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Abstract

Background: Barley, globally the fourth most important cereal, provides food and beverages for humans and feed
for animal husbandry. Maximizing grain yield under varying climate conditions largely depends on the optimal
timing of flowering. Therefore, regulation of flowering time is of extraordinary importance to meet future food and
feed demands. We developed the first barley nested association mapping (NAM) population, HEB-25, by crossing 25
wild barleys with one elite barley cultivar, and used it to dissect the genetic architecture of flowering time.

Results: Upon cultivation of 1,420 lines in multi-field trials and applying a genome-wide association study, eight major
quantitative trait loci (QTL) were identified as main determinants to control flowering time in barley. These QTL
accounted for 64% of the cross-validated proportion of explained genotypic variance (pG). The strongest single
QTL effect corresponded to the known photoperiod response gene Ppd-H1. After sequencing the causative part
of Ppd-H1, we differentiated twelve haplotypes in HEB-25, whereof the strongest exotic haplotype accelerated
flowering time by 11 days compared to the elite barley haplotype. Applying a whole genome prediction model
including main effects and epistatic interactions allowed predicting flowering time with an unmatched accuracy
of 77% of cross-validated pG.

Conclusions: The elaborated causal models represent a fundamental step to explain flowering time in barley. In
addition, our study confirms that the exotic biodiversity present in HEB-25 is a valuable toolbox to dissect the
genetic architecture of important agronomic traits and to replenish the elite barley breeding pool with favorable,
trait-improving exotic alleles.

Keywords: Barley, Wild barley, Nested association mapping (NAM), Flowering time, Genome-wide association
study (GWAS), Quantitative trait locus (QTL), Genomic prediction, Epistasis, Haplotypes
Background
Barley is among the oldest crop species human civilization
was built on. Approximately 10,500 years ago, barley was
domesticated in the Fertile Crescent [1,2], presumably
followed by additional independent domestication events
in East Asia [3,4]. Domestication and subsequent genetic
selection led to gene erosion in most crop species’ gene
pools [5,6], threatening future breeding advances. Utilizing
the untapped biodiversity, present in wild progenitors is
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one promising approach to replenish the elite breeding
pool with new favorable alleles [6-13]. The enriched diver-
sity may be pivotal to boost the rate of genetic improve-
ment and to cope with the anticipated enhanced effects of
biotic and abiotic stresses due to climate change.
In this regard, time of flowering is expected to play a

major role in future crop improvement. It is a key trait
for the successful completion of a plant’s life cycle and,
therefore, it has a strong impact on grain yield [14].
Flowering time indicates the transition from vegetative
to reproductive stage, which is mainly influenced by en-
vironmental cues like day length (photoperiod) and pro-
longed exposure to cold temperatures (vernalization). In
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barley, the day length determining light signal is trans-
mitted from a circadian clock oscillator, with Ppd-H1,
a PSEUDO-RESPONSE REGULATOR 7 (PRR7) gene, in
its center [15]. Under long day condition, Ppd-H1, through
mediation of CONSTANS (CO), promotes the expression of
the floral inducer Vrn-H3, a homolog of the Arabidopsis
thaliana FLOWERING LOCUS T (FT) gene [16]. On the
other hand,Vrn-H2, a zinc-finger CONSTANS, CO-like and
TOC1 (CCT)-domain protein (ZCCT1) acts as a repressor
of Vrn-H3 [17]. Vrn-H2, in turn, is repressed by Vrn-H1, an
APETALA1 family MADS-box transcription factor [18],
which is up-regulated during vernalization. Thus, after
vernalization, the repression of Vrn-H3 is abolished
and flowering is induced. Based on its vernalization
requirement, winter barley and spring barley can be dis-
tinguished. Spring barley lacks the vernalization require-
ment due to a deletion of Vrn-H2 [19].
Besides photoperiod and vernalization, there are also

genetic mechanisms acting independently of environmen-
tal cues, so-called earliness per se [20]. Although several
key regulatory cereal genes of flowering time were charac-
terized and finally cloned during the last two decades, still
little is known about the genetic architecture underlying
flowering time regulation in temperate cereals, as com-
pared to the model species A. thaliana [14,21-23]. So far,
a holistic explanation of flowering time in a segregating
germplasm population and the accurate prediction of a
plant’s time of flowering, based on the combined action
and interaction of major genes, is still not fully achieved in
cereal species. Furthermore, it is reported that wild barley
accessions possess a rich reservoir of beneficial alleles
controlling flowering time [7,24,25].
Figure 1 Development of the nested association mapping population HEB
NAM line, one chromosome pair is illustrated as a double bar. Black and co
and the exotic donor accessions, respectively. At each SNP locus, HEB-25 is expe
and 21.875% homozygous donor genotypes.
Nested association mapping (NAM) emerged as a multi-
parental mapping design to investigate genomic regions
with unprecedented genetic resolution and allelic variation
by combining the advantages of linkage analysis and associ-
ation mapping [26]. Hence, it facilitates the elucidation of a
trait’s genetic architecture via genome-wide association
study (GWAS). Until now, the NAM design was applied to
the allogamous species maize and sorghum [26,27]. NAM
populations for autogamous species like barley or wheat
have not been developed, yet. In maize, the genetic dissec-
tion of various agronomic traits, including flowering time,
has been investigated [28-34]. However, it was not possible
to completely dissect the genetic architecture of flowering
time in maize due to its complex inheritance and the multi-
tude of involved small effect QTL. We developed the first
NAM population in the autogamous species barley, termed
‘Halle Exotic Barley 25’ (HEB-25). The population results
from initial crosses between the spring barley elite cultivar
Barke (Hordeum vulgare ssp. vulgare, Hv) and 25 highly
divergent exotic barley accessions, contributing an ideal
instrument to study biodiversity. The exotic donors com-
prise 24 wild barley accessions of H. vulgare ssp. sponta-
neum (Hsp), the progenitor of domesticated barley, and one
Tibetian H. vulgare ssp. agriocrithon (Hag) accession. Barke
was selected since it was also used as a parent of a barley
high-resolution mapping population [35] and as a genetic
stock for mutation screening [36]. The exotic donors were
selected from Badr et al. [37] to represent a substantial part
of the genetic diversity that is present across the Fertile
Crescent, where barley domestication occurred. To gener-
ate the nested population, F1 plants were backcrossed to
Barke and, subsequently, selfed three times (Figure 1). In
-25. HEB-25 is made of 25 families with 1,420 NAM lines in BC1S3. Per
lored bars represent chromosome segments originating from Barke
cted to segregate into 71.875% homozygous Barke, 6.25% heterozygous



Maurer et al. BMC Genomics  (2015) 16:290 Page 3 of 12
total, HEB-25 consists of 1,420 BC1S3 lines, divided into 25
HEB families of up to 75 lines per family (Additional file 1).
In the present study we investigated the genetic archi-

tecture of flowering time in barley. For this purpose, the
NAM population HEB-25 was grown from 2011 to 2013
in multi-field trials to gather data on flowering time. By
combining these data with high-density SNP marker infor-
mation via genome-wide association studies and genomic
prediction models, we could show that flowering time in
barley mainly depends on a low number of large-effect
QTL and epistatic interactions.
Results and discussion
Characterization of HEB-25
The inheritance of parental segments across the genomes
of the 1,420 HEB lines was characterized through genotyp-
ing 5,709 informative, genic single nucleotide polymorph-
ism (SNP) markers [35]. Marker saturation was high with
an average genetic distance of 0.17 cM and a maximum
gap of 11.1 cM between adjacent markers. Linkage disequi-
librium (LD) among the 26 parents decayed rapidly
(Additional file 2) enabling a high mapping resolution
[26]. The SNP data revealed a low degree of genetic
similarity between Barke and the donors, ranging from
40 to 54% (Additional file 1). Parents and the HEB-25
population could be clearly separated in a principal
component analysis (PCA) (Additional file 3). Also,
HEB families could be ordered in the PCA based on
their geographical origin. These findings point to the
high genetic diversity that is present among HEB-25
and its parents.
Diversity in HEB-25 was also visible phenotypically.

During the seasons 2011 through 2013, HEB-25 was cul-
tivated at the Halle University Experimental Field Station
Table 1 List of eight major QTL controlling flowering time in

QTL Chra Posb Rangeb Peak markerc

QFt.HEB25-1b 1H 128.3 128.0-128.3 SCRI_RS_150786

QFt.HEB25-2b 2H 23.0 16.8-23.8 BK_16

QFt.HEB25-2c 2H 57.4 56.4-58.1 BOPA2_12_30265

QFt.HEB25-3c 3H 108.4 107.8-109.2 BOPA1_ABC07496_ pHv1343_02

QFt.HEB25-4a 4H 3.5 3.5 BOPA2_12_31458

QFt.HEB25-4e 4H 113.4 113.4-114.3 SCRI_RS_216897

QFt.HEB25-5d 5H 125.5 125.5-125.8 BOPA1_4795_782

QFt.HEB25-7a 7H 34.3 25.9-34.3 BOPA2_12_30895
aBarley chromosome on which the QTL was determined.
bGenetic position of the peak marker and range of the QTL in cM, based on Comad
cMarker of the QTL with the highest significance (peak marker).
dNumber of families, in which peak marker is segregating.
eSignificance of the peak marker, expressed as PBON-HOLM.
fCross-validated proportion of explained genotypic variance of peak marker.
gFrequency of significant detections of the peak marker in 100 five-fold cross-valida
hDifference between the wild genotype and the cultivated genotype in days until f
iCandidate gene, potentially explaining the QTL effect with reference.
to collect flowering time data. The HEB lines flowered
on average 68.1 days after sowing with a range from 51.0 to
98.9 days and a standard deviation of 6.5 days (Additional
files 4 and 5). The broad variation in flowering time, cover-
ing almost 50 days among the 1,420 HEB lines, and a high
heritability of 91.6%, as well as the genetic properties of the
NAM population provided an excellent starting point to
study the genetic architecture of flowering time through
GWAS.

Genome-wide association study
For GWAS, we initially applied the multiple linear re-
gression Model-B with step-wise selection of cofactors,
as outlined in Liu et al. [38]. Model-B was found most
suitable to study traits across multiple related families
[39], where a family effect and additional SNPs, selected
as cofactors, are included in the model. GWAS revealed
eight highly significant major QTL regions controlling
flowering time with PBON-HOLM < 1.0 E-10 (Table 1,
Figure 2, Additional files 6 and 7). Testing the combined
explanatory power of the single peak markers of the eight
major QTL revealed a cross-validated explained propor-
tion of genotypic variance (pG, [40]) of 64% (Figure 3). To
check if genetic relatedness, as reported elsewhere [41],
affects this parameter in HEB-25, we also estimated pG for
different sets of eight randomly chosen SNPs, excluding
regions with significant QTL. However, since the cross-
validated explained pG remained low with an average of
8%, we conclude that genetic relatedness between individ-
ual lines does not play a major role in HEB-25. This em-
phasizes the power and precision of QTL detection in
HEB-25, which may be a combined effect of the low ex-
tent of LD and the particular mating design, resulting in
an elevated rate of chromosomal recombination. Thus,
flowering time of barley can be reliably predicted based on
HEB-25

No. Seg. Fam.d PBON-HOLM
e pG

f CV Freq.g Effecth CGi

25 2.41E-18 0.01 68 −1.4 HvELF3 [46,47]

24 3.39E-130 0.36 100 −9.5 Ppd-H1 [15]

25 2.25E-42 0.05 84 −3.0 HvCEN [35]

23 2.62E-62 0.04 83 −3.1 denso [45]

24 5.08E-15 0.05 82 3.2

24 4.58E-17 0.02 100 2.2 Vrn-H2 [17]

24 2.31E-33 0.06 60 3.8 Vrn-H1 [18]

23 6.04E-69 0.07 100 4.1 Vrn-H3 [16]

ran et al. [35].

tion runs.
lowering. Early flowering effects of exotic alleles are indicated in red.



Figure 2 Genetic architecture of flowering time in HEB-25. Barley chromosomes are indicated as colored bars on the inner circle, centromeres are
highlighted as transparent boxes. a) Grey connector lines represent the genetic position of SNPs on the chromosomes. b) Frequency of QTL
detection in 100 cross-validation runs via GWAS (0 to 100, grid line spacing: 25); markers with > 50 detections are colored in red. c) Additive effect
of the SNP obtained from the BayesCπ genomic prediction model. d) Links in the center of the circle represent significant (PBON-HOLM < 0.05) di-genic
interactions between SNP markers via GWAS. Clusters of significant SNP interactions are indicated by different colors. Position of candidate genes,
potentially explaining major effects and epistatic effects, correspond to Table 1 and are indicated in blue outside the circle.
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eight major QTL. This finding is in contrast to flowering
time regulation in the allogamous species maize and
sorghum, where only small effect minor QTL were de-
tected [28,42]. The most significant association in HEB-25
(PBON-HOLM = 3.4 E-130) was observed on the short arm
of chromosome 2H and explained a pG of 36%. This SNP
is directly located within Ppd-H1, the major determinant
of photoperiod response in barley under long day condi-
tion [15]. Seven further genomic regions of extraordinary
high significance were detected on chromosome arms
1HL, 2HS, 3HL, 4HS, 4HL, 5HL, and 7HS. All except one
QTL (4HS) could be assigned to known flowering time
genes (Table 1, Figure 2 and Additional file 7). Besides
Ppd-H1, also the vernalization genes Vrn-H1 and Vrn-H2,
as well as the floral inducer Vrn-H3 and its putative para-
log HvCEN [43] exhibited highly significant effects. In
addition, we could confirm the importance of gibberellic
acid (GA) in flowering time regulation [44] through detec-
tion of denso [45] and HvELF3 [46,47] as two further
major QTL. Both genes are shown to be involved in GA
biosynthesis [45,48]. So far, only the QTL on 4HS could
not been referenced. This QTL, thus, remains a subject
for further genetic investigations.
The eight major QTL were located with high genetic

precision, with four QTL restricted to confidence inter-
vals of less than 0.9 cM (Table 1). In cases where gene-
specific SNPs were available (i.e. Ppd-H1 and Vrn-H3),
exactly those SNPs revealed the highest significance
within the respective QTL window (Additional file 6).
The exotic alleles at Ppd-H1 and Vrn-H3 revealed the
strongest effects, accelerating flowering time by 9.5 days
and delaying flowering time by 4.1 days, respectively.
The drastic effects of single QTL outline the high poten-
tial of introducing wild barley alleles from HEB-25 in



Figure 3 Cross-validated proportion of explained genotypic variance
(pG) of different applied models. The box-whisker plots depict the
variation of explained genotypic variance after 100 cross-validations.
The tested QTL models are (i) the single SNP locus Ppd-H1 (Mean
pG = 0.36), (ii) GWAS with peak markers, representing the eight
major QTL indicated in Table 1 (Mean pG = 0.64), (iii) the whole
genome ridge regression best linear unbiased prediction (RR-BLUP,
mean pG = 0.71), (iv) the BayesCπ prediction (Mean pG = 0.74), and
(v) RR-BLUP including epistasis (Mean pG = 0.77).
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order to adapt flowering time to environmental require-
ments and to enhance biodiversity in the elite barley
breeding pool.
Ppd-H1 haplotype study
As we used bi-allelic SNP markers, additive effects were
estimated across the NAM population. Theoretically,
there may be up to 26 different alleles present at each
locus in HEB-25. Thus, distinct alleles that show con-
trasting effects between families potentially escaped de-
tection in our SNP-based GWAS. Contrasting effects are
illustrated in Figure 4 and, in detail, in Additional file 6.
For instance, SNPs at position 46.2 cM on chromosome
3H, which are tightly linked to HvGI [49], revealed
opposing effects across HEB families. We tested the po-
tential to integrate SNP haplotypes in the GWAS model
for Ppd-H1, which exhibited the largest pG. After re-
sequencing the last two exons and three introns of Ppd-
H1, twelve haplotypes could be distinguished (Additional
file 1). All Hsp donor haplotypes at Ppd-H1 showed a sig-
nificantly reduced flowering time (Additional file 8 and
Figure 5), where a maximum reduction of flowering time
was associated with H-6 (−11.1 days compared to elite
barley haplotype H-2). Only the Hag haplotype H-45 did
not differ from H-2. This finding confirms the presence of
haplotype-specific effects present in HEB-25. Conse-
quently, we expect the existence of further haplotype ef-
fects for other candidate genes controlling flowering
time. The haplotype-based Ppd-H1 model resulted in a
slight increase of the cross-validated explained pG from
36% to 38%. This finding implies that modelling
haplotype-specific effects for a substantial portion of the
barley gene space may result in an improved prediction
of flowering time in HEB-25. However, a genome-wide
re-sequencing of HEB-25 lines will be required to
identify and distinguish those haplotypes.

Applying genomic prediction models
To check whether we could further elucidate the genetic
architecture of barley flowering time we applied genomic
prediction models that considered all markers simultan-
eously. Genomic prediction evolved in animal breeding as
a tool to predict a phenotype based on modelling a large
set of SNP data [50]. It is used for selection of improved
genotypes based on estimated genomic breeding values.
Applying RR-BLUP [51] and BayesCπ [52] models, we
could further increase the cross-validated explained pG to
71% and 74%, respectively (Figure 3). These findings are in
agreement with comparisons of multiple linear regression
and genomic prediction of traits in bi-parental plant popu-
lations [53]. However, our pG values substantially exceed
the prediction accuracies of genomic prediction models
reported in comparable studies [54-56], underlining the
tremendous predictive power of HEB-25. Interestingly,
compared to GWAS, only a few additional loci had non-
zero effects in the BayesCπ model, indicating that flower-
ing time is indeed mainly controlled by the eight major
loci detected via GWAS.
We assume that important reasons for the slightly

higher explained pG of genomic prediction compared to
GWAS are that minor QTL effects and marginally exist-
ing genetic relatedness [55,57] among HEB lines may be
better modeled in the first case. Furthermore, modeling
all makers simultaneously enables a better prediction of
flowering time due to the estimation of family-specific
QTL effects. This is indicated by the occurrence of op-
posing additive effects between HEB families alongside
tightly linked SNPs (Figure 2 and Additional file 6).

A model including epistasis to maximize the cross-validated
explained pG
A final increase of the cross-validated explained pG to an
extraordinary high level of 77% was achieved by including
di-genic epistatic interactions between significant main ef-
fect SNPs in the RR-BLUP model. This finding indicates
that epistasis explains a portion of the ‘missing heritability’
[58] of flowering time regulation in barley, whereas in
maize it does not [28]. The term ‘missing heritability’ is
highly debated in quantitative genetics and refers to the
observation that the explained genotypic variance of com-
bined marker effects is usually lower than the heritability
of the trait. Epistatic interactions between candidate genes
may point to functional relationships and genetic



Figure 4 Visualization of family-wise SNP effects. Barley chromosomes are indicated as inner circle of colored bars, centromeres are highlighted
as transparent boxes. Grey connector lines represent the genetic position of SNPs on chromosomes. Each track displays one HEB family (F01 – F25,
from inside to outside). The heatmap indicates the difference in days between the donor and Barke genotype. Blue and red colors specify early and
late flowering, respectively, caused by the donor genotype. White color indicates no SNP effect or SNPs monomorphic in the respective family.
Candidate genes (Table 1) are indicated outside the circle. Black frames highlight their family-specific effects as indicated in Additional file 6.
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networks [59]. Our findings indicate that the flowering
time genes HvGI, Vrn-H2, Vrn-H1 and HvCO1 [60] on
chromosomes 3H, 4H, 5H and 7H, respectively, are prob-
ably major players of di-genic epistatic interactions in
HEB-25. All four genes potentially interact with each
other as well as with further genes on additional chromo-
somes (Figure 2 and Additional file 9). These observations
are in agreement with independent studies in barley and
A. thaliana where these interacting genes were placed in a
day length and temperature depending signaling network
that controls flowering time [14,21-23]. It is, thus, likely
that the observed interaction between the chromosomal
regions in HEB-25 may be a function of the mentioned
flowering time genes. As an example we refer to the po-
tential interaction found between Vrn-H1 and Vrn-H2.
Epistatic interactions between these loci were already
reported [17,61,62] and support the model that Vrn-H2 is
a long-day suppressor of flowering, that is itself sup-
pressed by Vrn-H1 following vernalization [63]. Barke is a
spring type barley cultivar that lacks the vernalization re-
quirement due to a deletion of Vrn-H2 [19]. Hence, our
findings may indicate that the epistatic interaction found
between the two regions on chromosomes 4H and 5H is
based on the presence (exotic allele) or absence (Barke
allele) of Vrn-H2, the target of Vrn-H1. In general, the
epistatic interactions detected in HEB-25 may provide
hints for the presence of so far unknown functional
networks of genes, which assist in fine-tuning flowering
time in barley. Studies with knock out lines of these genes
may be used to validate the observed interaction effects.

Conclusions
The first barley NAM population HEB-25 provides great
opportunities for future research and breeding. The genetic
constitution of HEB-25 allows to carry out detailed studies
on the genetic architecture of important agronomic traits,
as exemplified by flowering time. The present study sub-
stantiated that flowering time in barley is primarily



Figure 5 Box-whisker plots of flowering time BLUEs for Ppd-H1
haplotypes. Green box-whisker-plots display the distribution of
flowering time BLUEs of all HEB lines carrying the respective haplotype.
Horizontal lines and diamonds indicate median and mean, respectively,
for each haplotype. The extension of vertical lines indicates minimum
and maximum observations, excluding outliers, which are indicated as
circles. The red dotted horizontal line indicates the BLUE of cultivar
Barke (68.2 days). H-2 represents the haplotype of the Barke genotype
present in HEB lines. All haplotypes except H-45 differ significantly
(P < 0.05) from H-2, as indicated by red asterisks. Further information to
haplotypes is given in Additional files 1 and 8.
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determined by large-effect QTL and epistatic interactions.
This finding is in contrast to flowering time regulation in
the allogamous species maize and sorghum, where only
small effect minor QTL were detected [28,42], indicating
that the mating system may control the genetic architec-
ture of adaptive traits [28].
In future, the NAM population HEB-25 will be utilized

in two directions: On the one hand, HEB-25 may support
elucidating the genetic architecture of quantitatively inher-
ited agronomic traits, ultimately resulting in cloning of yet
unknown causal genes. On the other hand, HEB-25 will be
exploited by breeders to enhance biodiversity of the elite
barley gene pool. This may occur through introgression of
favorable wild alleles with the aim to sustainably increase
yield and stress tolerances against disadvantageous climate
conditions like drought, heat and salt.

Methods
Development of the NAM population
The development of the NAM population ‘Halle Exotic
Barley 25’ (HEB-25) was initiated in 2007 conducting
crosses between the spring barley cultivar Barke (Hordeum
vulgare ssp. vulgare) and 25 highly divergent exotic wild
barley accessions. The latter were used as pollen donors.
Twenty-four accessions, originating from Afghanistan, Iran,
Iraq, Israel, Lebanon, Turkey, and Syria (Hordeum vulgare
ssp. spontaneum), were selected to maximize the genetic di-
versity in HEB-25. One further accession, HID380,
originating from Tibet, China, was classified as Hordeum
vulgare ssp. agriocrithon (Åberg). F1 plants of the initial
crosses were backcrossed with Barke as the female parent.
Twenty BC1 plants per cross were subsequently selfed three
times, using the single seed descent (SSD) technique to
generate the next generations. The resulting BC1S3 gener-
ation consists of 1,420 individual lines, classified in 25 HEB
families with 22 to 75 individual lines per family (Additional
file 1). Subsequently, each HEB line was bulk propagated
until BC1S3:6 to achieve sufficient seed numbers for field
testing. No artificial selection was carried out during the de-
velopment of HEB-25.

Collecting single nucleotide polymorphism (SNP) data
SNP genotype data were collected at TraitGenetics,
Gatersleben, Germany, for all 1,420 individual BC1S3 lines
and their corresponding parents with the barley Infinium
iSelect 9k chip consisting of 7,864 SNPs [35]. At each locus,
three genotypes were differentiated, with an expected
BC1S3 segregation ratio of 0.71875 : 0.0625 : 0.21875
for homozygous recipient (i.e. Barke), heterozygous and
homozygous donor genotypes, respectively. In total,
1,027 monomorphic SNPs and 1,128 SNPs with high
failure rates (i.e. no call in >10% of HEB lines) were ex-
cluded from the dataset, resulting in 5,709 informative
SNPs for further analyses.

Extraction of genomic DNA
DNA was extracted from leaf tissue of 1,420 single
founder HEB plants in generation BC1S3. The subse-
quent seed propagation of HEB lines was based on these
founder HEB plants. For Barke and the wild barley ac-
cessions leaf material from three to four plants was used
to create bulked samples. The plants were cultivated in a
glasshouse and 50 to 100 mg of leaf material was harvested
for each sample. DNA was extracted according to the man-
ufacturer’s protocol, using the BioSprint 96 DNA Plant Kit
and a BioSprint work station (Qiagen, Hilden, Germany),
and finally dissolved in distilled water at approximately
50 ng/μl.

SNP mapping
The chromosomal positions of 3,391 out of 5,709 SNPs
were taken from Comadran et al. [35]. The remaining
SNPs were fitted next to the mapped SNPs applying chi-
square tests of independence. Each non-mapped SNP
was compared to each mapped SNP based on genotype
segregation across all HEB lines. If two SNPs segregated
completely independent from each other, i.e. in case of
no linkage disequilibrium (LD), one expects to find all
possible genotype combinations according to the product
of their single locus genotype frequencies. However, in case
of tight linkage, there should be a significant deviation from
the expected genotype combination frequencies due to
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reduced recombination between these markers. Conse-
quently, a high chi-square statistic and a low P-value likely
indicate a tight linkage. Therefore, we assigned the position
of the SNP with the lowest P-value (minimum: P < 0.001)
to the non-mapped SNP under investigation. If there were
more than one SNP with the same P-value, the position of
the unmapped SNP was defined as the average of the mini-
mum and the maximum position of the respective markers.
In this way, all except six of the non-mapped SNPs were
placed into the Comadran map.

SNP calling
The differentiation of the HEB genotypes was based on an
identity-by-state approach. Based on parental genotype in-
formation, the exotic allele could be specified in each segre-
gating family. Thus, HEB lines that showed a homozygous
exotic genotype were assigned a value of 2 and HEB lines
that showed a homozygous Barke genotype were assigned a
value of 0. Consequently, heterozygous HEB lines were
assigned a value of 1. If a SNP was monomorphic in one
HEB family but polymorphic in a second family, lines of
the first HEB family were assigned a genotype value of 0 to
keep a full genotype data set, which is a pre-requisite for
the subsequent multiple regression analysis. For the same
reason, missing genotypes were estimated applying the
mean imputation (MNI) approach [64]. For this, each miss-
ing SNP value was replaced with the mean of the non-
missing values of that SNP in the respective HEB family.
Quantitative SNP genotypes were subsequently used for
multiple regression analysis.

Evaluation of genetic diversity
SAS 9.4 Software (SAS Institute Inc., Cary, NC, USA) was
used to evaluate genetic diversity among parents and pro-
genies of the HEB-25 population. Genetic similarities (GS)
between HEB lines and their parents and among HEB
lines were calculated with Proc Distance, based on a sim-
ple matching comparison between the three possible
genotype states across all informative SNPs. In addition,
we performed principal component analysis (PCA) using
R [65]. First we applied PCA for the 26 parents (the culti-
var Barke and 25 wild donors) based on the SNP matrix.
The first two PCs explained 51.9 and 4.8% of the variation.
Then, all progenies of HEB-25 were projected to the space
spanned by the two PCs (Additional file 3) as outlined in
detail elsewhere [66].

Linkage disequilibrium (LD)
LD was calculated as r2 [67] between all mapped SNPs
with the software package TASSEL [68]. For this pur-
pose, heterozygous genotypes and SNPs with a minor
allele frequency < 0.05 were excluded. LD was calcu-
lated across the 26 parents of HEB-25. LD decay across
intra-chromosomal SNPs was displayed by plotting r2
between SNP pairs against their genetic distance. A
second-degree smoothed loess curve [69] was fitted in
SAS with Proc Loess. The population-specific baseline r2

was defined as the 95% percentile of the distribution of r2

for unlinked markers [70]. LD decay was defined as the
distance, at which this baseline crossed the loess curve.
Ppd-H1 haplotype definition
For sequencing of the Ppd-H1 locus on chromosome
2HS we used the following primers: PP05 (forward)
5′-GTGCAAAGCATAATATCAGTGTCC-3′ and PP04
(reverse) 5′-GGCCAAAGACACAAGAATCAG-3′. These
primers amplify the last two exons and three introns of
Ppd-H1 covering the CCT domain that contains SNP22,
the causal SNP of Ppd-H1 [15]. Identical sequences were
grouped into haplotypes. A detailed description of the
sequencing is given in Jakob et al. [71].
HEB-25 field trials
Between 2011 and 2013, three field trials were conducted
at the ‘Kühnfeld Experimental Station’ of the University of
Halle to gather phenotype data on flowering time. In
2011, the field trial was conducted with selfed progenies
of BC1S3 lines (so-called BC1S3:4). Sowing occurred in sin-
gle to five row plots with a length of 1.50 m and a distance
of 0.20 m between rows. The number of rows per HEB
line and the position inside the field trial depended on the
number of available BC1S3:4 seeds. Lines with seed num-
bers lower than ten were planted in plots with a length of
0.50 m. In 2012 and 2013, the field trials were conducted
with the selfed progenies in BC1S3:5 and BC1S3:6, respect-
ively. Two replications per HEB line, arranged in two
randomized complete blocks, were cultivated in 2012 and
2013. The plots consisted of two rows (30 seeds each) with
a length of 1.50 m and a distance of 0.20 m between rows.
All field trials were sown in spring between March and
April with fertilization and pest management following
local practice.
Phenotypic data
The occurrence of flowering time was recorded as days
after sowing, when the first awns were visible (BBCH49
[72]) for 50% of all plants of a plot. We performed a one-
step phenotypic data analysis with SAS, using a linear
mixed model with effects for genotype (i.e. 1,420 HEB
lines), environment (i.e. 3 years) and interaction of geno-
type and environment. To estimate variance components,
all effects were assumed to be random. Broad-sense herit-
ability (h2) was estimated on an entry-mean basis. Best lin-
ear unbiased estimates (BLUEs) of flowering time were
calculated for each genotype assuming fixed genotype
effects.
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Genome-wide association study (GWAS)
For GWAS, we applied Model-B as outlined in detail by
Liu et al. [38]. This model was found most suitable to
carry out GWAS with multiple families [39]. It is based on
multiple regression considering an SNP effect and a family
effect in addition to cofactors, which control both popula-
tion structure and genetic background [39]. Cofactor se-
lection was carried out by applying Proc Glmselect in SAS
and minimizing the Schwarz Bayesian Criterion [73].
The genome-wide scan for presence of marker-trait as-
sociations was implemented in the statistical software R
[65], excluding cofactors linked closer than 1 cM to the
SNP under investigation. The Bonferroni–Holm pro-
cedure [74] was used to adjust marker-trait associations
for multiple testing. Significant marker main effects were
accepted with PBON-HOLM < 0.05. Additive effects for each
SNP were estimated based on regression across but also
within families. Significant marker trait associations were
grouped to a singled QTL if the significant SNPs were
linked by less than 5 cM and revealed additive effects
of the same direction, i.e. both exotic alleles increased or
decreased flowering time. In addition, a two-dimensional
epistasis scan was carried out to identify pairwise marker
interactions. For this, the GWAS Model-B was extended
to cover a second main SNP effect and the interaction
effect between the two SNPs.

Haplotype-based association mapping for Ppd-H1
A haplotype-based association mapping test was imple-
mented in HEB-25 to test for effects of haplotypes at Ppd-
H1. We used the same GWAS procedure with cofactor
selection as mentioned before. However, bi-allelic SNPs
covering the region of Ppd-H1 were replaced by a qualita-
tive variable containing the defined Ppd-H1 haplotype.
BLUEs were determined for each haplotype. Subsequently,
pairwise comparisons between all haplotype BLUEs were
performed using the Tukey-Kramer [75] multiple compari-
son test.

Genomic prediction
Based on BLUEs of the 1,420 HEB genotypes, two ap-
proaches for genomic prediction were applied considering
additive effects: ridge regression best linear unbiased pre-
diction (RR-BLUP [51]) and BayesCπ [52]. All statistical
procedures for genomic prediction approaches were exe-
cuted using R. We briefly describe the two models in the
following.
Let n be the number of genotypes, m be the number

of markers and l be the number of environments. The
RR-BLUP model has the form y = 1nμ + Xg + e, where y
is the vector of BLUEs of flowering time scores for all
HEB genotypes across environments, 1n denotes the vec-
tor of 1’s, μ is the overall mean, g is the vector of marker
effects (for SNP markers, allele effects), X is the
corresponding design matrix and e is the residual term.

In the model we assumed that g e N 0; σ2g
� �

, e e N

0; σ2e
� �

, where σ2g ¼ σ2G=m for SNP markers and σ2e ¼
σ2R=l . Here σ2

G and σ2
R are the genotypic and residual

variance components obtained in the mixed model in
the phenotypic data analysis. The penalty parameter is
λ ¼ σ2R=l

� �
= σ2G=m
� �

. The estimation of marker effects is
then given by the mixed model equations [76].
The basic model of BayesC π is the same as RR-BLUP.

However, all parameters are treated as random variables
in a Bayesian framework. First, we defined the prior dis-

tributions as g e N 0; σ2
g

� �
; e e N 0; σ2e

� �
. The prior of

μ is a constant. The prior distribution of σ2
g is assumed

to be zero with probability π and a scaled inverse chi-
squared distribution with probability (1-π). The prob-
ability π is a random variable whose prior distribution is
uniform on the interval [0,1]. The prior distribution of
σ2e is also scaled inverse chi-squared. A Gibbs sampler
algorithm was then implemented to infer all the parame-
ters in the model. It was run for 10,000 cycles and the
first 1,000 cycles were discarded as burn in. The samples
of g from all later cycles were averaged to obtain esti-
mates of the marker effects.
Cross-validation for additive models
The accuracy of the prediction of flowering time by
GWAS and the two genomic prediction approaches
were evaluated using five-fold cross-validations [77]. In
each run of cross-validation, the estimation set in-
cluded 80% of HEB lines, randomly selected per HEB
family, while the remaining 20% of HEB lines were
assigned to build the test set. For GWAS, we per-
formed an association mapping scan within the estima-
tion set and recorded the detected significant markers.
To determine the cross-validated proportion of ex-
plained genotypic variance (pG), we estimated the ef-
fects of the significant peak markers within the
estimation set and predicted the genotypic value of the
lines in the test set [40]. We then calculated the cross-
validated pG as the squared Pearson product–moment
correlation between predicted and observed genotypic
values in the test set standardized with the heritability.
The mean pG in 100 cross-validation runs (20 times five-
fold cross-validations) was taken as the final record. In
addition, the number of significances for each SNP was
cumulated across all runs and is referred to as QTL de-
tection rate.
For genomic prediction we estimated the effects for all

markers using the estimation set and predicted the
genotypic value of the lines in the test set. The cross-
validated pG was calculated as in GWAS.
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Exploiting additive and additive times additive epistatic
effects in genomic prediction
We extended the RR-BLUP based on main effects
to model also epistasis for markers with significant
main effects in the GWAS. The model is y ¼ 1nμþXn

i¼1
Xigi þ

X
j<l

Xj⋅Xl
� �

f jl þ e, where y is the vector of

BLUEs of flowering time for all HEB genotypes, 1n denotes
the vector of 1’s, μ is the overall mean, gi is the main
additive effect of the i-th marker, Xi is the vector of marker
indices, fjl is the epistatic effects of the j- and the l-th
marker, Xj Xl is the point-wise product of the two vectors
Xj and Xl, and e is the vector of residual terms. Note that
in the third term of the right hand side of the formula, the
sum is not taken over all pairs of markers but only pairs of
markers exhibiting a significant additive effect in the
GWAS study performed previously. Hence, in different
cross-validation runs, different pairs of markers were con-
sidered in the model. The model assumptions are similar
to the usual RR-BLUP, except treating additive and epistatic

effects separately. We assumed gi e N 0; σ2g
� �

, f jl e N

0; σ2f

� �
, where σ2g ¼ pGσ

2
G=m, σ2f ¼ 1−pGð Þσ2G=p. Here PG

is the cross-validated proportion of explained genotypic
variance for genomic prediction, obtained previously by
the RR-BLUP, only considering additive effects, m is the
number of markers, p is the number of pairs of markers
having significant additive effect. Therefore the penalty
parameter λ is different for additive and epistatic effects.
Using the above extended model, for each cross-validation

run we estimated the additive effects of all markers and
epistatic effects of all pairs of markers exhibiting sig-
nificant additive effects in GWAS using the estimation
set. Then we predicted genotypic values of the lines in
the test set and calculated the pG in the same way as
outlined above.

Availability of supporting data
Raw data, including data on SNPs, Ppd-H1 haplotypes
and GWAS, and all other supporting data are provided
as additional files.

Additional files

Additional file 1: Genetic constitution of HEB-25: classification of
families and donors. Tabular overview of the genetic constitution of
HEB-25, classifying the 25 families and donors and containing the Ppd-H1
haplotypes.

Additional file 2: LD decay of intra-chromosomal markers among
HEB-25 parents. Figure showing the LD decay of intra-chromosomal
markers among HEB-25 parents by plotting r2 against the genetic marker
distance.

Additional file 3: Principal component analysis for HEB-25 and its
parents. Figure showing the relatedness of HEB-25 lines by plotting of
the first two principal components of a principal component
analysis for HEB-25 and its parents.
Additional file 4: Distribution of flowering time. Figure showing the
frequency distribution of flowering time BLUEs across three field trials
and illustrating contrasting phenotypes in the field.

Additional file 5: Phenotype and genotype data for HEB-25. Table
listing the complete phenotype and genotype data of HEB-25 underlying
this study as well as marker information.

Additional file 6: Estimates of single marker GWAS and genomic
prediction effects across HEB-25 and within individual HEB families.
Table listing the results of GWAS and genomic prediction across HEB-25
and within individual HEB families.

Additional file 7: GWAS Manhattan plot for flowering time. Figure
displaying the GWAS results through plotting the significance and effects
of markers in a Manhattan plot.

Additional file 8: Ppd-H1 haplotype comparison. Two tables
contrasting the different Ppd-H1 haplotype effects by comparison of their
BLUEs.

Additional file 9: Significant epistatic interactions via GWAS. Table
listing all significant (PBON-HOLM < 0.05) epistatic interactions between
SNPs that were obtained via GWAS.
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