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Abstract

adequately vetted.

and EDs, estimates for common DEGs.

Background: Dose-dependent differential gene expression provides critical information required for regulatory
decision-making. The lower costs associated with RNA-Seq have made it the preferred technology for transcriptomic
analysis. However, concordance between RNA-Seq and microarray analyses in dose response studies has not been

Results: We compared the hepatic transcriptome of C57BL/6 mice following gavage with sesame oil vehicle, 0.01,
0.03,0.1,03, 1, 3, 10, or 30 pg/kg TCDD every 4 days for 28 days using lllumina HiSeq RNA-Sequencing (RNA-Seq)
and Agilent 4x44 K microarrays using the same normalization and analysis approach. RNA-Seq and microarray
analysis identified a total of 18,063 and 16,403 genes, respectively, that were expressed in the liver. RNA-Seq analysis
for differentially expressed genes (DEGs) varied dramatically depending on the P1(t) cut-off while microarray results
varied more based on the fold change criteria, although responses strongly correlated. Verification by WaferGen
SmartChip QRTPCR revealed that RNA-Seq had a false discovery rate of 24% compared to 54% for microarray
analysis. Dose-response modeling of RNA-Seq and microarray data demonstrated similar point of departure (POD)

Conclusions: There was a strong correspondence between RNA-Seq and Agilent array transcriptome profiling
when using the same samples and analysis strategy. However, RNA-Seq provided superior quantitative data,
identifying more genes and DEGs, as well as qualitative information regarding identity and annotation for dose
response modeling in support of regulatory decision-making.
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Background

Toxicogenomic evaluations by microarrays have been
invaluable in elucidating underlying mechanisms of tox-
icity [1,2], investigating species-specific responses and
ligand potencies [3-7], and linking differential gene ex-
pression to apical endpoints [8,9]. However, the emer-
gence of next-generation-sequencing (NGS) with its direct
transcript identification, lower cost, larger dynamic range
and superior detection of low abundance genes [10-12], is
making microarrays obsolete. Despite these advantages,
some studies have raised concerns regarding RNA-Seq
and microarray comparability [13-15]. Probe design and
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differences in platform sensitivity have been offered as po-
tential explanations, although normalization and analysis
methods also contribute to low concordance [1,13,16].
Analysis approaches have been developed specifically
for RNA-Seq [17-21], yet repurposed microarray nor-
malization, statistical analysis, and DEG identification
methods outperform several RNA-Seq specific analysis
tools [20,21]. Consequently, we investigated the use of
our semi-parametric normalization [22] and empirical
Bayes analysis approach [23], traditionally used for mi-
croarrays. Semi-parametric normalization accounts for
multiple sources of variation including random effects
[22] while empirical Bayes analysis has the advantage of
considering continuous variables such as the correlation
between doses that can improve DEG detection [23,24],
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an important consideration in regulatory decision-
making.

While microarray data submissions are encouraged by
regulatory agencies and widely accepted in toxicoge-
nomic research [2,13], the third phase of the microarray
quality control project (MAQC-III also known as SEQC)
recommended further validation using different study
designs [1,25]. To date, study designs involving chemical
treatment have been limited to single dose studies [1,15],
the impact of different normalization approaches, or
dose—response RNA-Seq studies with a sequencing depth
of only 5 M reads [13]. Collectively, these studies reported
comparable responses between platforms, but were mixed
in the ability of RNA-Seq to reveal the biological relevance
of responses.

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a per-
sistent environmental contaminant that binds to the aryl
hydrocarbon receptor (AhR) which then translocates to
the nucleus and dimerizes with the aryl hydrocarbon
receptor translocator (ARNT) [26,27]. The TCDD-AAR-
ARNT complex then binds to regulatory regions and
elicits changes in global gene expression using dioxin re-
sponse element (DRE)-dependent [26,27], and -independent
mechanisms [28-31]. Dose-and time-dependent TCDD
elicited differential gene expression has been evaluated
using microarrays after a single dose [7,9,32,33]. In this
study, we extend these results by examining the effects of
continuous TCDD exposure. Dose-dependent hepatic dif-
ferential gene expression in mice following oral gavage
with TCDD every 4 days for 28 days was compared using
RNA-Seq and Agilent oligonucleotide microarrays ana-
lyzed using same the same normalization and empirical
Bayes analysis.

Overall, RNA-Seq and Agilent generated comparable
results. Quantitatively, RNA-Seq detected more genes
expressed in the liver, and identified more differentially
expressed genes (DEGs) compared to Agilent. Qualita-
tively, direct sequencing by RNA-Seq provided more ac-
curate transcript identification. Verification by WaferGen
SmartChip QRTPCR indicates RNA-Seq had fewer false-
positives and false-negatives compared to Agilent. Dose
response modeling was also consistent between both plat-
forms, but the ability of RNA-Seq to detect low abun-
dance transcripts and its larger dynamic range provided
superior qualitative and quantitative data for DEG iden-
tification, and estimates of point of departure (POD)
and EDs.

Results

Quantitative RNA-Seq advantages

Genome-wide hepatic gene expression was examined
using NGS Sequencing and Agilent 4x44 K oligonucleotide
microarrays using the same RNA samples. RNA-Seq was
performed at an average read depth of 30 M resulting
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in ~21 M high quality reads per sample (Figure 1A).
Reads were mapped to the mouse reference genome
GRCm38 (release 74) representing 39,179 Ensembl anno-
tated genes. Genes with greater than 4 aligned reads in
any sample were considered “expressed” or “detected”.
Using this criteria >85% of expressed genes were present
in all samples (Additional file 1). In total, 17,794 genes
were found to be expressed in the mouse liver with a sam-
ple size of 3. The number of genes expressed in the liver
did not change appreciably between 3, 4, or 5 (17,794,
17,941 and 18,063, respectively) biological replicates
(Figure 1A). Conversely, Agilent microarrays have 41,267
predefined probes representing 21,308 unique Entrez
annotated genes (Figure 1B). A total of 16,403 genes were
“detected” (expressed in the liver) based on the median
feature intensity being greater than the median back-
ground intensity as determined by GenePix.

Comparison of detected genes using three biological
replicates identified 12,165 genes which were detected
either by RNA-Seq or microarray and annotated with
corresponding Entrez and Ensembl Gene IDs (Figure 1C).
Among the 5,629 genes detected only by RNA-Seq, 1,607
were represented on the microarray but not detected
based on GenePix’s signal to background ratio. Similarly,
2,916 genes of the 4,238 detected by microarray only were
not detected by RNA-Seq when using a count cut-off of
greater than 4 aligned reads. However 1,336 of these 2,916
genes did have at least 1 read align in at least one sample
while the remaining 1,580 were not detected by RNA-Seq.
In addition, 1,322 and 3,202 genes detected by RNA-Seq
and microarrays, respectively, did not have corresponding
Entrez or Ensembl annotation that largely represented
predicted genes (i.e. ENSMUSG00000099065; Gm19980
predicted gene 19980). Most importantly, there were 802
genes not covered by the microarray highlighting the
quantitative benefit of RNA-Seq’s open concept platform.

RNA-Seq dynamic range influences filtering criteria
Contrary to previous comparative studies, we used the
same semi-parametric normalization and empirical Bayes
analysis to identify DEGs in both RNA-Seq and micro-
array datasets. Empirical Bayes analysis allows the varying
of fold change and posterior probability (P1(£)) cut-offs to
investigate the effects of filtering criteria on DEG de-
tection without violating parametric hypothesis testing
assumptions.

The number of identified DEGs did not change appre-
ciably between 3, 4, or 5 biological replicates (Figure 1A)
with ~78% (1,019 genes) identified in all three sample
size subsets (Figure 2A). The other ~22% were also
expressed in the other datasets but did not meet the
filtering criteria. Relaxation of filtering criteria within
the union increased the overlap to ~92%, and all of
these genes exhibited a positive fold change and P1(z)
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Figure 1 Comparing RNA-Seq and Agilent microarrays for detecting genes expressed in the liver and differentially expressed by TCDD. (A) RNA-Seq
reads were aligned to mouse genome GRCm38 (release 74) and subsampled to represent 3-5 independent biological replicates. The number of
differentially expressed genes (DEGs) was determined under varying [fold change| and P1(t) criteria. (B) Microarray features were examined for

(pink) datasets.

DEGs under varying [fold change| and P1(t) criteria. (C) RNA-Seq and microarray detected genes (yellow boxes) were examined for common
and unique detected genes and DEGs. (D) Distribution of log, (fold change) and (E) P1(t) values (P1 (1) 2 0) in RNA-Seq (blue) and Agilent

value correlation (all found in upper right quadrant;
Figure 2B-D). Given the excellent correspondence of
DEG responses across all sample sizes, all subsequent
analyses were performed using three independent bio-
logical replicates representing the same samples as the
RNA-Seq analysis to facilitate fairer comparisons to the
microarray data set which also used three biological
replicates.

RNA-Seq data was found to be more sensitive to
changes in the P1(¢) filtering criteria. Increasing the P1(¢)
cut-off from 20.8 to 20.9999 while maintaining a |fold
change| cut-off of >1.5 decreased the number of DEGs
from 3,546 to 460 whereas increasing the |fold change|
cut-off from >1.5 to >2.0 decreased the number of DEGs
from 3,546 to 1,249 (Figure 1A). Conversely, for the
microarray analysis, increasing the |fold change| cut-off
from >1.5 to >2.0 dramatically decreased the identification

of DEGs from 2,039 to 472 while increasing the P1(t)
cut-off had a less dramatic effect (2,039 DEGs at |fold
change| > 1.5, P1(t) >0.8 compared to 1,434 DEGs at |fold
change| > 1.5, P1(t) 20.9999) (Figure 1B).

These differences in sensitivity to filtering criteria may
be attributed to the larger dynamic range of RNA-Seq
which exhibits a wider range of fold changes (Figure 1D)
and a more uniform distribution of P1 (¢) values (Figure 1E).
Consequently, a |fold change| >2.0 and P1(¢) > 0.8 were
used for RNA-Seq while a |fold change| > 1.5 and P1() >
0.999 were used for microarray in all subsequent compari-
sons in this study.

Comparison of RNA-Seq and Agilent datasets

Comparing RNA-Seq and Agilent datasets identified
12,165 genes commonly expressed in the liver (Figure 1C).
Genes showing the strongest responses in both RNA-Seq
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Figure 2 Effect of the number of independent biological replicates on RNA-Seq analysis. (A) DEGs were identified using a |fold change| = 2.0 and
P1(t) = 0.8 when examining 5 independent biological replicates or a subset of 3 or 4 replicates and compared for identified genes. Correlation of
gene expression fold changes and P1(t) values are illustrated comparing (B) 3 and 4, (C) 3 and 5, and (D) 4 and 5 biological replicates.
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and microarray datasets included the typical AhR respon-
sive genes such as Cyplal, Cypla2, Nqgol, and Tiparp
(Additional file 2). Cyplal exhibited a 771- and 82-fold
induction, while Sult3al was repressed 100- and 25- fold
by RNA-Seq and microarray analysis, respectively. The
magnitude of the fold change at both extremes illus-
trate the difference in dynamic range between the two
platforms.

Within the 12,165 common RNA-Seq and microarray
genes, 901 and 1,270 DEGs were identified, respectively
(Figure 1C). Comparative analysis revealed that only 449
genes were common to both datasets (Figure 3A) and
that a similar overlap is observed for each dose independ-
ently (data now shown). Nevertheless, a majority of the
12,165 genes detected by both platforms (Figure 3B), the
union of 1,722 DEGs across both platforms (Figure 3C),
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and the 449 DEGS common to both platforms (Figure 3D)
exhibited positive fold change and P1(¢) value correlations,
indicating a strong correlation between RNA-Seq and Agi-
lent. As seen with sample size, relaxing the cut-off criteria
for the union of the RNA-Seq and microarray data sets in-
creased the overlap suggesting differences were most likely
due to genes approaching but not satisfying hard fold
change and/or P1(¢) cut-offs, despite evidence of differen-
tial expression.

Despite the overlap of only 449 genes, comparison of
functional enrichment analyses identified DEGs associated
with lipid binding, processing, and metabolism, oxidative
stress, immune responses, cell adhesion and movement,
and extracellular matrix remodeling within RNA-Seq and
Agilent data sets (Additional file 3: Table S2) consistent
with previous reports [32,34]. Additional analysis of genes

-
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fold changes and P1(t) values were examined for (B) all 12,165 expressed genes detected by both platforms, (C) the union of 1,722 differentially
expressed genes (DEGs), and (D) the 449 DEGs detected by both platforms.
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unique to RNA-Seq also identified carbohydrate binding
and extracellular matrix remodeling as enriched functions
while unique microarray genes show lower enrichment of
these functions (Additional file 4: Table S3).

RNA-Seq outperforms microarray DEG identification

A subset of RNA-Seq and Agilent responses were further
investigated using WaferGen SmartChip Real-Time PCR.
This included 7 negative controls (unchanged in both
datasets), 13 positive controls (changed in both datasets),
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35 RNA-Seq specific genes, and 34 Agilent specific genes
(Additional file 5). The platform-specific genes included
20 exhibiting divergent responses (maximum of |[RNA-Seq
fold change — microarray fold change|). Of the 81 genes
validated, Agilent identified 20 false negatives and 25 false
positives for a false discovery rate (FDR) of 54% while
RNA-Seq found 9 false-negatives and 10 false-positives for
a FDR of 24% (Figure 4A). Overall, RNA-Seq outperformed
Agilent on sensitivity, specificity, precision, accuracy, FDR,
and false negative rate (Figure 4B).
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Figure 4 Verification of RNA-Seq and Agilent DEG identification by WaferGen SmartChip Real-Time PCR analysis. (A) QRTPCR data (n =5) was
used as the “gold standard” to determine true and false positives and negatives for RNA-Seq (n = 3) and Agilent (n = 3) datasets. (B) Performance
metrics of RNA-Seq and Agilent validated by QRTPCR. (C) Representative example of a false-negative and (D) false-positive response in the
RNA-Seq dataset. Official gene symbols are indicated in upper left corner with the number of RNA-Seq aligned reads in parentheses () and
number of samples with C; values lower than background in brackets [] for vehicle control samples. Bars represent mean fold-change determined by
WaferGen technology (+SEM), the red line represents RNASeq fold-change, and the green line represents Agilent fold change. Significant differences
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Further examination of false negatives/positives identi-
fied by RNA-Seq revealed that false negatives were
largely due to failing to meet the filtering criteria, despite
remarkably similar expression patterns across all three
technologies (Figure 4C and Additional file 6). False pos-
itives typically included genes with low numbers of
reads and, in most cases, changed expression from non-
detectable to modest or vice-versa, suggesting they are
in fact true positives (Figure 4D and Additional file 7).

Agilent genes showing the most divergent expression
compared to WaferGen were Disp2, Gabbrl, Heatr5a,
Wdrll, Zfp524, and Zfp846 (Additional file 8), while
Sult2a7, TlrS, and Uox were only identified as DEGs by
RNA-Seq (Additional file 9). Overall, there was excellent
agreement between RNA-Seq and WaferGen with Agilent
exhibiting divergence. Examination of Agilent probes re-
vealed Disp2 and Tlr5 did not match their intended target,
whereas Heat5ra and Wdrll exhibited different responses
depending on the Agilent probes querying different gene
regions. However, the Agilent probe sequence and Wafer-
Gen primers for Zfp846 queried adjacent regions suggest-
ing non-specific hybridization (Figure 4E). Therefore,
in addition to artifactual platform specific differential
gene expression due to hard cut-off criteria, discrepancies
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between RNA-Seq and Agilent can also be attributed to
differences in sensitivity and probe designs that query
different regions, have no known target (mis-annotated)
and/or are susceptible to cross-hybridization.

RNA-Seq versus Agilent dose response analysis

Dose-response modeling is critical in regulatory decision-
making. Consequently, point of departure (POD) estimates
for the benchmark dose (BMD; dose at which response be-
gins to be different from control) and the benchmark dose
limit (BMD(L); lower limit of a one-sided 95% confidence
interval on the BMD) were determined using BMDExpress
[35]. BMDExpress fit 842 of 1,249 RNA-Seq DEGs with
dose response curves compared to 660 of 1,434 Agilent
DEGs (Figure 5A). Within the 449 DEGs common to both
technologies, 142 (32%) were fitted with dose—response
curves. Platform difference in dynamic range and ability to
detect low abundant transcripts influenced POD estimates.
For example, at low BMD(L) estimates, Agilent values
were higher compared to RNA-Seq due to poorer
resolution at low expression levels. At higher BMD(L)
estimates RNA-Seq values were higher, likely due to
microarray signal compression (Figure 5C). Nevertheless,
POD estimates and rank were strongly correlated
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between both technologies (Figure 5C and Additional
file 10). Moreover, POD estimates were not influenced
by sample size (data now shown).

For EDs, estimates, 709 of 1,249 RNA-Seq DEGs ex-
hibited a sigmoidal dose response as determined by the
ToxResponse Modeler [36] while 1,037 of 1,434 Agilent
DEGs exhibited a sigmoidal dose response with 267 in
common between both platforms (Figure 5B). Correlation
of the EDs5gs (dose at which the response is 50% of max-
imal response), found Agilent EDsos to be higher com-
pared to RNA-Seq at low estimates. In contrast, RNA-Seq
EDsps were higher at higher estimates (Figure 5C). The
lower slope (0.52) is consistent with microarray signal
compression and poorer ability to detect low abundance
transcripts.

Discussion

Whole genome gene expression analysis provides compre-
hensive data on potential mechanisms of action as well as
product safety [1,2]. As regulatory agencies and researchers
struggle to incorporate omic data into decision-making
and research applications, the technology continues to
evolve requiring the verification of reproducibility, reliabil-
ity, and continuity [16,25]. Hybridization-based platforms
such as Affymetrix GeneChips and Agilent oligonucleotide
microarrays are being replaced by NGS technologies such
as RNA-Seq. Although several studies have reported com-
parable technical reproducibility, variance structure, abso-
lute expression, and DEG identification capabilities using
different study designs and model systems [1,11,14,15,25],
only one has investigated dose response [30], the corner
stone of risk/safety assessment. Our study complements
and extends previous comparisons by evaluating the dose-
dependent hepatic changes in gene expression using
RNA-Seq and Agilent 4x44 K oligonucleotide microarrays.
We used the same normalization and analysis methods to
minimize bias while further investigating the cause of qua-
litative and quantitative differences between RNA-Seq
and Agilent oligonucleotide microarrays. In comparison
to WaferGen SmartChip QRTPCR, we demonstrate
that some differences between RNA-Seq and Agilent
DEG identification may not be as significant as previously
reported.

DEGs were identified using an adapted semi-parametric
normalization approach followed by an empirical Bayes
method that used model-based t values to calculate pos-
terior probability P1(f) values on a per gene and dose
basis [22,23]. Bayes models take into account adjacent
points to consider trends within time course and dose
response data sets. Therefore, P1(¢) values do not test
hypotheses, and can be used to rank and prioritize DEGs
based on their probability of differential expression. This
allows cut-off criteria to be varied in order to include
well characterized responsive genes and mechanistic
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significance in the context of observed phenotypes,
without violating any assumptions. In our study, varying
the cut-off criteria demonstrated that RNA-Seq was
particularly sensitive to P1(¢) changes likely due to its
much larger dynamic range compared to microarrays
(Figure 1A, E).

The influence of sample size on DEG identification
has not been adequately investigated. Power analyses
suggest sample sizes of 3-25 depending on sequencing
depth and budget [37] while others have examined 2, 4,
and 5 replicates using synthetic datasets and various
analysis approaches [20]. We identified comparable num-
bers of DEGs when using 3, 4, or 5 independent replicates
at a sequencing depth of 30 M (Figure 2A). Moreover,
there was a strong correlation across all sample sizes
indicating RNA-Seq responses were not significantly influ-
enced by the sample size (Figure 2B-D), facilitating cross-
technology comparisons using a sample size of 3 in this
study.

Overall, RNA-Seq detected more genes expressed in
the liver (Figure 1A). Many of the genes only detected
on Agilent microarrays could also be identified within
the RNA-Seq dataset by lowering the number of reads
threshold (Figure 1C). Similarly, most DEGs identified
only on Agilent microarrays could also be detected in
the RNA-Seq dataset by lowering the selection criteria,
particularly the P1(¢) cut-off. Comparing RNA-Seq and
Agilent datasets for DEGs identified a 35% — 50% over-
lap (Figure 3A), similar to previous reports [1,13,14].
WaferGen QRTPCR, RNA-Seq and Agilent dose response
curves were remarkably similar for many genes classified
as either RNA-Seq- or Agilent-specific (Figure 4C, D and
Additional file 7: Figure S4, Additional file 8: Figure S5,
Additional file 9: Figure S6, Additional file 10: Figures S7)
suggesting that differences between platforms were due
more to selection criteria as opposed to differences in ex-
pression. Consequently, RNA-Seq quantitatively outper-
formed Agilent microarrays when identifying the total
number of genes expressed in the liver, and differentially
expressed by TCDD (Figure 4B). In addition, RNA-Seq
provided more definitive qualitative data regarding the
identity of the gene that the transcript represented and
identified more genes involved in pathways known to be
affected by TCDD. Previous studies suggest RNA-Seq per-
formance was mixed for detecting the differential expres-
sion of low expressed genes [1,13]. However, detection of
low abundance genes improves dramatically at ~30 M
reads [1,13], the sequencing depth used in this study.

Further analysis of genes exhibiting divergent expres-
sion (e.g. upregulated in RNA-Seq and downregulated in
microarray) identified two principal contributing factors.
First, some Agilent probes were misannotated and did
not target the expected gene possibly due to outdated
annotation provided by manufacturer, but nevertheless,



Nault et al. BMC Genomics (2015) 16:373

requiring re-evaluation and re-annotation. Second, mul-
tiple probes for the same gene also showed divergent
responses indicating either non-specific binding (cross-
hybridization) or the presence of variant transcripts that
targeted individual probes. RNA-Seq analysis mitigates
these disadvantages by using the most recent genome
build available and its associated annotation, while provid-
ing the opportunity to identify treatment-specific tran-
script variants.

Risk assessments typically involve four components:
hazard identification, dose response characterization, ex-
posure assessment and risk characterization. Omic tech-
nologies are expected to improve risk assessment by
providing more qualitative and quantitative data. This
includes the use of gene expression profile or fingerprint
classifiers that not only identify comparable modes/
mechanisms of action in hazard identification, but could
also justify the use of refined uncertainty factors for ex-
trapolation between species. In addition, RNA-Seq pro-
vides a greater number of responsive genes that can be
functionally annotated, associated with a key event, and
modeled for EDs5, values and point of departure (POD)
estimates such as BMD and BMD(L). Despite the chal-
lenges of incorporating omic data into risk assessment,
the goal is to provide data that complements existing
testing guidelines and requirements to support a more
quantitative, mechanistically-based risk assessment.

RNA-Seq and Agilent datasets were analyzed for
TCDD-elicited dose-dependent gene expression using
ToxResponse modeler and BMDExpress. Although only
a small subset of genes exhibited dose-dependent re-
sponses in both technologies (Figure 5A, B), the corres-
pondence between both was strong. Overall, RNA-Seq
POD and EDs, values were considered to be more ac-
curate due to its ability to detect lower abundance genes
and greater dynamic range (Figures 1D, E and 5C, D).
Data compression and lower sensitivity also affects the
slope of the dose response curve which may confound
interpretation of receptor interaction mechanisms and
cross-ligand comparisons used to determine toxic equiva-
lency factor (TEF) estimates for polychlorinated dibenzo-p-
dioxins (PCDDs), dibenzofurans (PCDFs), and dioxin-like
polychlorinated biphenyls (PCBs) [38].

Conclusions

RNA-Seq exhibited superior qualitative and quantitative
performance compared to Agilent microarrays. Our
results are not only consistent with most, if not all, pre-
vious comparative studies [1,12-14], but also provide
additional complementary dose response evidence in a
mouse model. Furthermore, differences between RNA-
Seq and Agilent differential gene expression are largely
due to filtering criteria and gene annotation, not differ-
ences in patterns of expression. Although some results
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between the platforms are comparable, accumulating
evidence supports the use of RNA-Seq over microarrays
for dose response studies.

Methods

Animal handling and treatment

Female C57BL/6 mice from Charles Rivers Laboratories
(Portage, MI) were received on postnatal day 25 (PND25),
housed in polycarbonate cages with cellulose fiber chips
(Aspen Chip Laboratory Bedding, Northeastern Products,
Warrensburg, NY) at 30-40% humidity, and acclimatized
for 4 days using a 12 h light/dark cycle. Mice were fed
ad libitum with Harlan Teklad 22/5 Rodent Diet 8940
(Madison, WI) and had free access to deionized water.
On PND 28 and every following 4th day animals (N =5)
randomly assigned to treatment groups were orally
gavaged with 0.1 mL sesame oil vehicle control or 0.01,
0.03, 0.1, 0.3, 1, 3, 10, or 30 pg/kg TCDD (Dow Chemical
Company, Midland, MI) for a total of 28 days. On day 28
mice were sacrificed and livers were frozen in liquid nitro-
gen, and stored at-80°C. We assumed that randomization
and consistent conditions across all treatment groups
negated any gene expression effects due to differences in
estrous stage. All procedures were carried out with the
approval of the Michigan State University All-University
Committee on Animal Use and Care.

RNA isolation

Frozen liver samples (~100 mg) were transferred to
1.3 mL of TRIzol (Life Technologies, Carlsbad, CA) and
homogenized using a Mixer Mill 300 tissue homogenizer
(Retsch, Germany). Total RNA was isolated according to
manufacturer’s protocol with an additional phenol:chlo-
roform extraction (Sigma-Aldrich, St. Louis, MO). Isolated
RNA was resuspended in RNA storage solution (Life
Technologies). Total RNA was quantified and assessed for
purity by nanodrop (Thermo Scientific, Waltham, MA),
Qubit (Life Technologies), and Bioanalyzer (Agilent Tech-
nologies, Santa Clara, CA). Total RNA quality was also
assessed using the Ayg0/Asgp ratio and by visual inspection
on a denaturing gel. All sample processing and analysis
was performed blinded to treatment group when possible.

Microarray study design

Total RNA from treated animals were hybridized with
vehicle control samples to 4x44 K Agilent microarrays
(version 1; Agilent Technologies, Inc.). Microarrays were
performed with three biological replicates (N =3), com-
monly used in microarray assessments [9,32,33], using
two independent labelings (Cy3 and Cy5) with dye-swap
according to manufacturer’s protocol (Agilent Manual:
G4140-90040 v. 5.7). Microarray slides were scanned at
532 nm (Cy3) and 635 nm (Cy5) on a GenePix 4000B
scanner (Molecular Devices, Sunnyvale, CA). Images were
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analyzed for feature and background (circular region with
a 3x larger diameter around the feature) intensities using
GenePix Pro 6.0 (Molecular Devices). GenePix called a
feature “detected” (i.e., expressed in the liver) when the
median feature intensity was greater than the median
background intensity.

Data were normalized using a semi-parametric ap-
proach [22] in SAS v9.3 (SAS Institute Inc., Cary, NC).
Posterior probabilities (P1(¢)) values were calculated
using an empirical Bayes method based on a per gene
and dose basis using model-based t values [23]. Priors
were estimated using model-based t-values calculated for
all probes and doses. Specifically, the empirical distribu-
tion of f (t, dose) is estimated from the 371,403 t-values
(41,267 probes x 9 doses). The data was annotated by
NCBI Entrez Gene ID provided by manufacturer and
managed in TIMS dbZach data management system [39]
and deposited in the Gene Expression Omnibus database
(GEO; GSE62903).

RNA-Sequencing, alignment, and analysis
RNA-Sequencing was performed at the Michigan State
University Research Technology Support Facility Gen-
omics Core (RTSEF, https://rtsf.natsci.msu.edu/genomics).
In summary, libraries from five independent biological
replicates (N = 5) were prepared using the Illumina True-
Seq RNA Sample Preparation Kit (Illumina, San Diego,
CA) according to manufacturer’s instructions. Library
sizes were confirmed using Caliper GX (Perkin Elmer,
Waltham, MA), and quantified by qPCR using the Kapa
Biosystems quantification kit (Wilmington, MA). Sequen-
cing of libraries was performed by pooling 10 random
samples at equimolar ratios, quantified again by qPCR
(Kapa Biosystems), and distributed across two lanes of the
flow cells to maintain library complexity, and loaded onto
an Illumina HiSeq 2500 and clustered onboard.

The Michigan State High Performance Computer (MSU
HPCC; https://icer.msu.edu/hpcc) was used for read pro-
cessing and analysis. Reads, 1x50 bp with a seven-base
index, were demultiplexed and quality was determined
using FASTQC v0.11.2 (www.bioinformatics.babraham.ac.
uk/projects/fastqc/). Adaptor sequences were removed
using Cutadapt v1.4.1 [40] and low-complexity reads were
cleaned using FASTX v0.0.14 (http://hannonlab.cshl.
edu/fastx_toolkit/index.html). Reads were mapped to the
mouse reference genome (GRCm38 release 74) using
Bowtie 1.0.0 and TopHat v1.4.1 [41] using default para-
maters and a minimum and maximum intron length of
10 and 15000, respectively. Alignments were converted
to SAM format using SAMTools v0.1.19. (samtools.
sourceforge.net/). Gene counts were determined using
HTSeq v0.6.1 [42] in intersection-nonempty mode (-m
intersection-nonempty). In this study, a gene was con-
sidered “detected” (i.e., expressed in the liver) when the
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number of aligned reads was greater than 4, which re-
sulted in 285% of “detected” genes present in all sam-
ples. RNA-Seq data is deposited in GEO (GSE62903).

Counts were transformed through variance stabilizing
transformation (VST) using the DESeq package [19] in R
(www.r-project.org) according to the DESeq reference
manual. Data was normalized using a semi-parametric ap-
proach [22] in SAS v9.3 (SAS Institute Inc., Cary, NC).
Posterior probabilities P1(¢) values were calculated using
an empirical Bayes method based on a per gene and dose
basis using model-based t values [23]. The priors were
estimated using model-based t-values calculated for all
detected genes and doses. For example, the empirical dis-
tribution of f (t, dose) for the n=5 dataset is estimated
from 162,567 t-values (18,063 genes x 9 doses).

Functional enrichment analysis

Functional enrichment analysis was performed using the
Database for Annotation, Visualization, and Integrated
Discovery (DAVID, http://david.abcc.ncifcrf.gov) [43]
filtered for gene ontology biological processes (BP), mo-
lecular functions (MF), and cellular component (CC).
Functional categories were considered enriched when
the —log scale geometric mean p-value < 0.05 (enrichment
score > 1.3).

WaferGen smartchip real-time PCR

Total RNA (2 pg) was reversed transcribed using Super-
Script II (Invitrogen) and oligo-dT primers. The WaferGen
SmartChip (WaferGen Biosystems, Fremont, CA) was pre-
pared according to manufacturer’s instructions at a final
¢DNA concentration of 1.25 ng/ul, primer concentration
of 250 nM, and 1X SYBR Green mastermix (Bio-Rad,
Hercules, CA) dispensed using the WaferGen SmartChip
Multisample Nanodispenser. Amplification (cycling condi-
tions of 2.53 min at 95°C followed by 40 cycles of 34 sec at
95°C and 1.04 min at 60°C, followed by a melt curve) and
detection was performed using the WaferGen Real-Time
PCR Cycler at RTSF. Expression was determined using the
224Ct method standardized to the geometric mean of ref-
erence genes ActB, B2m, Gapdh, Hmbs, Hprt, Rnl8s, and
Rps13. Primer sequences are available in Additional file 5.
Data were examined for normality and statistically tested
by One-way ANOVA with dose as the factor, followed by
Dunnett’s post-hoc test, which contrasts to vehicle control,
using SAS 9.3.

Dose-response modeling

Dose-response modeling for the estimation of EDsgs
was performed using the ToxResponse Modeler [36].
For RNA-Seq ED5o modeling, gene responses were split
into groups of 50 and run in parallel on the MSU HPCC.
Only genes with sigmoidal dose-responses (see Burgoon
et al,, 2008 [36] for example of a sigmoidal dose—response
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curve) were included in the estimation of EDsgs. Point of
departure (POD) estimates benchmark dose (BMD) and
lower 95% confidence limit BMD (BMDL) were estimated
as previously described using BMDExpress [8,35,44].
Briefly, gene signal intensities were fit to Hill, power, lin-
ear, and polynomial 2 models with a benchmark response
factor of 1.349. Best-fit model selection was performed as
previously described [8].
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