, fungi exhibit significantly less alter-
native splicing than higher eukaryotes. Consequently,
the task of transcript assembly is simpler, resulting in a
higher proportion of correctly assembled full-length tran-
scripts [36]. Secondly, fungi have smaller introns than
higher eukaryotes [32]. Recent studies indicate short in-
trons are reconstructed in transcript assembly with a
higher success rate than long introns [37]. These tran-
script assembly advantages make it feasible to generate
coding sequence annotations directly from assembled
transcript sequences, a process that is more likely to be
error prone in higher eukaryotes.
A major consequence of the high gene density ob-

served in fungi is a high proportion of instances whereby
the untranslated regions (UTRs) of adjacent transcripts
overlap in terms of their positions on genomic DNA.
Overlap can be between 3′ and 5′ UTRs of adjacent
genes on the same strand, or between 5′ and 5′ or 3′
and 3′ UTRs of adjacent genes on opposite strands.
Overlaps from the latter example, particularly in the case
of 3′ to 3′, are referred to as sense-antisense (S-AS)
overlaps. S-AS overlaps have been observed to occur
rarely in many species, but are widespread in fungi
[38,39]. Essentially this means that in gene-dense fungal
genomes, mapped RNA-seq reads belonging to adjacent
genes may support regions of coverage that span two or
more loci. This is a more severe problem when ‘unstranded’
RNA-seq chemistries are used, as S-AS overlaps can be dis-
tinguished through the use of stranded RNA-seq data.
CodingQuarry is designed to work with assembled, aligned
transcripts derived from either stranded or unstranded
RNA-seq data and to specifically address the problem of
merged transcripts, such that these transcript assembly er-
rors do not translate to coding sequence annotation errors
or omitted gene loci.
For the purpose of demonstrating CodingQuarry’s per-

formance we have selected two exemplar fungal species,
which possess highly reliable sequence and annotation
resources: Saccharomyces cerevisiae and Schizosaccharo-
myces pombe. S. cerevisiae, commonly known as Baker’s
yeast, has long been a model organism and is important
to the wine making, baking and brewing industries. Sc.
pombe, commonly known as fission yeast, is also a
model organism. These two species are estimated to
have diverged from a common ancestor up to 1000
million years ago [40,41] and are representative of dis-
tantly related fungal sub-phyla. In this study we have
used the high-quality annotations of these fungi to
benchmark the sensitivity and specificity of Coding-
Quarry, and compare it to other gene predictors.

Implementation
Data sets for benchmarking
To test the accuracy of predictions made by Coding-
Quarry and other gene predictors, we utilised assembled
genome sequences, RNA-seq reads and up-to-date gene
annotations of two model fungi: S. cerevisiae and Sc.
pombe.
The Sc. pombe (isolate 972h-) genome, annotation and

protein sequences were downloaded from PomBase [42]
and RNA-seq reads [SRA: SRX040571] were downloaded
from NCBI [43]. The reads were trimmed using Cutadapt
[44], aligned to the genome using TopHat [45,46] (ver-
sion 2.0.19, −-mate-inner-dist 280, −-mate-std-dev 70,
−-min-intron-length 10, −-max-intron-length 5000, −-min-
segment-intron 10, −-max-segment-intron 5000) and
assembled using Cufflinks [47] (version 2.1.1, −-min-
intron-length 10, −max-intron-length 5000, −-overlap-
radius 10, −-min-isoform-fraction 0.4, −-library-type
fr-firststrand). The RNA-seq data used for Sc. Pombe
was stranded (i.e. the strand of genomic DNA that
produced the mRNA fragment is known). To simulate
a transcript assembly from unstranded RNA-seq data,
TopHat and Cufflinks were also re-run as above with
the modified parameter ‘–library-type fr-unstranded’.
The S. cerevisiae (isolate S288c) genome, annotation

and protein sequences were downloaded from the Sac-
charomyces Genome Database [48] and RNA-seq reads
[SRA: SRR1198662-8] were downloaded from NCBI.
Reads were trimmed, aligned and assembled using the
same method as described above for Sc. pombe (stranded
only, −-mate-inner-dist 200, −-mate-std-dev 40).
Although both Sc. pombe and S. cerevisiae are anno-

tated to a high standard, it was desirable to identify a
stringent subset of their genes that are of very high-
confidence. This is because not all genes are verified to
the same degree, and some are therefore more likely to
be accurate than others. It is still possible that the full
annotations contain errors that are artefacts of the pre-
diction tools, data and methods used to generate them.
Comparing predictions against a high-confidence set
excludes some annotations that are lower confidence,
and is likely to give a better assessment of the accuracy
of gene predictors. Annotations within these high-
confidence subsets were required to exactly match se-
quences in Uniprot’s [3] reviewed database and to be
listed and as possessing protein level evidence. There
were 1,898 of these for Sc. pombe and 5,224 for S. cerevi-
siae. Nevertheless, as CodingQuarry’s intended purpose
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is to predict genes across entire fungal genomes, we also
report its performance benchmarked to the less strin-
gent full datasets of 5,124 Sc. pombe genes and 6,575 S.
cerevisiae genes.

CodingQuarry prediction method outline
CodingQuarry predicts genes in 2 stages. The first stage
involves prediction of genes directly from transcript se-
quences derived from regions of the genome supported
by RNA-seq in GFF (General Feature Format) [49], such
as derived from Cufflinks [47]. The second stage com-
plements the first and involves additional predictions
based on genomic sequences. In both stages GHMMs
are used to predict genes, however, these differ in their
structure and in how they incorporate RNA-seq data
into their predictions. The GHMMs used in both stages
are also trained automatically using the RNA-seq data.
The final predicted annotation produced by Coding-
Quarry is a combination of predictions made in stages 1
and 2.

Stage 1: Training and prediction from transcript sequences
The coordinates of transcribed regions (in GFF format)
relative to the assembled genome sequence are used to
extract the sequences of a set of virtually spliced tran-
scripts (i.e. intron sequences are removed). A generalised
hidden Markov model (GHMM) is used to make gene
predictions directly from this set of transcript sequences.
Predicted coding-sequences are then converted back to
their relative genomic coordinates, with transcript spli-
cing being accounted for in this process.
The GHMM used in stage 1 uses fixed length states to

describe the gene start and Kozak sequence [50] and
gene stop codon, and variable length states to describe
gene coding sequences, UTRs, and non-coding tran-
scripts. To address the issue of merged transcripts, this
model allows a single transcript sequence to contain
multiple genes, via the creation of a “middle UTR” state.
Where UTRs of adjacent transcripts overlap in terms of
their relative corresponding positions on the genomic
DNA, a single transcript sequence as derived from
RNA-seq can contain multiple gene loci. A pictorial ex-
ample of this is shown in Figure 1, section Bi, in which
the middle UTR state is used to allow the correct pre-
diction of two genes on the same strand within a merged
transcript sequence. In the case of unstranded RNA-seq,
prediction errors arising from transcript sequences
merged due to S-AS UTR overlap are corrected in stage 2.
The coding regions are modelled using a fifth-order,

three-periodic Markov chain. The 5′, 3′ and ‘middle’
UTRs, as well as non-coding transcripts are modelled
using a fifth-order (non-periodic) Markov chain. A
second-order weighted array matrix over a region of 11
nucleotides up to and including the ATG start codon
models the Kozak sequence and gene start. Length distri-
butions of the coding region state, UTR states and non-
coding transcript state are modelled using smoothed
length frequencies.
A self-training method is used, where parameters are

initially estimated from the longest open reading frame
(beginning with a methionine) in each transcript. The
GHMM is then successively run and retrained twice to
refine the parameters. There are some restrictions placed
on the sequences that are used for retraining, based on
the general principle of preferential exclusion of some
correct sequences rather than risking including false-
positives. Training of the “gene” state is therefore re-
stricted to coding sequence lengths greater than or equal
to 600 nucleotides to guard against the inclusion of
false-positive predictions in the training set. Similarly,
open reading frames in UTR regions greater than or
equal to 300 nucleotides are removed from the UTR
training set to guard against the inclusion of coding se-
quences. Where there are overlapping genes in the pre-
diction, the longer gene is retained in the training set
and the shorter overlapping gene(s) are discarded.
Importantly, this method is distinct from methods

where the transcript/EST alignment is used to inform a
GHMM prediction from genome sequence. The main
advantage of the initial prediction from transcript se-
quences is that the predicted annotation will have intron
boundaries that agree exactly with the intron boundaries
in the transcripts to genome alignment. Another advan-
tage is that where the transcript assembly indicates that
there is an alternative splicing, prediction from tran-
scripts allows the coding sequences splicing alternatives
to be predicted.

Stage 2: Prediction from the genome sequence
After the prediction from transcript sequences is carried
out in stage 1, there may still be a number of errors and
omissions in the predicted annotation (see Figure 1, sec-
tion D). These predictions are therefore added to, and in
some cases replaced by predictions made from genome
sequence.
The stage 1 predicted gene set is used to train a sec-

ond, different GHMM which is designed to make predic-
tions from assembled genome sequence. This genome
based GHMM includes additional states to model in-
trons, a feature not previously required in the spliced
transcript-based GHMM used in stage 1. Another differ-
ence is that the GHMM used for transcript sequences
models the 5′ and 3′ UTR regions, whereas the GHMM
used for prediction from genome sequence models these
regions as part of larger “intergenic” regions. The stage 2
GHMM intron model used has fixed length states for
the donor, acceptor and branch point sequences, mod-
elled by first-order weighted array matrices. Variable
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Figure 1 CodingQuarry flow diagram. Examples are shown of correct annotations of coding sequences, (A) and a typical CodingQuarry input;
assembled transcripts aligned to the genome (B). The stages used within CodingQuarry to predict coding sequences are shown (C-G). Firstly,
coding sequences are predicted from transcript sequences (introns are removed) using a GHMM (C). Possible prediction errors after this step are
coloured red, and notes show how these are identified (D). These error prone predicted genes are discarded (E), and regions are selected for
prediction from genome sequence (F). The resulting prediction is output by CodingQuarry (G), which merges the retained predictions from
transcript sequences (E) with the predictions from selected areas of the genome sequence (F). Sections of the example genome sequence and
annotations have been labelled i-x in each part of the diagram (A-G), and marked with vertical dotted lines. These sections are labelled to
facilitate in-text references to the diagram in the Implementation section of this manuscript. Labels i-x correspond to the same genome sections
through A-G.
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length states are used to model the regions between
these fixed length states. The intron model is based on
research showing that fungal introns have high informa-
tion content in the 5′ splice site, 3′ splice site and
branch point regions [32], and is similar to the intron
model used by GeneMark-ES [15]. During training, the
acceptor/donor lengths are automatically adjusted by
CodingQuarry to suit the fungi being predicted on. The
acceptor/donor is extended to the furthest out nucleo-
tide position (up to a maximum length) with a statisti-
cally significant difference in nucleotide composition
when compared to the adjacent intron region. A Chi-
square test (p-value 0.01) is used to test for statistical
significance. The acceptor and donor are taken to extend
2 nucleotides into the adjacent exon, and can be up to a
maximum length of 22 nucleotides. During prediction,
the lengths of these states is fixed. The maximum intron
size is set as 10% longer than the longest intron evi-
denced by the transcript alignment, unless this value is
greater than 5,000, in which case the maximum is limited
to 5,000. The user can choose to disable the intron model
length restrictions of CodingQuarry in order to allow it to
be used for species with longer intron lengths.
In prediction from transcript sequences (stage 1), the

location of introns is inferred from the transcript to gen-
ome alignment, and the assembled transcript sequences
are used to model the UTRs. When predicting genes
from genome sequence in stage 2, RNA-seq data is also
incorporated in GHMM prediction, but in a different
way. Where there is supporting evidence from RNA-seq
data, the prediction of introns is restricted by the tran-
script alignment. Intron boundaries (donor and acceptor
sites) are disallowed in areas where there is an aligned
transcript sequence on the same strand. This restriction
is relaxed within 50 nucleotides of the transcript end,
where introns may be predicted ab initio, in the same
manner as in regions without evidence of transcription.
Introns are only allowed to occur where the first 2 nu-
cleotides of the intron donor and last two nucleotides of
the intron acceptor sites are GT and AG respectively.
After the stage 1 genes are used for training, certain

predicted genes that are likely to be inaccurate are dis-
carded and areas of the genome are selected for predic-
tion from genome sequence. Discarded stage 1 predicted
genes include single-exon genes and genes suspected to
be incomplete (described in detail below). The areas se-
lected for prediction from genome sequence are the
areas flanking the retained stage 1 genes, as well as loci
where alternative splice forms may exist. These steps,
and the motivation for them, are discussed in more de-
tail in the following paragraphs, and Figure 1, sections
D, E and F give examples and summarise this process.
Where an assembled RNA-seq transcript, aligned rela-

tive to the genome sequence, overlaps another assem-
bled transcript on the opposite strand, the transcript’s
predicted UTR can contain all or part of the coding se-
quence from the adjacent transcript on the opposite
strand. In stage 1, genes are predicted in a single direc-
tion in a single transcript, that is, although multiple
genes are permitted to be predicted in a single tran-
script, they must all be in the same direction. As a result,
where prediction from transcript sequences is carried
out on UTR regions containing coding sequence on the
opposite strand, we have observed a tendency to predict
small false-positive single-exon genes (see Figure 1, sec-
tion Div). This is because the reverse-complement of a
coding sequence has a slightly higher G:C content and
contains fewer stop codons than typically occur in
UTRs, therefore these regions are often a closer match
to the coding sequence model. This problem occurs
even more frequently when unstranded RNA-seq is used
and adjacent transcripts on opposite strands are assem-
bled into a single locus. To correct this, all single-exon
genes from stage 1 are discarded and predictions from
genome sequence are carried out in those regions. Al-
though single-exon genes are used for training, this is
restricted to coding sequences over 600 nucleotides so
that these small false-positives do not contaminate the
training set. When genes are predicted from genome se-
quence in step 2, the prediction is allowed to be on ei-
ther strand and these false-positive predictions therefore
do not occur, leading to better results.
Transcript assemblies are likely to contain some low

coverage, incomplete transcripts (Figure 1, section Bv).
Attempting to predict a complete gene from an incom-
plete transcript sequence can lead to errors due to ab-
sent start or stop codons (Figure 1, section Dv). If the
transcript is incomplete at the 3′ end and the gene’s stop
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codon is outside the transcript sequence then it is likely
that no gene will be predicted from the transcript. If the
5′ end of the transcript is incomplete then the predicted
gene will have an incorrect start codon, or be completely
missed (Figure 1, section Dv). In these circumstances, a
prediction from genome sequence is likely to be more
accurate. Where the open reading frame of a coding se-
quence predicted in stage 1 can be extended beyond the
bounds of the supporting assembled transcript, there is
the possibility that the assembled transcript sequence
and resulting predicted coding sequence are incomplete
at the 5′ end. Such genes are therefore identified as
genes that are suspected to be incomplete. Therefore,
the stage 1 prediction is removed and stage 2 genome-
based predictions are then carried out (Figure 1, sections
D-Fv). Any intron sites supported by the partial tran-
scripts will restrict the location of introns predicted in
step 2 and the gene prediction is thus operating as an
RNA-seq informed predictor, rather than completely ab
initio.
In an effort to identify alternate splicing during stage

2, if the removal of an intron can extend an ORF across
it without terminating at a stop codon, additional pre-
dictions from genome sequence in stage 2 are allowed in
these regions (Figure 1, sections D-Fiii). This process al-
lows correct predictions to be made where a transcript
has been assembled with a false-positive intron, or where
an alternatively spliced transcript retaining the intron se-
quence was not included in the transcript assembly, pos-
sibly due to low RNA-seq abundance.
In addition to correcting some of the inaccuracies in

gene prediction from transcript sequences, prediction
from genome sequence allows ab initio prediction of any
genes that were not expressed under the experimental
conditions used (Figure 1, sections ii and vii). Gene pre-
dictions of this kind are ab initio and therefore subject
to greater uncertainties. In light of this, the final outputs
of CodingQuarry make note of whether a final gene pre-
diction was derived from transcript (stage 1) or genome-
based (stage 2) prediction processes.

Post prediction filtering
The final stage of annotation that CodingQuarry carries
out is the removal of genes likely to be false-positive pre-
dictions. Any gene with a coding sequence that trans-
lates to less than 30 amino acids is removed from the
annotation. Where alternative splice variants are pre-
dicted, only variants with at least one unique intron, or
10 or more unique amino acids are retained. Finally, any
gene predicted overlapping a larger gene on the opposite
strand is removed where less than 20% of its coding se-
quence lies outside the bounds of the larger gene. As
discussed earlier, false-positive predictions of this kind a
common where transcripts overlap one another. While
nested genes of this kind are known to occur, they are
considered to be rare [51].

Gene discovery
Often one of the key interests of RNA-seq studies for
annotation purposes is to discover previously unanno-
tated genes in areas with evidence of transcription. For
example, laterally transferred genes, which are of high
relevance in fungal genomics [52,53], may be missed in
homology or GHMM-based predictions due to a lack of
homologs in closely related species or atypical codon
usage patterns. To assist in this process, CodingQuarry
forces a gene prediction in transcripts that have no over-
lapping gene prediction after the complete annotation
run. This uses the same hidden Markov model as in
stage 1, however the probability of a state transition to a
non-coding transcript state is set to zero. These genes
are not intended to be included in the main set of pre-
dicted annotations and are output separately as a set of
“dubious” genes. Further efforts to verify which of these
genes are genuine could include searches for pfam/anti-
fam domains [54,55], blast searches to databases or ex-
perimental verification. However, this set is certain to
contain a high proportion of false-positive genes, in part
due to open reading frames occurring by chance within
non-coding transcripts.

Merged transcripts
One of the final outputs of CodingQuarry reports the
IDs of assembled transcripts suspected to be instances
of transcripts merged in assembly due to overlapping
UTRs. This output is based on the genes predicted by
CodingQuarry, and reports the number and DNA strand
orientations of the theoretical constituent transcripts.
Reporting the orientation is important for unstranded
RNA-seq data, where instances of sense-antisense (S-AS)
overlap between UTRs can lead to transcripts on opposite
strands assembling into single loci.

Training and running other gene predictors for
benchmarking
Comparisons were made with AUGUSTUS [9,10,14],
and TransDecoder [56]. AUGUSTUS (using hints) and
TransDecoder both leverage RNA-seq data and as such
have comparable features with CodingQuarry. Though
GeneMark-ET also uses RNA-seq data to assist annota-
tion, comparisons were not possible at the time of sub-
mission due to its application to fungi being under
development. It is important to note that GeneMark-ET
uses RNA-seq data to assist in automated training, ra-
ther than to also subsequently inform and influence
predictions.
AUGUSTUS was trained using the online training ser-

ver [57] taking a FASTA file of assembled transcripts (in



Table 1 Comparisons between predictions and high-
confidence gene sets for Sc. pombe and S. cerevisiae

Nucleotide Exon Intron Gene

Sn Sp Sn Sp Sn Sp Sn Sp

Sc. pombe (1898/5124 genes in high-confidence set)

CodingQuarry 99.3 99.7 93.4 93.6 94.5 96.7 91.3 89.0

AUGUSTUS 99.2 99.1 92.0 91.4 95.7 92.6 86.9 88.9

TransDecoder 95.4 99.3 84.5 86.3 88.5 97.0 80.2 73.5

S. cerevisiae (5206/6575 genes in high-confidence set)

CodingQuarry 99.2 99.8 90.0 90.0 79.0 67.6 90.4 91.1

AUGUSTUS 97.5 99.7 84.7 90.9 74.4 77.0 85.0 91.5

TransDecoder 92.2 99.5 79.9 74.8 73.9 67.4 80.1 68.0

Sensitivity (Sn) is the proportion of a given feature (nucleotides/exons/introns/
genes) in the high-confidence set that are correctly predicted. Specificity (Sp)
is the proportion of features in the predicted set that are correct. Sensitivity
and specificity calculations for nucleotides are made on nucleotides within
coding regions. Further descriptions of these measures are given in the
Implementation subsection titled “Quantifying prediction results”. The highest
scores in each column for Sc. pombe and S. cerevisiae are shown in boldface.
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this case from TopHat-aligned RNA-seq read coverage
generated by Cufflinks) and the genome sequence as in-
put. This pipeline uses PASA [17] to generate a training
set of genes from the transcript data, aligns the tran-
scripts to the genome and uses hints generated from the
alignment to assist in gene prediction. This pipeline does
not train an untranslated region (UTR) model from as-
sembled RNA-seq transcripts. Intron hints were also
generated directly from the read to genome alignment
generated by Tophat, however predicting with the hints
produced by the training server produced predictions
with better sensitivity and specificity when compared to
the accepted annotations, and these results were there-
fore used for comparisons with CodingQuarry.
TransDecoder predicts genes from transcript sequences

and uses the transcript-to-genome alignment to place pre-
dictions on the genome. Pfam domain searches are also
used by TransDecoder to support gene predictions. Trans-
Decoder was run using the TopHat/Cufflinks transcript as-
sembly as per the instructions on the cited web page [56].

Quantifying gene prediction accuracy
Measures of nucleotide, exon, intron and gene sensitivity
and specificity, as described by Burset and Guigo [58],
were used to compare the high-confidence sets with the
various predictions. Sensitivity is the proportion of a
given feature (nucleotides/exons/introns/genes) in the
high-confidence set that are correctly predicted. Specifi-
city is the proportion of features in the predicted set that
are correct (i.e. exactly match the high-confidence set).
A correct nucleotide prediction was defined to be a nu-
cleotide within a predicted coding region that is also
within a coding region of the high-confidence set. An in-
correct nucleotide prediction was defined to be a nu-
cleotide within a predicted coding region that is within
an intron or intergenic region in the high-confidence
set. A correct exon/intron was defined to be where the
exon/intron boundaries in the predicted set were an
exact match to the exon/intron boundaries in the high-
confidence set. An incorrect exon/intron was defined to
be where the exon/intron boundaries in the predicted
set did not exactly match one of the exons/introns in the
high-confidence set. A gene was defined to be correctly
predicted if the gene was exactly the same as in the high-
confidence set, and incorrect if the high-confidence set
did not contain gene that matched exactly.
Where comparisons were made with the full set of

genes in the annotation, all genes in the prediction and
in the annotation were used to calculate the values of
sensitivity and specificity. Where comparisons were made
with the high-confidence annotation subsets, the region
over which each of these values were calculated was
bounded by the high-confidence set gene boundaries, and
any overlapping gene in the predicted set.
Results and discussion
Sensitivity and specificity values were calculated at the
nucleotide, exon, intron and gene-level for Coding-
Quarry predictions and predictions made by TransDeco-
der and AUGUSTUS. Comparisons were made between
predictions and high-confidence subsets (Table 1), and
the full sets (Table 2) of Sc. pombe and S. cerevisiae gene
annotations. CodingQuarry can be seen to outperform
the other gene predictors in many of the measures. Im-
pressively, CodingQuarry achieved a ~90% gene-level
sensitivity when comparing predictions with the high-
confidence subsets. This means that CodingQuarry
predicts around 90% of the high-confidence set genes
perfectly, which is around 4-5% more than the next best
gene-level sensitivity result, belonging to AUGUSTUS
(with hints), and around 10% better than TransDecoder,
which also makes predictions from transcript sequences.
An important consideration is that although both

CodingQuarry and AUGUSTUS both use GHMMs,
CodingQuarry operates very differently to AUGUSTUS.
The main difference is that CodingQuarry combines pre-
dictions made initially from transcript sequences to-
gether with predictions from genome sequences. We
assert that this is an important point in favour of
CodingQuarry being considered for wider incorporation
into automated annotation pipelines. Consensus between
the predictions of different programs/tools can strengthen
the confidence in the gene structure, particularly where
genes are predicted by different methods. For example,
CodingQuarry and AUGUSTUS predict 4,294 genes Sc.
pombe genes identically, 95.0% of which exactly match the
Sc. pombe annotation. In the case of S. cerevisiae, Coding-
Quarry and AUGUSTUS predict 4,813 genes identically,
95.4% of which are correct. This demonstrates that these



Table 2 Whole-genome comparisons between predictions
and current Sc. pombe and S. cerevisiae annotations

Nucleotide Exon Intron Gene

Sn Sp Sn Sp Sn Sp Sn Sp

Sc. pombe (all 5124 genes)

CodingQuarry 98.6 98.9 90.3 89.4 92.6 95.2 87.5 83.0

AUGUSTUS 98.0 99.3 89.0 90.6 94.2 92.7 83.1 87.7

TransDecoder 93.4 99.2 80.8 85.4 85.3 96.6 76.3 72.5

S. cerevisiae (all 6575 genes)

CodingQuarry 97.2 99.5 76.1 87.2 64.4 65.8 76.6 88.3

AUGUSTUS 95.4 99.6 71.1 88.9 60.5 69.3 71.5 89.8

TransDecoder 87.8 99.7 67.1 75.0 60.5 70.1 67.8 68.0

Sensitivity (Sn) is the proportion of a given feature (nucleotides/exons/introns/
genes) in the annotation that are correctly predicted. Specificity (Sp) is the
proportion of features in the predicted set that are correct. Sensitivity and
specificity calculations for nucleotides are made on nucleotides within coding
regions. Further descriptions of these measures are given in the Implementation
subsection titled “Quantifying prediction results” The highest scores in each
column for Sc. pombe and S. cerevisiae are shown in boldface.
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subsets of genes have a higher specificity than either of
the programs do individually, and can be considered
higher confidence. If gene predictors operate in very simi-
lar ways, the fact that predictions agree is less significant.
The improved accuracy of CodingQuarry over alterna-

tive gene predictors is not achieved through protein
homology-based prediction or refinement. Accurate
gene predictions are therefore achievable when reliable
sets of homologous proteins are not available. Such situ-
ations can arise when considering newly sequenced
fungi, where closely related fungal species have not been
sequenced or well annotated. However, if reliable hom-
ology evidence is available, CodingQuarry’s results have
the potential to be further refined and improved by
post-prediction annotation tools that merge predicted
annotations with multiple sources of supporting evi-
dence, such as EVidenceModeller [7] or Maker2 [19].
The closest competitor to CodingQuarry is AUGUSTUS,

which derives all its gene predictions from genome se-
quences. However, when predicting genes from gene-
dense genomes, the short intergenic distances make it
possible for an intergenic region between two adjacent
genes to be falsely annotated as an intron thus predicting
a single merged gene where there should be two or more
separate genes. We observed 32 and 25 instances of this
in the AUGUSTUS predicted gene sets for Sc. pombe and
S. cerevisiae respectively. When predicting directly from
transcript sequences with CodingQuarry this is unlikely to
occur, as introns are not predicted during stage 1 and ad-
jacent genes would therefore need to be separated by an
ORF to be falsely predicted as a single gene. As such, we
see just one case of this error occurring in CodingQuarry
predictions for S. cerevisiae, and two for Sc. pombe. This
demonstrates an advantage to using CodingQuarry when
annotating gene-dense fungal genomes. Notably, this ad-
vantage is also observed for TransDecoder, which also
predicts from transcript sequences, with no cases of this
error in the S. cerevisiae prediction and just one in Sc.
pombe. However, TransDecoder achieved a much lower
overall quality of prediction, with a ~10% lower sensitivity
and ~10-20% lower specificity than CodingQuarry when
compared to the high-confidence subsets and full sets of
annotations (Tables 1 and 2). TransDecoder is intended to
be used as part of a prediction pipeline and generates a set
of genes to be used for training gene predictors. It is im-
portant to note that for its intended purpose, TransDecoder
performs extremely well. However, based on the results
shown in Tables 1 and 2, CodingQuarry was able to gener-
ate a larger and more accurate training set of genes.
As explained in the methods section, the predictions

made by CodingQuarry are a combination of predictions
from transcript sequences (stage 1), and predictions made
from genome sequence (stage 2). A filtering step then
removes genes likely to be false-positive predictions. The
gene-level sensitivity and specificity of CodingQuarry,
when compared to full Sc. pombe datasets, after each of
these stages is displayed in Figure 2A. Figure 2A shows
that the initial step of creating a training set using the lon-
gest ORF in each transcript has low values of sensitivity
and specificity. An ~8% gene-level sensitivity and ~6%
specificity improvement to predictions is made in stage 1,
where these annotations are replaced by GHMM pre-
dicted genes. Part of the reason for this is that during
stage 1, multiple genes predictions are allowed to be made
within a single transcript, allowing a large number of
genes residing in incorrectly “merged” transcripts to still
be predicted. The second prediction stage again results in
a jump in prediction accuracy, this time improving the
gene-level sensitivity by ~8% and specificity by ~2%. This
is due to the addition of genes predicted ab initio in re-
gions without RNA-seq transcript coverage and the pre-
diction of genes in regions where the transcript assembly
is incomplete. Single-exon genes are also re-predicted
stage 2. The final filtering step gives the final output
CodingQuarry prediction. This step serves to improve
specificity via the removal of false-positive genes, and
therefore had little effect of the gene-level sensitivity
(Figure 2A).
We observed variation in the accuracy of gene predic-

tions made by all assessed gene predictors when com-
paring the results for Sc. pombe with those for S.
cerevisiae. Fungal species have many complex differences
relating to characteristics such as the number and size of
introns [32], prevalence of alternative splicing [59], and
gene density [60]. It is therefore reasonable to expect
that gene prediction accuracy may vary across differing
fungal species, and this can be seen in occurring in other
published studies [15]. For predictions generated by
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Figure 2 Changes in CodingQuarry prediction accuracy at various stages of prediction of Sc. pombe genes. The gene-level sensitivity and
specificity is shown at various stages (See Figure 1 and Methods) within a CodingQuarry run. Results show comparisons with Sc. pombe where
A) (left-hand panel) RNA-seq data strand information was used and B) (right-hand panel) strand information was ignored. Longest ORF is the
initial training set, found by taking the longest open reading frame in each transcript to be a gene, stage 1 predictions are made from transcript
sequences, stage 2 adds to and replaces some of stage 1 predictions by predicting from genome sequence. Filtering of likely false-positive genes
(see Implementation section) takes place before a set of predicted genes is output as the “final output”. This output is the annotation generated
by CodingQuarry.
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CodingQuarry, a possible explanation is the contribution
of RNA-seq evidence and how this could influence pre-
diction accuracy. In the case of Sc. pombe, around 84%
of the predicted genes result from a stage 1 transcript
based predictions. However, the stage 1 component of
the predicted genes is around 5% lower in S. cerevisiae.
As these predictions RNA-seq driven, they are expected
to be higher confidence, and it is therefore reasonable to
expect the results to be better for Sc. pombe than S.
cerevisiae.
Although stranded RNA-seq data is now readily avail-

able, a large quantity of non-stranded RNA-seq data is
publically available. It is therefore important that Coding-
Quarry can deal with transcript assemblies resulting from
either stranded or unstranded RNA-seq. Figure 2 shows
gene-level sensitivity and specificity of S. pombe gene
predictions made at stages within CodingQuarry with
RNA-seq data where stranded information was ignored
(Figure 2B), and where stranded information was included
(Figure 2A). Gene level sensitivity and specificity for
CodingQuarry’s final output predictions on Sc. pombe
were less than 1% and 2% different between unstranded
and stranded runs (respectively) (Figure 2). This result
supports of the efficacy of CodingQuarry in overcoming
issues in unstranded RNA-seq datasets. Comparisons be-
tween Figure 2A and B show that CodingQuarry predic-
tions using the unstranded transcript assembly showed a
~25% improvement in gene level sensitivity going from
stage 1 to stage 2 – further supporting the validity of the
various processes employed in stage 2 to correct for
annotation errors. We surmise that this is a direct result
of sense-antisense (S-AS) transcript overlap resulting in
merged transcripts composed of transcripts on opposite
strands. This confounds prediction from transcript se-
quence, where genes are expected to be in the same direc-
tion as the transcript. As explained in the methods
section, and evident from Figure 2A, this is corrected in
stage 2 leading to comparable final outputs.
CodingQuarry reports on assembled transcripts which,

according to the coding sequence predictions, may be
multiple transcripts merged together in the assembly
process. Where stranded RNA-seq is used, this is only a
problem for overlapping transcripts on the same strand.
For the Sc. pombe stranded RNA-seq experiment, there
were 507 instances reported by CodingQuarry of likely
transcript fusions. Of these, 64 were suspected to be the
result of fusion of more than 2 transcripts. For S. cerevi-
siae there were more fusions detected: 1,060, with 452 of
those suspected to result from the fusion of more than 2
transcripts. Given that different organisms of the same
phyla can have very different gene densities and spacing,
the higher number of fusions present in the S. cerevisiae
transcript assembly is not surprising. Where transcripts
are assembled from unstranded RNA-seq, there is the
possibility of merged transcripts arising from S-AS
transcript overlap. Although the splice sites in the
transcript-to-genome alignment can help to separate these
transcripts, it remains a problem where one or more of
the transcripts align without introns. For Sc. pombe, the
version of the transcript assembly generated without using
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strand information contained 1,219 instances where one
transcript was suspected to be the fusion of multiple tran-
scripts. 630 of these were suspected to be instances of tran-
scripts fusions involving transcripts on opposite strands.
CodingQuarry has been designed for and tested on

fungal genomes. It achieves a higher level of accuracy
than competing methods by mixing predictions made
from assembled transcript sequences with predictions
made from assembled genome sequences. In theory,
changes to the intron model used for prediction to allow
the prediction of longer introns when predicting genes
from assembled genome sequence would allow Coding-
Quarry to be applied to higher eukaryotes. However, in
practice, the transcript assembly quality for RNA-seq
datasets from higher eukaryotes does not result in
enough correctly assembled full-length transcripts for
this method to be advantageous. The limitations of tran-
script assembly quality to gene prediction have been pre-
viously noted [8]. Examples of factors contributing to
this are the RNA-seq alignment/assembly being compli-
cated by larger introns, and a higher prevalence of alter-
native splicing, as discussed in the Background section
of this manuscript. It is therefore the opinion of the au-
thors that it is unlikely that CodingQuarry would deliver
similar improvement in genomes of higher eukaryotes as
in fungal genomes, however this is something that may
be explored in future studies.
CodingQuarry also outputs an additional set of “dubi-

ous” genes, as candidates for gene discovery. As de-
scribed in the methods section, these genes are forced
predictions in transcripts that, after running Coding-
Quarry steps 1 and 2, do not have an overlapping coding
sequence prediction. 632 “dubious” genes are predicted
for Sc. pombe, and 444 for S. cerevisiae. Of these, 25 and
16 overlap a gene in the annotation of Sc. pombe and S.
cerevisiae respectively in the same coding frame. BLAST
[61] was used to search for alignments between the pro-
tein sequences of dubious genes predictions with no
coding sequence shared with genes in the annotation,
and NCBI’s non-redundant database. Seven of these Sc.
pombe genes aligned to an entry in nr with a protein
level identity of 40% or better and e-value less than 10−5.
Of these, six lay completely within a gene annotation on
the opposite strand. For S. cerevisiae, 21 novel genes
aligned to an entry in nr with a protein level identity of
40% or better and e-value better than 10−5, 10 of which
lay completely within a annotated gene on the opposite
strand. This result can either be viewed as the possibility
of unannotated proteins in the test genome annotations,
or, possible contamination of the nr database with trans-
lated sequences from non-coding RNA. We hope that
this feature will assist researchers in gene discovery,
however these predictions should be treated cautiously
and we do not recommend their inclusion in a formal
annotation dataset or submitted to databases without
further validation.

Conclusions
We have demonstrated the success of our method of
using RNA-seq derived data in GHMMs for fungal gene
prediction. For researchers studying the genomes of
newly sequenced fungi, for which protein homology re-
sources are absent or unreliable, CodingQuarry can be
used as a single step in predicting protein-coding gene
sequences with high accuracy. For more detailed annota-
tion efforts, CodingQuarry offers an appropriate starting
point for further refinement of annotations with add-
itional supporting evidence.
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