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Abstract

Background: Histone epigenome data determined by chromatin immunoprecipitation sequencing (ChIP-seq) is used
in identifying transcript regions and estimating expression levels. However, this estimation does not always correlate
with eventual RNA expression levels measured by RNA sequencing (RNA-seq). Part of the inconsistency may arise from
the variance in RNA stability, where the transcripts that are more or less abundant than predicted RNA expression from
histone epigenome data are inferred to be more or less stable. However, there is little systematic analysis to validate
this assumption. Here, we used stability data of whole transcriptome measured by 5′-bromouridine immunoprecipitation
chase sequencing (BRIC-seq), which enabled us to determine the half-lives of whole transcripts including lincRNAs, and
we integrated BRIC-seq with ChIP-seq to achieve better estimation of the eventual transcript levels and to understand
the importance of post-transcriptional regulation that determine the eventual transcript levels.

Results: We identified discrepancies between the RNA abundance estimated by ChIP-seq and measured RNA expression
from RNA-seq; for number of genes and estimated that the expression level of 865 genes was controlled at the
level of RNA stability in HeLa cells. ENCODE data analysis supported the idea that RNA stability control aids to
determine transcript levels in multiple cell types. We identified UPF1, EXOSC5 and STAU1, well-studied RNA
degradation factors, as controlling factors for 8% of cases. Computational simulations reasonably explained the
changes of eventual mRNA levels attributable to the changes in the rates of mRNA half-lives. In addition, we
propose a feedback circuit that includes the regulated degradation of mRNAs encoding transcription factors to
maintain the steady state level of RNA abundance. Intriguingly, these regulatory mechanisms were distinct between
mRNAs and lincRNAs.

Conclusions: Integrative analysis of ChIP-seq, RNA-seq and our BRIC-seq showed that transcriptional regulation and
RNA degradation are independently regulated. In addition, RNA stability is an important determinant of eventual
transcript levels. RNA binding proteins, such as UPF1, STAU1 and EXOSC5 may play active roles in such controls.

Keywords: BRIC-seq, ChIP-seq, Integrative analysis, Next-generation sequencing, RNA stability, Estimation of
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Background
The eventual RNA transcript level of a gene is deter-
mined by regulation at multiple levels, including tran-
scriptional initiation, elongation, splicing, export and
degradation. Transcription initiation is regulated by
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complex interactions of sequence features, many of
which involve chromatin modifications [1]. Although it
is still unclear whether chromatin modifications are the
cause or consequence of transcription, these chromatin
modifications are often used to infer transcriptional
regulation. The chromatin modifications include several
types of histone modifications, such as H3K4 tri-
methylation (H3K4me3), which is often observed around
the transcriptional start sites of actively transcribed tran-
scripts [2,3]. In several large-scale projects they often
used H3K4me3 sites as markers for active transcription,
which allowed the characterization of transcriptionally
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active regions and estimation of transcript levels in a
given cell at a given state [4]. This partly reflects the fact
that advances in next generation sequencing have en-
abled easy characterization of the sites bound by
H3K4me3 sites using chromatin immunoprecipitation
sequencing (ChIP-seq) [5]. Indeed, a recent ENCODE
study conducted a large number of ChIP-seq experi-
ments in difference cell types. There have been several
papers that modeled gene expression levels from chro-
matin features [4,6,7]. It is evident that ChIP-seq data is
not sufficient enough to model the steady-state RNA ex-
pression levels for a number of genes, and regulatory
mechanisms other than transcription initiation needs to
be considered to understand the RNA expression.
RNA degradation is regulated by degradation factor,

such as UPF1, EXOSC5 and STAU1, through RNA-
protein and protein-protein interactions. UPF1 is an es-
sential mediator in nonsense-mediated mRNA decay
(NMD), in which aberrant RNA containing a premature
stop-codon (PTC) is recognized and degraded [8-10]. In
addition, recent genome-wide analyses by microarrays
and RNA-seq have suggested a regulatory role for UPF1
in targeting 3-20% of bona fide mRNA with full coding
potential [11-15]. UPF1 is involved in other degradation
pathways such as the Staufen1-mediated mRNA decay
(SMD) and replication-dependent histone mRNA decay
[16,17]. It was proposed that approximately 1% of
human mRNAs are regulated by Staufen1 (STAU1), sug-
gesting that SMD constitutes a significant post-
transcriptional regulatory pathway [18]. EXOSC5 is the
essential component of the exosome complex, which
functions in 3′ – 5′ RNA degradation [19,20]. However,
even for these well-known factors, it is still unclear as to
what extent they effect the eventual transcript levels.
In this study, we generated and integrated a dataset of

BRIC-seq [21,22], RNA-seq and ChIP-seq, in order to
uncover the contributions of RNA decay in determining
eventual genome-wide transcript levels [23]. In BRIC-seq,
the half-lives of transcripts are measured using 5′-
bromouridine (BrU) based in situ labeling of RNA. BrU
added in culture medium is incorporated into cells, which
convert it to BrUTP. It is incorporated into nascent RNA
during transcription, and consequently, endogenous RNAs
are labeled with BrU. BrU-labeled total RNAs are isolated
from cells at sequential time points after removal of sur-
plus BrU from the culture medium. BrU-labeled RNAs are
Table 1 Statistics of H3K4me3 ChIP-seq peaks against gene e

Total

Number of Genes 18,853

Genes having RNA level of >1 RPKM 10,421

Genes having RNA level of >10 RPKM 4,848

Peaks were called using MACS and “peak present” represents genes with H3K4me3
represents genes without any H3K4me3 or pol II peaks within 1.5 kb of the TSS.
recovered by immunopurification followed by analysis by
massive sequencing. By this method, we can avoid artificial
effects of the traditionally used transcriptional inhibitor,
such as actinomyicin D, method, in which the physiology
of the cell is known to be greatly affected [22]. Although
5′-ethynyl uridine labeling and 4′-thiouridine labeling
methods have been used for measuring the transcriptome
stability, these nucleotide analogues are more toxic than
BrU. BrU therefore has an advantage to determine RNA
stabilities in physiologically non-disturbed conditions. It
has been known that the RNA abundance does not neces-
sarily correlate with their transcription rates; however the
reasoning behind the lack of correlation, have not been
well characterized. Here we identified genes that have low
RNA abundance that could be explained by a particular
RNA half-life. In addition, with the aid of computational
simulation, we identified genes with RNA abundance that
was mediated by changes in RNA stability by RNA decay
factors: UPF1, EXOSC5, and STAU1.

Results
Correlation between ChIP-seq and RNA-seq data
First we analyzed the relationship between levels of the
transcripts and the strength of active chromatin marks
by performing ChIP-seq (chromatin immunoprecipita-
tion) analysis of H3K4me3 and pol II on the Illumina
HiSeq2000 platform. ChIP-seq peaks were called using a
representative analytical program, MACS [24], using the
default parameters (false discovery rate of p < 10−5). For
the transcript levels, we used RNA-seq to determine the
genome-wide gene expression in HeLa cells and we ana-
lyzed RNA-seq by modeling the gene to the Refseq gene
model (for statistics, see Additional file 1: Figure S1).
We identified a total of 11,116 (2,732 with low peak

and 8,384 with high peak) and 6,319 genes that pos-
sessed H3K4me3 and pol II “peak”, respectively, within
the 3 kb regions around transcriptional start sites
(+/−1.5 kbp, with transcriptional start sites designated as
0), out of 18,853 RefSeq genes analyzed (Table 1,
Additional file 1: Figure S1a and Additional file 2: Table
S1). In the cases where the peaks were not identified,
the ChIP-seq tags were mostly at the noise level; if peaks
were identified, we associated the signal intensities of
ChIP-seq of H3K4me3 and RNA-seq gene expression
levels (in RPKM) to the gene. We observed genes pos-
sessing more than 1 × 104 H3K4me3 sequence tags and
xpression

No peak Low Peak High Peak

7,737 2,732 8,384

957 1,808 7,656

175 600 4,073

and pol II peaks within 1.5 kb of the TSS (details in Methods). “No peak”
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pol II peaks (“high peaks” group showed RNA level of >1
and >10 RPKM in 7,656 (73.5%) and 4,073 (84.0%) cases,
among 10,421 and 3,069 genes with pol II peaks respect-
ively (Table 1 and Additional file 2: Table S1).
We quantitatively analyzed the correlation between

ChIP-seq and RNA-seq data for genes with ChIP-seq
“peaks”. As shown in Figure 1a, we observed a positive
correlation; mRNAs with higher expression levels were as-
sociated with higher ChIP-seq signal intensities, and we
observed Pearson’s correlation of R = 0.71 (p-value < 2.2 ×
10−16) with a log-transformed scatterplot (Figure 1b).
When we examined individual genes, it was often pos-
sible to observe active transcription with large
H3K4me3 ChIP-seq peaks, which is shown in Figure 1c.
In contrast, we observed a number of cases in which
RNA expression was insignificant, despite significant
chromatin marks, as shown in Figure 1d. A significant
population deviated from the straightforward expected
distributions in Figure 1b. When we set the threshold
of more than 1 × 104 for H3K4me3 ChIP-seq intensity,
presence of polII ChIP-seq and less than 10 RPKM for
RNA expression, we identified 2,861, genes (ChIP
(+)/RNA (−): upper left corner in Figure 1b) in which
significant levels of ChIP-seq peaks and low levels of
RNA-seq were detected, as shown in Figure 1d. In
addition, for 2,897 genes (ChIP (−)/RNA (+): bottom
right corner in Figure 1b), although ChIP-seq inten-
sities were less than 1 × 10−4 for H3K4me3 and no polII
ChIP-seq peaks were detected, RNA-seq indicated sig-
nificant RNA levels of more than 10 RPKM, as shown
in Figure 1e. Thus, we identified discrepancies between
the ChIP-seq data and the RNA-seq data for a signifi-
cant population of genes.

Correlation among half-lives of the transcripts, chromatin
marks and transcript levels
To examine the cause of the discrepancy, we focused
on mRNA stabilities. We used our unique method,
BRIC-seq, in which the nascent RNAs are labeled with
5′-bromouridine (BrU) and subjected to massive
sequencing analysis in a time-lapse manner. By calcu-
lating the number of BrU-labeled RNA tags that remain
in the population after a particular time duration,
BRIC-seq can be used to measure each RNA half-life at
a genome-wide level [21,22]. Detailed sequencing
statistics for representative cases are shown in Additional
file 1: Figure S1.
We examined the relationship between the eventual

mRNA levels and the half-lives for genes with ChIP-seq
“peaks”, which reflect active transcriptional initiation. In
these cases, we observed positive correlation (Figure 2a),
in which the half-lives of the transcripts were shorter in
proportion to the decreasing expression levels. However,
we detected no correlations between the half-lives of the
mRNAs with the ChIP-seq intensities (Figure 2b). These
results indicate that RNA stability may be a contributing
factor for the determination of eventual transcript levels.
Furthermore, the mRNA stability control is independent
of transcriptional initiation, which is inferred by chroma-
tin states.
Based on these observations, we speculated that con-

trol of the stability of mRNAs might play a pivotal role
in determining the eventual RNA levels, particularly in
case in which the ChIP-seq and RNA-seq data were in-
consistent (ChIP (+)/RNA (−) population in Figure 1b);
where, the transcript levels may be suppressed at a low
level, despite their active transcription, owing to fast
RNA turnover rates. To examine this possibility, we
compared the half-lives of mRNAs between gene groups
having H3K4me3 ChIP-seq intensities of more than 1 ×
104, a presence of polII ChIP-seq peak, with gene ex-
pression levels below 10 RPKM (ChIP (+)/RNA (−)) and
those with H3K4me3 ChIP-seq intensities higher than
1 × 104, with a presence of polII ChIP-seq peak and gene
expression values above 10 RPKM (ChIP (+)/RNA (+))
or those with H3K4me3 ChIP-seq intensities lower than
1 × 104, with a lack of polII ChIP-seq peak and gene ex-
pression values above 10 RPKM (ChIP (−)/RNA (+)),
genes that half-lives could be measured. As shown in
Figure 2c, we found that half-lives of the transcripts for
ChIP (+)/RNA (−) genes were significantly shorter than
those of ChIP (+)/RNA (+) genes (p value < 2.2 × 10−16)
and ChIP (−)/RNA (+) genes (p value < 2.2 × 10−16).
From the correlations between RNA-seq and ChIP-seq
as shown in Figure 1b, it was possible to infer the gene
expression levels from the ChIP-seq intensities for those
genes in which the RNA-seq and ChIP-seq were consist-
ent. When we examined genes for which gene expres-
sion values were within a 2 or 1.1 fold difference from
those expected from the ChIP-seq intensities (Figure 2d),
we observed narrower distribution of the mRNA half-
lives with a median value of 11.0 and 10.9 hours,
respectively (Figure 1c and Table 2). These half-lives of
ChIP (+)/RNA (+) genes may serve as the default half-
lives of those genes, and if genes do exhibit this particu-
lar mRNA half-life, the transcriptional initiation levels
should be the major determinants of the eventual tran-
script levels.
For further analysis into the correlation, we also

selected mRNA with ‘short’ half-lives, specifically a total
of 3,190 genes that had half-lives shorter than 4 hours.
From the default half-life of 10.9 hours, we observed the
standard deviation of the half-lives to be 3 hours, indicat-
ing that 4 hours was approximately the 95th percentile
confidence level. These particular mRNAs are highlighted
as red dots in Figure 2e. We observed the enrichment of
mRNAs with short half-lives in the ChIP+/RNA- fraction
of the scatterplot (P-value = 6.8 × 10−16), in which gene
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Figure 1 Relationship between chromatin marks and eventual transcript levels. (a) Boxplot of the intensities for the ChIP-seq peaks of
H3K4me3. Intensities are plotted for the populations with different expression levels measured by RNA-seq and are indicated on the x-axis (Gene
Expression Values). Asterisks indicate statistically significant differences, as evaluated by Wilcoxon’s singed rank test (P-values, ***P < 0.001).
(b) Scatterplot representing the ChIP-seq peak signal intensities of H3K4me3 on the y-axis and gene expression values on the x-axis (n = 6,105).
Pearson’s correlation co-efficiencies of the plots (R = 0.71) are also shown in the graph area. Dotted lines on the x-axis show 10 RPKM and
y-axis show 1 × 104 H3K4me3 intensities. Labels on each quadrant of the graph (e.g., ChIP (+) / RNA (−)) are the names given to these set of
genes, and are used continually throughout this manuscript. (c, d, e) Graphical representation of the patterns of ChIP-seq (H3K4me3 and pol
II) and RNA-seq data for the RSP8 gene (c), PTGS2 gene (d) and NES gene (e). Arrows indicate the direction of transcription and N/A indicates
the lack of recognized peaks by MACS. Note that while the ChIP-seq of H3K4me3 and pol II consistently indicate active gene expression of
RSP8 and PTGS2 genes, essentially no gene expression was observed for PTGS2 (d). For the NES gene, RNA-seq tags were observed despite
the lack of ChIP-seq signals of H3K4me3 and pol II.
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expression values were lower than estimated by ChIP-seq
data. These results suggest that control of mRNA stability
is an important factor in determining the eventual mRNA
levels for this population and indicate that the expression
levels of these 866 genes may be controlled by mRNA
stability in HeLa cells (see Additional file 2: Table S2). For
validation, we used actinomycin D (ActD), a transcrip-
tional inhibitor, and chased the RNA decay by RT-qPCR
(Additional file 1: Figure S2). BAMBI and MED26 RNA
half-lives (defined in BRIC analysis as ChIP(+)/RNA
(−)/short RNA half-life) determined by BRIC analysis
were similar to those determined by ActD analysis. The
transcripts of MMP2 and SLC25A23 (defined in BRIC
analysis as ChIP(−)/RNA(+)/long RNA half-life) were
determined as stable RNAs in both BRIC and ActD
chase analyses. In contrast, the RNA half-lives of
ZNF691 and ZNF574 slightly varied between BRIC
and ActD chase analyses. Thus, most RNA stabilities
determined by BRIC analysis were confirmed by ActD
chase analysis.
To analyze the categories of genes that receive regula-

tion at either transcriptional initiation or RNA half-life
levels, we ran GO enrichment analysis. Among the ChIP
(+)/RNA (+) genes, GO terms associated with basic
translation or transcriptional machineries were enriched
(Table 3a). For the ChIP (−)/RNA (+) genes, genes associ-
ated cytoplasm as a location were enriched (Table 3b), and
for the ChIP (+)/RNA (−) genes, GO terms associated
with transcription factors were enriched, particularly
among genes with a short half-life (t1/2 < 4 h) (Table 3c-d).
These results suggest that different functional categories
of genes are subjected to different modes of gene expres-
sion regulation.

Identification of UPF1, EXOSC5 and STAU1 as controlling
factors for RNA stabilities
To evaluate the potential contribution of known RNA
degradation factors to the control of global RNA sta-
bility, we chose three representative factors for ana-
lysis: UPF1, EXOSC5, and STAU1. It has been
reported that UPF1 regulates 3–20% of transcripts
[11-13], highlighting the potential importance of UPF1
in regulating RNA degradation and abundance.
EXOSC5 is an essential component of the exosome
complex that is the major mRNA degradation machin-
ery in mammalian cells. To analyze the alteration of
global mRNA turnover by perturbation of representa-
tive factors, we examined EXOSC5. STAU1, which reg-
ulates around 1% of bona fide mRNAs [18], is a typical
RNA-binding protein involved in RNA degradation.
We used data from BRIC assay in the cells depleted in
UPF1 by siRNA (see Methods for accession numbers).
As observed in a previous study [23], mRNA levels of
the GADD45A gene, which is a known target of UPF1,
were increased following UPF1 knockdown (Figure 3a),
with an increase in half-life (Figure 3d). We then con-
ducted similar experiments using EXOSC5 and STAU1
knockdown cells and prepared a similar RNA-seq and
BRIC-seq dataset. We observed an increase of
FAM120C mRNA levels (Figure 3b) and an increase in
half-life (Figure 3e) in EXOSC5 knockdown cells. In
STAU1 knockdown cells, the mRNA levels of CDKN2B
were increased (Figure 3c), with increased half-lives
(Figure 3f).
We next looked for genes that may be regulated by

these factors, and identified 266, 219 and 39 genes where
the mRNA half-lives were extended by more than two-
fold (in UPF1 and EXOSC5 knockdown cells) or 1.5-fold
(in STAU1 knockdown cells) and showed mRNA expres-
sion increase by two-fold (in UPF1 and EXOSC5 knock-
down cells) or 1.5-fold (in STAU1 knockdown cells) in
UPF1, EXOSC5 and STAU1 knockdown cells, respect-
ively. As shown in Figures 3a, 3b and 3c, we noticed that
the transcripts that were not observed in the control
knockdown cells appeared in the knocked-down cells in
many cases. We examined the distribution of the dots of
these genes, whose transcripts were stabilized and in-
crease in corresponding knockdown cells, in Figure 1b
and found that they are enriched in the upper-left corner
of the plot. In total, we identified 23, 40 and 4 genes
(Additional file 2: Table S3) whose mRNA half-lives are
potentially controlled by UPF1, EXOSC5 and STAU1 re-
spectively, consisting of 3, 5, and 0.5% of the total of
1,279 genes (ChIP (+), RNA (−), half-life < 4 h) in this
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Figure 2 Relationships between RNA half-lives, transcript levels and chromatin marks. (a) Boxplot chart of the RNA half-lives of mRNAs of
varying expression levels. (b) Boxplot charts of the signal intensities for the ChIP-seq peaks plotted for gene populations with different RNA
half-lives, as indicated on the x-axis. (c) Boxplot chart of the half-life distributions in different ChIP-seq and RNA-seq fractions. Labels on the
x-axis refer to the quadrant from Figure 1b. For ChIP (+) / RNA (+), ‘total’ indicates the total transcripts, and ‘×2’ and ‘×1.1’ indicates all the
genes within 2-fold (green dots in Figure 2d) and 1.1-fold (red dots in Figure 2d) of the least squared regression line, respectively. Asterisks in
(a–c) indicate statistical significance by Wilcoxon’s signed rank test (P-values *P < 0.05, **P < 0.01, ***P < 0.001). (d) Scatterplot to show the distributions
of ChIP (+) / RNA (+) genes. Line is the least squared regression line. Red and green dots indicate genes within 1.1-fold and 2-fold of the least squared
regression line, respectively. (e) Scatterplot representing the ChIP-seq peak signal intensities of H3K4me3 on the y-axis and gene expression values on
the x-axis for transcripts with ChIP-seq peaks and measured half-lives (total n = 12,479). Genes having “short” (t1/2 < 4 h) half-lives (short n = 3190) are
indicated in red dots and were statistically significant (p-value 6.8 × 10−16). Dotted lines show the 10 RPKM and 1 × 104 peak intensities.
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area. We also examined the overlap between the genes
controlled by UPF1 and EXOSC5 and found little over-
lap (Table 4). Although we could identify UPF1,
EXOSC5 and STAU1 as control factors only for a lim-
ited population (8% of ChIP+/RNA-/t1/2 < 4 h genes) by
this approach. These observations are only the first step
in identifying the role of RNA decay factors in determin-
ation of RNA abundance through RNA degradation, and
further systematic analyses may facilitate identification
of the complex regulatory mechanisms of mRNA
stabilities.

Computational modeling of the effect of mRNA half-lives
on eventual mRNA levels
We predicted the RNA abundance by normalizing the
half-life to be 10.9 hours, the estimated default half-life
(from Figure 2c), and obtained the least squares regres-
sion line between the predicted RNA levels and
H3K4me3 intensities. We made a threshold of × 1.1
and × 2, above and below the least-square regression line
to define genes where the H3K4me3 intensities and
RNA abundance correlate. We found that out of 9,407
genes that were available from BRIC-seq dataset, we
found 2,593 and 242 genes that resided within × 2 and ×
1.1 of the regression line, respectively (Figure 4a and
Table 5). We checked the original gene expression of
those genes prior to the simulation, and checked
whether their measured RNA abundance correlates
with H3K4me3 intensities. We found out of 2,593 and
242 genes that resided within × 2 and × 1.1 of the re-
gression line from predicted gene expression, we found
1,540 and 229 genes where measured to be outside of
the threshold, respectively. It means that the RNA
Table 2 Statistics of the half-life associated with ChIP (−) and

Total ChIP(−) RNA(−) ChIP(−) RNA(+) C

Number of genes
with a RNA half-life

12,479 6,235 603 2

Median half-life nd nd 13.2 6

In Table 2, we only considered genes with compatible half-life measurements from
polII peak , ChIP(−): H3K4me3 intensities smaller than 1 × 104 and an absence of
than 10. For ChIP(+)/RNA(+) region; total: all genes, ×2: genes within two-fold of
nd: not determined.
stability of those genes contributed to the RNA abun-
dance. Taken together, these results collectively support
our claim that RNA degradation significantly contrib-
utes in determining the eventual expression levels
(Figure 4a).
Additionally, we conducted ChIP-seq on H3K27ac,

H3K27me3, H3K36me3 to build a linear model as de-
scribed by Wang, C., et. al. [7],. We built one linear
model incorporating H3K4me3, H3K27Ac, H3K27me3
and H3K36me3 intensities with half-life as an extra vari-
able, and one without the half-life, to explain the RNA
abundance. We found that fitting increased from 0.41 to
0.58 in R-value, which confirmed the previous finding by
Wang. et. al.,[7].
We examined whether the changes in the RNA half-

lives from knockdown of UPF1, EXOSC5 or STAU1
could explain the changes in the eventual transcript
levels. For this analysis, we conducted a computational
simulation. As shown in Additional file 1: Figure S3, we
found that the described theoretical model can predict
the changes of eventual RNA levels with Pearson’s cor-
relation co-efficiency of 0.8, 0.8 and 0.7, respectively.
Overall, we demonstrate that the simple computational
model could reasonably explain the changes of eventual
mRNA levels, thus supporting our idea that the major
determinant of the eventual RNA levels in these cases is
at the level of RNA stability. We further simulated the
RNA abundance, from the changes in RNA half-life, in
relation to the ChIP-seq signal levels and we found 439,
486, and 200 genes that were within × 1.1 of the regres-
sion line that lied outside of the threshold prior to simu-
lation, for UPF1, EXOSC5, and STAU1, respectively
(Figures 4b-d).
ChIP (+) genes

hIP(+) RNA(−) ChIP(+) RNA(+)
(Total)

ChIP(+) RNA(+)
(×2)

ChIP(+) RNA(+)
(×1.1)

,745 2,896 1,617 187

.0 11.6 11.0 10.9

BRIC-seq. ChIP(+): H3K4me3 intensities larger than 1 × 104 and a presence of
polII peak. RNA(+): RPKM value larger than 10, RNA(−): RPKM value smaller
the regression line, ×1.1: genes within the 1.1-fold of the regression line.



Table 3 List of GO enrichments for transcripts in different ChIP-seq and RNA-seq fractions

A) ChIP (+)/RNA (+) GO enrichment

GO:ID GO: term Number of genes False-discovery rate

GO: 0044822 poly (A) RNA binding 618 6.00e-261

GO: 0006412 translation 293 3.86e-196

GO: 0010467 gene expression 387 5.61e-162

B) ChIP (−)/RNA (+) GO enrichment

GO: ID GO: term Number of genes False-discovery rate

GO: 0005737 cytoplasm 138 2.26e-2

GO: 0070062 extracellular vesicular exosome 74 2.61e-2

GO: 0005635 nuclear envelope 15 2.81e-2

C) ChIP (+)/RNA (−) GO enrichment

GO: ID GO: term Number of genes False-discovery rate

GO: 0003677 DNA binding 378 2.96e-28

GO: 0006355 regulation of transcription, DNA-templated 266 4.44e-17

GO: 0006351 transcription, DNA-templated 361 8.60e-17

D) ChIP (+)/RNA (−)/half-life < 4 h GO enrichment

GO: ID GO: term Number of genes False-discovery rate

GO: 0003677 DNA binding 216 5.19e-58

GO: 0006351 transcription, DNA-templated 192 1.37e-37

GO: 0006355 regulation of transcription, DNA-templated 147 5.13e-34
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Possible feedback between mRNA turnover and
transcriptional initiation
To analyze the possible feedback mechanisms between
mRNA turnover and transcription initiation, we used
the genes in which both mRNA half-lives and eventual
transcript levels were increased more than two fold in
knockdown cells. In 975 and 6,309 genes in UPF1 and
EXOSC5 knockdown cells, respectively, there were no
significant changes in eventual transcript levels (within
two fold) observed despite remarkable changes to their
RNA half-lives (more than two fold). We speculated that
there might be a possible feedback between mRNA turn-
over and transcriptional rate. If mRNAs for a particular
group of transcriptional repression factors are included
in the UPF1/EXOSC5 targets and their stabilized
mRNAs result in increased protein levels of such tran-
scriptional repression factors, thereby enhancing the re-
pression activities on their target genes, it would explain
unchanged balance of eventual transcript levels for these
genes. We examined whether any transcription factor
binding sites were enriched in the upstream regions of
the 975 and 6,309 genes. In the case of UPF1, we de-
tected significant enrichment of the consensus binding
site for HIC1, which is a transcription factor belonging
to the zinc finger family. We validated the changes of its
expression level and half-lives in control and UPF1
knockdown cells, and confirmed HIC1 as a UPF1 target
(Additional file 1: Figure S3a). We were unable to fur-
ther validate direct binding of HIF1 to target genes,
since no effective antibodies are available. Also, it is pos-
sible that HIC1 may not be the only candidate, which
may contribute to the feedback regulation. Many zinc
finger family transcription factors share consensus bind-
ing sequences. The list of putative zinc finger family
transcription factors that have significant homology to
HIC1 in their DNA binding domains with extended
half-lives (e.g. ZNF783 shown in Additional file 1: Figure
S3b) and increased eventual transcript levels upon UPF1
knockdown are shown in Additional file 2: Table S3.
These factors may collectively enable elaborate regula-
tion of gene expression.
Identification of candidate genes controlled through RNA
stability in other cell types
To further extend our idea that controls at the level of
mRNA decay contribute to determining eventual mRNA
expression levels in other cell types, we analyzed the
published ENCODE data [25] and DBTSS [26], which
included ChIP-seq data of H3K4me3 and pol II and
RNA-seq in a wide variety of cell types. In addition, the
RNA-seq data of subcellular fractionated mRNAs were
included in the dataset. We selected eight cell types for
which all these datasets were available (details in
Additional file 1: Figure S4a). We retrieved and analyzed
the ChIP-seq data and RNA-seq data as performed with
HeLa cells. First, as shown in Additional file 1: Figure S6,
we observed weak correlations between ChIP-seq



Figure 3 Identification of UPF1, EXOSC5 and STAU1 as factors controlling RNA half-lives. (a–c) ChIP-seq and RNA-seq for the GADD45A
(a), FAM120C (d) and CDKN2B (c) genes, which showed significant changes in RNA half-lives in UPF1, EXOSC5 and STAU1 knocked-down cells,
respectively. Upper two panels in (a–c): ChIP-seq data for H3K4me3 and pol II. Lower two panels in (a–c): RNA-seq data for control cells and the
respective knockdown cells. (d–f) BRIC-seq normalized graph for GADD45A (d), FAM120C (e) and CDKN2B (f) genes in control cells or cells
knocked-down for UPF1 (d), EXOSC5 (e), and STAU1 (f). (g) Scatterplot representing the ChIP-seq peak signal intensities of H3K4me3 on the
y-axis and gene expression values on the x-axis with putative UPF1-controlled genes, EXOSC5-controlled and STAU1-controlled genes in blue,
green and red dots respectively.
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intensities of H3K4me3 and gene expression values as re-
ported in HeLa cells.
Since there were no BRIC-seq data in the ENCODE

dataset, we could not directly analyze the genes with
short mRNA half-lives. Nevertheless, we could select
genes for which ChIP-seq tags of H3K4me3 and pol II
were associated, thus indicated as actively transcribed in
the cell line, although their gene expression levels were
not at the expected levels. In the ENCODE dataset, we
also considered a positive signal of H3K36me3, which is
a chromatin mark for transcriptional elongation, to fur-
ther assure active transcription [27]. We identified an
average of 338 candidate genes with active transcription
and low RNA abundance in each cell type (Figure 5a),



Table 4 Summary statistics used for the analysis of RefSeq transcripts

Conditions (Refseq) Number of genes

Active transcription (supported by H3K4me3 and pol II peaks) and half-life measured 6,105

With short half-life (~4 h) 1,291

with low expression (10rpkm and below) and high H3K4me3 (1 × 104 and above) 866

and UPF1 target 26 (3.0%)

or EXOSC5 target 40 (4.6%)

or STAU1 target 4 (0.46%)
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which should be regulated at the level of mRNA decay.
We examined and identified GO terms that were signifi-
cantly enriched, depending on cell types, and the top
enriched terms were predominantly associated with
DNA binding (Figure 5b). We also analyzed whether
there are any cases for a particular gene to be selected as
such a candidate in a cell type-preferred manner. We
found that 2,705 potential controls at the level of RNA
half-life were observed in a single cell type (Additional
file 2: Table S5, Additional file 1: Figure S6). We also ex-
amined if there was possible feedback between controls
of RNA half-lives and transcription initiations. We found
that several transcription factor binding consensus se-
quences of the ETS family and AREBP family genes are
enriched in the promoters of the genes inferred to be
regulated at the level of RNA stability in Gm12878 cells
and HepG2 cells, respectively. In addition, we identified
HIC1 binding consensus sequences in the promoters of
the genes inferred to be regulated at the level of RNA
stability in human H1 embryonic stem cells. The feed-
back regulations may be common in various cell types
with distinct responsive transcription factors depending
on cell type (Figures 5c, d). We further analyzed the sub-
cellular localizations of the mRNAs of these genes using
the corresponding ENCODE data. We found signifi-
cantly enriched mRNAs in the cytoplasm only in the
embryonic stem cells (H1-hES) (p-value 6.5 x 10−18)
(Figure 5e), suggesting there may be a characteristic
regulatory mechanism for controlling RNA stability in
the cytoplasm of ES cells. On the whole, these data
should provide an important complement to the EN-
CODE annotations, which aim to generate a complete
catalogue of genetic elements explaining gene expression
regulation.

Distinct controls of the RNA stabilities of mRNAs and
non-coding RNAs
To examine whether the regulations at the level of RNA
half-lives are observed in lincRNAs, we conducted a
similar analysis for lincRNAs in HeLa cells, as shown in
Figures 1 and 2. We tentatively defined the dataset of
lincRNA as that of lincDB [28]. As shown in Figures 6a
and 6b, we associated the ChIP-seq peak intensities and
gene expression values. We unexpectedly observed
distinct patterns from those of mRNAs. Namely, among
141 lincRNAs in HeLa cells, 103 lincRNAs had “short
(<4 h)” RNA half-lives. Of these, 84 (82%) resided in the
upper-left corner of the plot, suggesting that most of the
lincRNAs are controlled at the post-transcriptional level.
Because there are reports on the possible involvement of
NMD in regulating non-coding RNA [29,30], we exam-
ined the possible involvement of UPF1 in the regulation
of lincRNAs. Interestingly, none of the 84 lincRNAs
were detected as potential UPF1-controlled transcripts.
In this data set, UPF1 may have only limited contribu-
tion. By contrast, we found 26 (31%) of the lincRNAs
(Table 6, Additional file 2: Table S3) were regulated by
EXOSC5.
We next examined whether enhancer RNAs (eRNA),

which facilitate the functions of the enhancers, are also
regulated at the level of RNA degradation. We again
used the ENCODE data from HeLa cells. We retrieved
the ChIP-seq data of H3K4me and H3K27Ac, which are
representative chromatin marks of active enhancers.
Among 49,903 genomic regions having “peaks” of both
H3K4me1 and H3K27Ac, we identified 77 cases in
which there were RNAs in the overlapping regions
(shown in Figure 6g), 1.5 kb away from any RefSeq gene
body and their RNA half-lives were extended by UPF1
knockdown by more than two fold in BRIC-seq assay.
Similarly, we identified 358 cases in which half-lives of
RNAs in overlapping regions were examined (shown in
Figure 6h, listed in Additional file 2: Table S6) and in
which transcripts showed extended RNA half-lives of
more than two-fold in EXOSC5 knockdown cells.
Although further detailed experimental validations are
necessary, these results may indicate that controls
mediated by RNA stability are used in determining the
transcript levels of non-coding RNAs.

Discussion
Here, we have described a genome-wide correlation
among the signal intensities of ChIP-seq, gene expres-
sion values measured by RNA half-lives measured by
BRIC-seq. We identified that regulation at the level of
RNA degradation plays an important role in determining
eventual RNA levels. We demonstrated that this control
may exhibit a particularly large effect in cases in which



Figure 4 Computational simulations of the RNA half-lives as a determinant for transcript level. (a) Computational simulation into the
effect of RNA half-life on RNA abundance. Each gene was simulated to have a half-life of 10.9 hours, potential default half-life, and the predicted
gene expression was plotted against the H3K4me3 intensities, along with the measured gene expression. The dotted line indicates the least-squares
regression line between the predicted gene expression and H3K4me3 intensities. (b-d) Result of the computational simulation of the predicted RNA
expression when each RNA abundance was predicted from RNA half-life when (b)UPF1, (c) EXOSC5 and (d) STAU1 were knocked-down, in comparison
to each control knock-down conditions. The predicted gene-expression of the decay factor knock-down and the measured gene-expression of control
knock-down were plotted against H3K4me3 intensities. The dotted line indicates the least-squares regression line between the predicted gene expression
and H3K4me3 intensities.
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the ChIP-seq data and RNA-seq data are inconsistent.
Indeed, in this study, we estimated that the abundance
of 866 mRNAs is regulated by RNA degradation in HeLa
cells. Furthermore, we applied similar approaches to
analyze the public ENCODE data and identified a total
of 2,705 candidate genes whose gene expression levels
are likely to be controlled at the level of RNA stability.
We also found that these controls appeared to vary
among cell types. To our knowledge, this is the first re-
port that describes the integration of the ChIP-seq,
RNA-seq and RNA half-life data in identifying genes
that may receive post-transcriptional gene expression



Table 5 Summary statistics of computational simulation

Condition t1/2=10.9 hours siUPF1 siEXOSC5 siSTAU1

Total 9407 9387 9852 9334

x2 predicted under condition (x) 2593 5408 2484 3753

of which was not within x2 in “measured” 1540 815 680 294

x1.1 under condition (x) 242 555 245 651

of which was not within x1.1 measured 229 439 200 486
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regulation. In GO analyses, there are some limitations
because GO terms may be loosely defined for a particu-
lar gene. However, we first selected GO terms with stat-
istical significance (FDR < 0.05), and we only used GO
term enrichment with more than 10 genes in a set to
ensure minimum false positives, which will ensure that
the GO terms described are representative of the bio-
logical phenomenon. We then found enrichment of
transcription factors in transcripts with discrepancies be-
tween the ChIP-seq and RNA-seq with short half-lives,
and in particular, negative regulatory factors. In a recent
study, Haimovich et al. [31] indicated that some RNA
degradation factors play a role in transcription, implicat-
ing a feedback loop for gene expression. Our data sug-
gest another mechanism by which this occurs, through a
faster degradation rate of mRNAs encoding transcription
factors, particularly for those that negatively regulate
gene expression, thus affecting the eventual RNA levels.
Previous studies conducted by Wang et. al., demon-
strated that RNA stability could in inferred from the
residual errors in modeling the RNA abundance from
ChIP-seq data and they validated their claims from a
half-life data; however, they used RNA stability data
from a different cell-line [7], and they could not accur-
ately predict the eventual RNA abundance from the
RNA stability. Herein, by analyzing RNA stability data
from the same cell-line as RNA-seq data, we were able
to estimate the contribution of the RNA stability to the
RNA abundance. In addition we were able to estimate
the RNA stability contributions on the RNA abundance
upon UPF1, STAU1 and EXOSC5 knockdown.
Although we did not demonstrate how the RNA half-

lives are controlled in the current study and we identi-
fied UPF1, EXOSC5 and STAU1 as control factors in
some cases, they could explain at most 8% of the total
mRNA population. Even for the cases of candidate
UPF1, EXOSC5 or STAU1-controlled genes, it is pos-
sible that they may not be direct targets of these factors
and that we may have picked up secondary or later
effects as a consequence of UPF1, EXOSC5 or STAU1
knockdowns. Another obvious drawback of our
approach is that mRNA half-lives were not directly
measured by BRIC-seq for the ENCODE dataset. There-
fore, it is possible that they may be mediated by other
regulatory mechanisms, rather than at the level of RNA
half-lives, such as RNA halting and abortive transcrip-
tions. To minimize these possibilities, we selected the
cases in which H3K36me3, a marker of transcriptional
elongation, should be significant in the transcript
regions.
In spite of several drawbacks, we believe that genome-

wide features of correlation among ChIP-seq, RNA-seq
and BRIC-seq should give an important starting point to
further explore posttranscriptional regulatory mecha-
nisms, for which only limited knowledge has been
accumulated. Indeed, recent papers have begun to reveal
many human diseases that are caused by malfunctions of
RNA decay pathway. In particular, it has been made
gradually clear that most immune-response mRNAs are
destabilized when they are not required via their cis-
regulatory elements in the 3′ UTR. It is proposed that
such RNA-decay mechanisms collectively enable rapid
up-/downregulation of gene expression in response to
environmental changes. The AU-rich element (ARE) is
one of such elements widely found in the 3′ UTR of
mRNA of immune-related genes. Mice lacking ARE in
the TNF-alpha mRNA showed joint and gut-associated
immunopathologies [32]. The trans-acting factor regula-
tory RNase 1 (Regnase-1, also known as Zc3h12a or
MCPIP1), which is induced by Toll-like receptor (TLR)
ligands, interleukin (IL)-1β and MCP-1, is involved in
the destabilization of mRNAs including Il6 mRNA.
Regnase-1-deficient mice develop severe autoimmune
disease because of excess production of cytokines [33],
highlighting the importance of RNA degradation-
mediated gene regulation. In addition to immunological
disorders, there are a growing number of cases with
impaired RNA decay regulation that cause disease, and
they sometimes reveal unexpected connections between
otherwise completely unrelated diseases. Perlman
syndrome, an autosomal recessively inherited congenital
overgrowth syndrome associated with high neonatal
mortality, is an obvious example. The survivors of this
disease have a high risk of Wilms tumor. Recently, it
was reported that the responsible gene of this disease is
the exoribonuclease DIS3L2, a homologue of exosome
component DIS3 [34,35]. Moreover, DIS3L2 is mutated
in approximately 3–6% of carcinomas [35].
In this study, we have also analyzed the stabilities of

non-coding RNAs (lincRNAs and eRNAs) and mRNAs.



Figure 5 (See legend on next page.)
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Figure 5 Screening of candidate genes that may be controlled at the level of RNA degradation from the ENCODE dataset. (a) Number
of candidate genes screened from the indicated cell types based on the ENCODE data. (b) Gene ontology (GO) enrichment of genes in the ChIP
(+) / RNA (−) regions in the indicated cell types based on the ENCODE data. ChIP-seq signal intensities were comparable between different cell
types, although RNA-seq-based gene expression values were remarkably different. The GO term enrichment with the lowest P-value for each cell
line is shown. (c, d) Enriched consensus transcription factor binding sites for genes in the ChIP (+) / RNA (−) region for ENCODE dataset. (c)
Graphical representation of the enriched consensus binding sites in the promoter regions of the genes in ChIP (+) / RNA (−) region for ENCODE
dataset. (d) The list of cell lines with consensus binding site enrichment from the TRANSFAC database. (e) The nuclear/cytoplasmic gene expression
values for the genes where RNA half-life may be the contributor to the RNA levels and all other genes in H1 human embryonic stem cells (hesc).
Statistical significance of the difference is indicated under the x-axis.
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We and another study reported that stability of non-
coding RNAs is also tightly regulated, suggesting that
the instability contributes to the dynamic nature of
lincRNAs [22,36]. Indeed, the stability of noncoding
RNAs has an impact on their biological function
[29,37-39], although the exploration into its relevance in
human disease has just begun. Further enrichment of
our knowledge on the control mechanisms on RNA sta-
bility both for mRNAs and non-coding RNAs will shed
new light on putative disease-associated genetic or som-
atic mutations.

Conclusions
By integrative analysis of ChIP-seq, RNA-seq and our
BRIC-seq, we showed that RNA half-life may serve as an
important post-transcriptional determinant of gene ex-
pression. We suggest that UPF1, EXOSC5 and STAU1
may play active roles in such controls. In addition, we
propose the linkage between transcription and RNA
decay through regulated degradation of mRNAs encod-
ing transcription factors to maintain the steady state
level of RNA abundance.

Methods
RNA-seq and BRIC-seq data for UPF1 were obtained
from a previous study [23]. The accession numbers for
the sequencing data are [DDBJ:DRA000591] and [DDBJ:
DRA001215]. ‘Basal’ RNA-seq libraries, EXOSC5 and
STAU1 knockdown RNA-seq libraries were sequenced
according to the standard protocol from mRNA-seq
Sample Preparation (Illumina, San Diego, CA). The out-
line of the experimental procedures is as follows.

Cell culture and siRNA transfection
HeLa cells were grown in Dulbecco’s Modified Eagle’s
Medium (DMEM) supplemented with 10% fetal bovine
serum and antibiotics at 37°C at 5% CO2 in a humidified
incubator. siRNAs were transfected (final concentration
10 nM) using Lipofectamine RNAiMAX (Invitrogen,
Carlsbad, CA), according to the instructions from the
manufacturer. Cells were harvested 72 h after the trans-
fection. The knockdown efficiencies were determined by
RT-qPCR (see Additional file 1: Figure S7). The sequences
of siRNAs are provided in Additional file 1: Figure S8.
RT-qPCR
The isolated RNAs were reverse-transcribed into cDNA
using the PrimeScript RT Master Mix (TaKaRa, Otsu,
Japan). The target cDNAs were amplified by SYBR Pre-
mix Ex Taq II (TaKaRa) according to the manufacturer’s
instructions, using the primer sets listed in Additional
file 1: Figure S8. GAPDH was used for normalization.
Quantitative real-time reverse transcription PCR analysis
was performed using a Thermal Cycler Dice Real Time
System (TaKaRa).

RNA-seq
Approximately 1 μg RNA was used to sequence an
RNA-seq library using the mRNA-seq Sample Prepar-
ation Kit (Illumina) according to the manufacturer’s
protocol. Thirty-six base pair single-end-read RNA-seq
were generated from the Illumina GA sequencer, accord-
ing to the standard protocol. The fluorescent images
were processed to nucleotide sequences using the ana-
lysis Pipeline software supplied by Illumina. The reads
mapping to the ribosomal RNA genes were removed.
The filtered sequences were mapped to the reference hu-
man genome (hg19) using Tophat (version 2.0.8) [40],
only allowing the reads to be processed if the reads were
compatible with the gene annotation files from the
RefSeq [41] and lincRNA [28] databases (downloaded on
2nd July 2013). For the enhancer RNA (eRNA) analysis,
Tophat (version 2.0.8) was used but without specifying
the annotation and allowing novel splice-junctions to
occur. Mapped reads were quantified using Cufflinks
(version 2.1.1) [42]. The transcript with the highest ex-
pression was used as a representative transcript for the
given gene and the RPKM values of all transcripts in the
same genes were added together to give RPKM values
for the gene.

BRIC-seq
BRIC was performed as previously described [21,22]. In
brief, cells were incubated at 37°C in the presence of
150 μM 5′-bromo-uridine (BrU) (Wako, Osaka, Japan)
for 24 h in a humidified incubator with 5% CO2. After
replacing BrU-containing medium with BrU-free
medium, cells were harvested at indicated time points.
Total RNA was isolated using RNAiso Plus (TaKaRa).



Figure 6 (See legend on next page.)
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Figure 6 Contribution of the RNA half-lives to transcriptional regulations of lincRNAs. (a, b) Scatterplot showing the relationships between
H3K4me3 intensities and gene expression for all lincRNA (a) and those that were BRIC-seq compatible (red dots: t1/2 < 4 h) (b). (c, d) Examples of
lincRNAs regulated by UPF1 (c) and EXOSC5 (d). Upper panels are H3K4me3 and pol II peaks, and lower panels are RNA-seq measurements for
the control and indicated knockdown. UPF1 (e) and EXOSC5 (f) show the normalized decay curve from the BRIC-seq measurements for these
examples. Red lines are siUPF1 (e, g) or siEXOSC5 (f, h) data, respectively and blue lines are si_control data. Enhancer RNAs (eRNAs) regulated by
UPF1 (g) or EXOSC5 (h). The label shows the genomic coordinates of these eRNAs (in hg19 build). These show normalized decay curves for the
BRIC-seq measurements for these examples as above.
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Twelve micrograms of BrU-labeled total RNA were de-
natured by heating at 80°C for 1 min and then added to
anti-BrdU mAb-conjugated beads containing 2 μg of
anti-BrdU mAb (clone 2B1, MBL). The mixture was in-
cubated at room temperature for 1 h with rotation.
Beads were washed four times with 0.1% BSA in PBS.
ISOGEN LS (Nippon Gene, Tokyo, Japan) was added,
followed by RNA isolation, according to the manufac-
turer’s instructions. The isolated RNA was used for deep
sequencing using the mRNA-seq Sample Preparation Kit
using the same protocol as RNA-seq. Data processing
was conducted by the identical procedures as the RNA-
seq method above. For BRIC-seq data without transfec-
tion, we used 13 time points to calculate half-life: 0 min,
15 min, 30 min, 45 min, 1 h, 1.5 h, 2 h, 3 h, 4 h, 6 h,
8 h, 10 h and 12 h. For UPF1 knockdown data, four
time-points were taken: 0 min, 4 h, 8 h and 12 h. For
STAU1 knockdown data, 11 time-points were taken:
0 min, 15 min, 45 min, 75 min, 105 min, 165 min,
225 min, 345 min, 465 min, 585 min and 705 min. For
EXOSC5 knockdown data, five time-points were taken:
0 min, 4 h, 8 h, 12 h and 24 h. Calculation of RNA half-
lives were conducted as previously described [21].

ActD chase analysis
Total RNA was isolated from HeLa cells at the indicated
time points after addition of ActD (2 μg/ml), followed by
RT-qPCR analysis to determine the degradation kinetics
of each mRNA.

ChIP-seq
ChIP-seq was conducted as previously described [43-45].
The following antibodies were used in each experiment:
anti-histone H3K4me3 antibody (Abcam, Cambridge,
UK, ab1012) ,anti-RNA polymerase II (Abcam ab817),
monoclonal anti-H3K27me3 antibody (Abcam, ab6002),
Table 6 Summary statistics used for the analysis of lincRNAs

Conditions (lincDB)

Active transcription and half-life measured

With short half-life (~4 h)

with low expression (10RPKM and below) and high H3K4me3 (1E4 and

and UPF1 target

or EXOSC5 target
polyclonal anti-H3K27Ac antibody (Abcam, ab4729),
polyclonal anti-H3K36me3 antibody (Abcam, ab9050)
For ChIP-seq, Illumina’s Eland was used to map the
36 bp reads to the reference human genome (hg19).
Peaks were called by MACS 1.4.1 [24] at default settings.

Bioinformatic analysis
To assign a ChIP-seq peak to each gene, representative
transcripts, defined by Cufflinks on the RNA-seq data
without any transfection, were used and defined as a
peak where there is an overlap by more than 1 bp be-
tween 1.5 kbp upstream and 1.5kbp downstream of the
transcription start site (TSS). The number of tags per
peak was calculated using the wig files generated from
MACS and adding all tags in the peak region. For the
RefSeq mRNA, we analyzed a total of 6,104 genes for
which a peak was observed for both H3K4me3 and RNA
polymerase II and for which a positive half-life could be
calculated. Wilcoxon’s signed ranked test was used to
determine the statistical significance between the bins of
gene expression and H3K4me3 tags, the bins of RNA
half-life and H3K4me3 tags, and the bins of gene expres-
sion and RNA half-life. Pearson product–moment coeffi-
cient was used to calculate the correlation values
between log-transformed H3K4me3 tags and log-
transformed gene expression. Gene ontology was
conducted by R, obtaining the gene ontology database
from NCBI, calculating the occurrence of a particular
gene ontology (GO) term, followed by calculating the
enrichment of a particular GO term in the sample gene-
list by hyper-geometric distribution, corrected for mul-
tiple testing by Benjamini-Hochberg false-discovery rate.
GO data was obtained on 8th May 2014. To define
eRNAs, we used H3K4me1 and H3K27Ac HeLaS3 data
from the ENCODE project. Bedtools [46] were used to
identify and quantify the mapped reads from siUPF1/
Number of genes

141

103

above) 84

0

26 (31%)



Maekawa et al. BMC Genomics  (2015) 16:154 Page 17 of 19
siEXOSC5 and siControl BRIC-seq dataset that maps to
the H3K4me1 and H3K27Ac regions and not overlap-
ping with 1.5 kb of the entire length of the gene body.
The number of mapped reads to a particular region was
normalized by the length of the region (to 1 kbp) and by
the sequencing depth (to per million). The reads were
normalized by GAPDH and eRNA half-lives were calcu-
lated as above.

Computational simulation and modeling
The ChIP-seq data was analysed as previously men-
tioned for H3K4me3 and pol II, and the intensities were
calculated by counting the number of tags mapped
within: +/− 1kbp window centered on the TSS for
H3K4me3 and, H3K27Ac, and gene body for H3K27me3
and H3K36me3. The log-transformed and standardized
(mean = 0 and standard deviation = 1) histone intensities
were used to build a linear model [7].

Model A : mRNA levele b0 þ b1NH3K4me3

þ b2NH3K27Ac þ b3NH3K27me3

þ b4NH3K36me3 þ e

Model B : mRNA level eb0 þ b1NH3K4me3

þ b2NH3K27Ac þ b3NH3K27me3

þ b4NH3K36me3 þ b5half‐lifeþ e

Where N is studentized read coverage, mRNA level is
log transformed RPKM, half-life is log transformed

decay constant λ ¼ log 2ð Þ
half‐life

� �
and e is the residual error.

Analysis using ENCODE data
H3K4me3, H3K36me3, pol II and RNA-seq data for
seven cell types were obtained from ENCODE and
DLD-1 from DBTSS (see Additional file 1: Figure S5).
Average enrichment for the H3K4me3 data ChIP-seq
data was used to compare against the gene expression
values.

Western blot analysis
Cell lysates were prepared using RIPA buffer (50 mM
Tris-Cl, pH 7.4, 150 mM NaCl, 5 mM EDTA, 1%
Nonidet P-40, 1% sodium deoxycholate, 0.1% SDS, 1%
proteinase inhibitor cocktail [Sigma-Aldrich, St. Louis,
MO]). Proteins were resolved by 10% SDS PAGE and
transferred to a polyvinylidene difluoride membrane.
Membranes were incubated with the indicated primary
antibodies, followed by incubation with anti-mouse or
anti-rabbit secondary antibodies conjugated to horserad-
ish peroxidase (HRP). After addition of the HRP
substrate, the chemiluminescence signal was detected
with a Luminescent Image Analyzer LAS-4000 (Fujifilm,
Tokyo, Japan). Antibodies used for immunoblotting were
as follows: rabbit anti-UPF1 (Abcam), rabbit anti-STAU1
(kindly provided by Dr. Ortín), rabbit anti-EXOSC5 anti-
body (Sigma-Aldrich, SAB200439), rabbit anti-actin
(Sigma-Aldrich, A1978), and rabbit anti-tubulin (MBL,
Nagoya, Japan).
Availability of supporting data
Supporting sequence data are available through DDBJ
under the accession number [DDBJ: DRA001215] and
[DDBJ:DRA002961] and URL links to the sequencing
data are available from http://trace.ddbj.nig.ac.jp/DRA-
Search/submission?acc=DRA001215 and http://trace.
ddbj.nig.ac.jp/DRASearch/submission?acc=DRA002961.
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