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Abstract

Background: Harvest index (HI), the ratio of grain yield to total biomass, is considered as a measure of biological
success in partitioning assimilated photosynthate to the harvestable product. While crop production can be dramatically
improved by increasing HI, the underlying molecular genetic mechanism of HI in rapeseed remains to be shown.

Results: In this study, we examined the genetic architecture of HI using 35,791 high-throughput single nucleotide
polymorphisms (SNPs) genotyped by the Illumina BrassicaSNP60 Bead Chip in an association panel with 155 accessions.
Five traits including plant height (PH), branch number (BN), biomass yield per plant (BY), harvest index (HI) and seed yield
per plant (SY), were phenotyped in four environments. HI was found to be strongly positively correlated with SY, but
negatively or not strongly correlated with PH. Model comparisons revealed that the A–D test (ADGWAS model) could
perfectly balance false positives and statistical power for HI and associated traits. A total of nine SNPs on the C genome
were identified to be significantly associated with HI, and five of them were identified to be simultaneously associated
with HI and SY. These nine SNPs explained 3.42 % of the phenotypic variance in HI.

Conclusions: Our results showed that HI is a complex polygenic phenomenon that is strongly influenced by both
environmental and genotype factors. The implications of these results are that HI can be increased by decreasing PH or
reducing inefficient transport from pods to seeds in rapeseed. The results from this association mapping study can
contribute to a better understanding of natural variations of HI, and facilitate marker-based breeding for HI.
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Background
Yield in rapeseed (Brassica napus L.; AACC, 2n = 38)
has attracted the interest of plant breeders for many
years. In the past decades, the productivity levels have
increased due to the extensive use of heterosis in hybrid
breeding. However, the average heterosis percentage for
vegetative biomass, seeds per pod and 1,000-seed weight
are only 25–30 %, 17.5 %, and 1.8 %, respectively [1].
Leaves, pods, and other above-ground green tissues are
able to photosynthesize as “source” organs, while seeds
are storage organs that serve as the “sink” for photosyn-
thetic products. The usual incomplete development
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filling of seeds and the low heterosis rate of seed weight
suggest that when the “sources” are in surplus, the sinks
are not fully filled or utilized. This could be an indica-
tion of unsmooth limitation in the “flow”, resulting in
lower heterosis in seed weight. Chhabra [2] and Shen
et al. [3] observed that when the source and sink organs
are not limiting, and the translocation of assimilates is
the most critical limiting factor for seed yield in Bras-
sica. Similar observations were reported for rice and
triticale [4]. Therefore, the balance among photosyn-
thetic “source”, “flow” and “sink” is critical for yield im-
provement; this balance can be evaluated using harvest
index (HI) as the criterion.
The HI is the ratio of grain yield to total biomass (usually

the total above–ground biomass). This index is considered
as a measure of the biological success in partitioning
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assimilated photosynthate to the harvestable product [5, 6].
As an integrative trait, HI was identified to be highly corre-
lated with a number of yield-related traits in important crop
species such as rice [7, 8] and sorghum [9–11]. Generally,
the correlated traits are interrelated, and an increase in one
component may lead to a decrease or an increase in others.
Interestingly, the increase in HI almost fully accounted for
the progressive increase in the grain yield potential of
wheat, barley and rice between 1900 and 1980 [12]. Thus, a
better understanding of the genetic mechanism of HI is
crucial for interpreting agronomically important characters
such as yield.
Association mapping, also called linkage disequilibrium

(LD) mapping, utilizes the large number of historical re-
combination events that have occurred throughout the
entire evolutionary history of the mapping population,
allowing fine-scale QTL mapping [13, 14]. Very recently,
association mapping performed with genomic, transcrip-
tomic, epigenetic and metabolic data has provided abun-
dant information on the genetic architecture of complex
quantitative traits in a number of crop species such as
maize [15–19], Arabidopsis [20], rapeseed [21–23], and rice
[24, 25]. However, the false positive rate caused by popula-
tion structure is difficult to predict. Several methods have
been proposed to deal with this problem. Aranzana et al.
[26] found that removing the genetically distinct and
phenotypically extreme accessions for flowering time could
significantly reduce the false positive rate in Arabidopsis.
Huang et al. [24] successfully corrected the elevated false
positive rate by developing an analytical framework for
haplotype-based de novo assembly of low-coverage sequen-
cing data and identified candidate genes for 18 associated
loci through detailed annotation in rice. Li et al. [21] and
Cai et al. [22] controlled false associations in association
mapping for seed quality and yield-related traits in rapeseed
by using model comparisons (GLM, Q, PCA, K, PCA+K
and Q+K model). Yang et al. [27] studied the genetic
architecture of 17 agronomic traits in an enlarged
maize association panel by a new nonparametric model,
the Anderson–Darling (A–D) test, also known as the
ADGWAS model, and found that the false positives and
statistical power were efficiently balanced. Additionally,
joint linkage-association mapping strategies were proposed
to evaluate the false association in soybean [28]. These re-
ports suggested that association mapping will be a powerful
approach for exploring the QTLs responsible for HI.
In the present study, a genome-wide association study

(GWAS) of five traits (plant height (PH), seed yield per
plant (SY), biomass yield per plant (BY), branch number
(BN) and HI) was performed with a panel of 155 accessions
using 35,791 genomic SNPs from the Illumina Brassi-
caSNP60 Bead Chip. To control spurious associations, we
analyzed the genetic population structure and familial
relatedness in the GWAS population. Seven different
mapping models were tested for the best fit of each trait.
The chosen model was used to map markers associated
with the five traits phenotyped in four environments. The
objectives of the present study were to: (1) obtain a better
understanding of HI of inbred lines; (2) examine the rela-
tionship between HI and other traits; (3) perform associ-
ation mapping for the five traits; and (4) discuss the
implications of the results of this study for further marker-
assisted selection breeding in B. napus.

Methods
Plant materials and field experiments
The genetic population consisted of 155 genetically diverse
inbred lines (Additional file 1: Table S1). All the accessions
were provided by the National Research Center of Rape-
seed Engineering and Technology, Huazhong Agricultural
University, Wuhan, China.
The 155 inbred lines were grown in a randomized

complete block design with two replications in four differ-
ent environments: Huanggang (32.27° N, 114.52° E) and
Xiangyang (32.01° N, 112.08° E) in the 2011/2012 growing
season; and Wuhan (29.58° N, 113.53° E) and Xiangyang
(32.01° N, 112.08° E) in the 2012/2013 growing season. All
four sites were located along the middle reaches of the
Yangtze River in China. For convenience, the four sites are
hereafter referred to as E1, E2, E3 and E4. A plot size of
three rows (12 plants per row) was used with two replica-
tions. A spacing of 30 × 20 cm between rows and between
plants within a row was used at all locations. The manage-
ment of the field experiments was performed in accordance
with local standard practices. In each plot, PH, BN, BY and
SY were measured for five representative B. napus plants at
maturity. The HI (%) was calculated as the ratio of SY to BY.

Genotype and data analyses
The whole population of inbred lines was genotyped
using the Brassica 60 K Illumina® Infinium SNP array by
Emei Tongde Co. (Beijing) according to the manufacturer’s
protocol (http://www.illumina.com/technology/beadarray-
technology/infinium-hd-assay.html). The SNP data were
clustered and called automatically using Illumina BeadStudio
genotyping software. Those SNPs with either AA or
BB frequency equal to zero (i.e., monomorphic), call fre-
quency < 0.9, or minor frequency < 0.05 were excluded.
The data for the five traits were tested by analysis of

variance (ANOVA) using SPSS version 19.0 (IBM Corp.,
Armonk, NY, USA).

Genetic diversity and population structure analysis
The population structure was inferred using the software
package STRUCTURE v2.3.4 [29]. Five independent runs
were performed with a K-value (the putative number of gen-
etic groups) from 1 to 10, with the length of burning period
and the number of MCMC (Markov Chain Monte Carlo)
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Table 1 Phenotypic variations of the five traits
Trait Env. Mean Ậ ± SD Range Skew Kurt CV%

PH E1 * * * * *

E2 * * * * *

E3 125.87 ± 0.788 97.00–156.70 −0.03 0.33 11.17

E4 128.77 ± 0.956 93.71–155.89 −0.48 0.39 12.41

BN E1 6.91 ± 0.081 4.40–9.25 0.07 −0.31 16.78

E2 6.15 ± 0.072 4.49–8.90 0.70 0.27 16.61

E3 4.42 ± 0.083 4.20–7.80 0.10 0.48 24.28

E4 7.56 ± 0.106 4.46–12.05 0.31 0.56 19.44

BY E1 43.53 ± 0.943 21.63–71.74 0.38 −0.38 26.45

E2 29.79 ± 0.642 15.86–77.86 1.77 8.38 26.35

E3 46.54 ± 0.725 22.00–71.50 0.34 −0.07 19.01

E4 41.03 ± 0.888 16.34–78.04 0.48 0.53 26.41

SY E1 9.68 ± 0.265 4.11–18.11 0.34 −0.54 33.39

E2 8.09 ± 0.179 4.12–19.47 1.08 1.82 26.95

E3 9.67 ± 0.251 4.85–20.79 1.03 1.31 34.90

E4 9.84 ± 0.236 4.38–18.16 0.44 −0.15 29.24

HI E1 0.22 ± 0.003 0.15–0.33 0.43 −0.29 17.18

E2 0.27 ± 0.003 0.17–0.34 −0.55 0.33 11.54

E3 0.20 ± 0.004 0.15–0.36 1.32 2.94 20.06

E4 0.24 ± 0.002 0.19–0.30 0.06 −0.38 9.71

Trait: PH plant height, BN branch number, BY biomass yield per plant, SY seed
yield per plant, HI harvest index.
Env: E1 Huanggang in 2011, E2 Xiangyang in 2011, E3 Wuhan in 2012,
E4 Xiangyang in 2012.
SD: standard deviation. CV(%): coefficient of variation.
*: data not collected.

Luo et al. BMC Genomics  (2015) 16:379 Page 3 of 10
replications after burning both set to 100,000 iterations
under the ‘admixture model’. The most likely k-value was
determined by the log probability of data [LnP(D)] and an
ad hoc statistic Δk based on the rate of change of LnP(D)
between successive k values as described by Evanno et al.
[30]. The cluster membership coefficient matrices of repli-
cate runs from STRUCTURE were integrated to obtain the
Q matrix using CLUMPP software [31] and graphically dis-
played using DISTRUCT software [32]. Nei’s genetic distance
[33] was estimated and used to construct an unrooted
neighbor-joining tree representing the genome-wide rela-
tionship among the accessions. The tree was constructed
using the Unweighted Pair-Group Method with Arithmetic
mean (UPGMA) method with PowerMarker software. The
tree was visualized using FigTree (http://tree.bio.ed.ac.uk/
software/figtree/). The genetic relatedness between individ-
uals was estimated by principal component analysis (PCA)
using NTSYSpc version 2.11 [34].

Genome-wide association analysis
The effects of population structure (Q, PC) and kinship (K)
on the HI-related traits were evaluated by GWAS using
seven models: (i) GLM, without controlling for Q and K;
(ii) Q model, controlling for Q; (iii) PCA model, controlling
for PC, with the top two principal components used as
fixed effects; (iv) K model, controlling for K; (v) PCA+K
model, controlling for both PC and K; (vi) Q+K model,
controlling for both Q and K; and (vii) ADGWAS model,
controlling for Q. The GLM, Q and PCA models were per-
formed using a general linear model (GLM); the K, PCA+K
and Q+K models were performed using a mixed linear
model (MLM) with optimum compression and popula-
tion parameters previously determined (P3D) by variance
component estimation in TASSEL 3.0 [35, 36]. The A–D
[27] test, also known as the nonparametric model or
ADGWAS model, was performed using an R script,
ADGWAS (http://www.maizego.org/Resources.html). Sta-
tistically significant loci were identified by comparing P
values with the Bonferroni threshold (1/35791 = 2.79E-5).

Phenotypic variation explained by multiple SNPs
Stepwise regression was performed to examine the effect of
multiple alleles with different functional polymorphisms on
the HI traits, and to estimate the total variance explained
(R2), using the lm function in R [37].

Results
Phenotypic variations for the five traits
Table 1 lists the details of the phenotypic variations of the
five traits (PH, BN, SY, BY and HI). The five traits were
normally distributed in the population (except for BY in
E2). In the four environments, HI ranged from 0.15 to 0.36
with an average of 0.20 to 0.27. Comparatively, HI in E4
showed the lowest coefficient of variation (9.71 %), while
SY in E3 had highest coefficient of variation (34.90 %)
among all five traits.
Two-factor ANOVA suggested that the differences

caused by genotypes and environments were significant at
the 0.05 and 0.01 levels, respectively, for all of the complex
traits (Additional file 2: Table S2). There was not a strong
correlation, or a negative correlation, between HI and PH
(−0.29 at p = 0.01 level at E3, 0.01 at E4), but a strong posi-
tive (P = 0.01) correlation between HI and SY (0.34–0.83
across the four different environments). The BN and BY
were significantly positively (P = 0.01) correlated with HI in
E3, but the correlations were relatively weak in the other
environments (Additional file 3: Table S3).

Genetic diversity and population structure analysis
The population structure of the 155 accessions was identi-
fied based on 7,600 SNPs using STRUCTURE software
(Fig. 1). Clustering inference performed with possible clus-
ters (K) from 1 to 10 showed that the most significant
change of likelihood occurred when K increased from 2 to
3, and the highest Δk value was observed at k = 2 (Fig. 1A,
B, C). A radial tree created with PowerMarker had two
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Fig. 1 Analysis of population structure of 155 rapeseed accessions using STRUCTURE and Unrooted UPMGA. (A) Estimated LnP(K) of possible clusters (k)
from 1 to 10. (B) ΔK based on rate of change of LnP (K) between successive K values. (C) Population structure based on k= 2. Red represents Subgroup
Q1; green, Subgroup Q2. (D) Dark blue, Subgroup Q1; fuchsia, Subgroup Q2. (E) Principal components analysis (PCA)
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main branches for the 155 accessions (Fig. 1D). The
PCA also displayed the pattern of the genetic structure
of the GWAS population (Fig. 1E). All the parameters
suggested that the two-group model (subgroups Q1 and
Q2) sufficiently explained the genetic structure among
the 155 accessions, and inspection also confirmed that
the phenotypes were not randomly distributed with re-
spect to this genetic structure. Altogether, 118 acces-
sions belonged to subgroup Q1, and 37 accessions
belonged to subgroup Q2.
Model comparisons for controlling false associations
Association analyses were performed for the five traits
to evaluate the effects of population structure (Q, PC)
and familial relationship (K) on controlling false associ-
ations. Among all the tested models (GLM, Q, PCA, K,
PCA+K, Q+K and ADGWAS), the P values from the
ADGWAS model showed the best fit to the expected P
values for all five traits (Fig. 2A, B, C, D, E). Thus, the
ADGWAS model was selected to conduct association
mapping for HI and its related traits.



Fig. 2 Quantile–quantile plots of estimated−log10 (P) from association analysis of harvest index (HI) and associated traits. (A) Branch number. (B)
Plant height. (C) Seed yield per plant. (D) Biomass yield per plant. (E) Harvest index. Black line represents expected P values with no associations.
Red line represents observed P values using GLM model. Green line represents observed P values using Q model. Blue line represents observed
P values using PCA model. Cyan line represents observed P values using K model. Pink line represents observed P values using the PCA+K model. Orange
line represents observed P values using Q+K model. Gray line represents observed P values using ADGWAS model. (Color figure online)
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Association mapping for complex traits
In total, 35,791 polymorphisms with minor allele fre-
quency (MAF) ≥ 0.05 were selected for association
mapping. Of these, 29 SNPs were identified to be
highly significantly associated with the five complex
traits (P < 2.79 E-05; Table 2; Fig. 3).
For PH, two SNPs (Bn-scaff_16300_1-p216539 and
Bn-scaff_16300_1-p222857) were detected on C2, and
these SNPs explained 1.19 % of the total phenotypic
variance. For BN, six significant SNPs were detected
on A3, and could explain 2.04 % of the total phenotypic
variance. For BY, only one SNP (Bn-A01-p8418102) on



Table 2 Summary of SNPs significantly associated with complex traits
Trait SNP Chromosome Position Allele MAF P Value R2 (%)

PH Bn-scaff_16300_1-p216539 C2 31484854 [T/C] 0.22 6.63E-06 1.19

Bn-scaff_16300_1-p222857 C2 31483855 [T/G] 0.23 6.82E-06

BN Bn-A03-p22138059 A3 22138109 [T/C] 0.24 6.45E-06 2.04

Bn-A03-p22145945 A3 22145995 [T/C] 0.24 7.23E-06

Bn-A03-p22237846 A3 22237796 [A/G] 0.23 8.40E-06

Bn-A03-p22238801 A3 22238851 [A/G] 0.25 9.36E-06

Bn-A03-p22149000 A3 22148950 [T/G] 0.25 9.40E-06

Bn-A03-p14121492 A3 14121442 [T/C] 0.3 1.74E-05

SY Bn-scaff_16962_1-p506943 C8 18144556 [A/G] 0.34 1.78E-05 3.96

Bn-scaff_16962_1-p519147 C8 18381806 [T/C] 0.34 2.01E-05

Bn-scaff_16962_1-p494346 C8 18403153 [A/G] 0.33 2.10E-05

Bn-scaff_16962_1-p378035 C8 18497622 [T/G] 0.35 2.24E-05

Bn-scaff_16962_1-p504805 C8 18395390 [A/G] 0.34 2.31E-05

Bn-scaff_16962_1-p543498 C8 18359355 [A/G] 0.33 2.31E-05

Bn-scaff_16962_1-p359041 C8 18499598 [T/C] 0.35 2.55E-05

Bn-scaff_16962_1-p376380 C8 18498612 [T/G] 0.36 2.55E-05

Bn-scaff_16962_1-p432767 C8 18466493 [A/G] 0.36 2.55E-05

Bn-scaff_16962_1-p441134 C8 18458145 [T/G] 0.36 2.55E-05

Bn-scaff_16962_1-p542817 C8 18365405 [A/G] 0.34 2.66E-05

BY Bn-A01-p8418102 A1 8418052 [A/G] 0.39 1.63E-05 0.76

HI Bn-scaff_16231_1-p2306931 C8 18546937 [T/C] 0.49 8.14E-07 3.42

Bn-scaff_16962_1-p426711 C8 18472658 [T/C] 0.35 1.12E-06

Bn-scaff_16231_1-p2303901 C8 18301213 [A/G] 0.5 1.28E-06

Bn-scaff_16962_1-p378035 C8 18497622 [T/G] 0.35 1.59E-06

Bn-scaff_16962_1-p359041 C8 18499598 [T/C] 0.35 1.68E-06

Bn-scaff_16962_1-p376380 C8 18498612 [T/G] 0.36 1.68E-06

Bn-scaff_16962_1-p432767 C8 18466493 [A/G] 0.36 1.68E-06

Bn-scaff_16962_1-p441134 C8 18458145 [T/G] 0.36 1.68E-06

Bn-scaff_16962_1-p351914 C8 18506723 [T/G] 0.48 1.71E-05

MAF Minor allele frequency, R2(%) Amount of phenotypic variation for each trait explained by multiple SNPs.
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A1 was detected (P = 1.63 E-05). This SNP could only
explain 0.76 % of the total phenotypic variance. For SY,
11 SNPs on C8 were detected. These SNPs could
explain 3.96 % of the total phenotypic variance. For HI,
nine SNPs on C8 were detected. These SNPs could
explain 3.42 % of the total phenotypic variance. Among
these SNPs, five were co-associated with HI and SY,
but there were no SNPs that were co-associated with
HI and the other three traits (PH, BN and BY). LD ana-
lyses showed that r2 values of most pairs of the mul-
tiple SNPs on C8 were >0.20, and those of most pairs
of multiple SNPs on A3 were >0.50, except the Bn-
A03-p14121492 (Additional file 4: Figure S1). These
results suggested that the majority of the multiple
SNPs on C8 and A3 were in high linkage disequilib-
rium with each other [38].
Discussion
Phenotypic variations in harvest index
For crops such as rice, wheat, barley and maize, HI has
been shown to be a variable factor, with a value of
approximately 0.50 [39]. Soybean, one of the most
important oil crops, has a HI ranging from 0.4 to 0.6
[40, 41], and the HI has been successfully maximized
during breeding [42]. However, the average HI of B.
napus was reported to be approximately 0.2–0.3 [43, 44].
In our study, the range of the HI of the GWAS popula-
tion could be >0.30 in a single environment (Table 1),
indicating that there is still great potential for HI im-
provement. Therefore, increasing HI might be an alterna-
tive strategy to increase seed yield gain in B. napus.
Quantitative traits related to harvest index show a

range of sensitivities to environmental factors. Yang



Fig. 3 Manhattan and quantile–quantile plots generated from genome-wide association analysis results for complex traits. (A) Plant height. (B) Branch
number. (C) Seed yield per plant. (D) Biomass yield per plant. (E) Harvest index. Blue horizontal line depicts Bonferroni significance threshold (2.79 E-5)
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et al. [39] showed that proper crop management holds
great promise to enhance the HI of rice. D’Andrea [45]
evaluated the effects of the genotype and environment
interaction on variations in plant grain yield, HI and
biomass production at maturity in maize. In the present
study, HI and its associated traits were significantly af-
fected by the environment and genotype (Additional
file 2: Table S2), consistent with the results of a study
on rice [46].
The correlations among HI and other traits indicated

that HI was negatively or not strongly positively corre-
lated with PH (Additional file 3: Table S3). Interestingly,
the HI of rice has increased primarily due to the intro-
duction of the semi-dwarf gene [47, 48]. In this study,
HI was strongly significantly correlated with SY in mul-
tiple environments, but exhibited a complex relation-
ship with BY and BN (Additional file 3: Table S3).
Rapeseed plants normally have flourishing leaves, pods,
flowers and other above-ground green tissues, but their
seeds are often only partially filled, probably because
most of the photosynthetic products are stored in
flowers and pods, rather than seeds. Also, the photosyn-
thetic products in pods are not efficiently transported to
seeds, resulting in poor seed filling. These results have
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laid the genetic basis for increasing HI in rapeseed by
properly decreasing PH and/or improving transport effi-
ciency from pods to seeds.

Population structure and model comparison
Our results demonstrate the significant potential effect of
population structure on the false positive rate in associ-
ation mapping. Among the seven models, the GLM model
performed similarly to the Q model, K model and Q+K
model for all five traits (Fig. 2A, B, C, D, E). The PCA
model, PCA+K model, K model and Q+K model per-
formed better than the GLM model and the Q model, and
might indicate potentially false negatives for BN, PH and
BY (Fig. 2A, B, D). For HI, the K and Q+K models did not
perform better than the GLM and Q models, and PCA,
and PCA+K models could reduce false positives, but may
have indicated potentially false negatives (Fig. 2E). Com-
pared with the other six models, ADGWAS showed the
best fit for the association analysis (Fig. 2). Therefore, the
efficiency of the seven models varied from trait to trait. To
reduce the frequencies of false positives and false negatives,
the ADGWAS model was used for the association analysis
of HI and its related traits.
Several methods have been proposed to deal with false

positives caused by population structure. Flowering time is
likely involved in local adaptation, and removing the genet-
ically distinct and phenotypically extreme accessions can
indeed reduce the false positive rate [26]. However, no in-
formation is available about other traits such as yield and
resistance. Haplotype-based de novo assembly of the
sequencing data is an alternative approach to estimate the
effect of population structure on association statistics [24].
We did not try this approach for two reasons: first, rape-
seed is an allopolyploid species with a complex genome
structure and a number of repeat sequences. Second, to
date, there have been no reports on map-based cloning of
a causal gene in a QTL of rapeseed. The combination of
association mapping and linkage mapping can provide
both the power and resolution needed to detect QTL of
interest, and have proven to be more successful than either
strategy alone [28]. Thus, the linkage mapping strategy will
be used in our future work to identify the potential candi-
date genes by map-based cloning.

Genetic dissection of harvest index
The HI is an integrative trait including the net effects of all
physiological processes during the crop cycle, and is corre-
lated with yield-related traits. The phenotypic expression
of HI is theoretically affected by genes responsible for
yield-related traits. Li et al. [21] detected an associated
SNP Bn-A10-p12639538 at 2.67 Mb of A7, which ex-
plained 4.9 % of the total seed weight variation in rapeseed.
Cai et al. [22] identified 43 loci (P < 0.001) associated with
plant height, first branch height, inflorescence length,
silique length, seeds per silique and seed weight in rape-
seed. Li et al. [23] identified 13 consensus QTL for seed
weight and 9 QTL for silique length; these QTL explained
0.7–67.1 % and 2.1–54.4 % of the phenotypic variance in
seed weight and silique length in rapeseed, respectively. In
our previous study, a functional marker derived from the
sucrose transporter gene (SUT) was co-localized with a
seed yield QTL in B. napus [49], and allelic variations in
BnA7.SUT1 were associated with seed yield-related traits
(BnA7.SUT1.b and its promoter were linked to higher seed
yield, while BnA7.SUT1.a was associated with increased
seed weight) [50]. However, no QTL or loci was identified
to be directly or indirectly associated with HI in rapeseed,
and no QTL, or loci was common with the SNPs detected
in the present study. To our knowledge, this is the first re-
port of a QTL analysis of HI-related traits in rapeseed. In
the present study, nine SNPs were detected to significantly
associate with HI, and could explain 3.42 % of the observed
variation (Table 2). These results have confirmed that HI is
a complex polygenic phenomenon in rapeseed, like in rice
[51]. Five SNPs were detected to significantly associate with
both HI and SY. These SNPs might represent a shared
genetic mechanism between the HI and SY in rapeseed.
Additionally, PH was correlated with HI, but no SNP was
simultaneously associated with PH and HI, possibly be-
cause the SNPs associated with PH did not directly affect
HI. None of the nine HI SNPs co-located with BY and BN
SNPs, which was largely consistent with the observation
that there was a significant phenotypic correlation between
these traits only in E3, and not in the other three environ-
ments (Additional file 3: Table S3).
Conclusions
A whole genome scan identified a total of nine signifi-
cant SNPs for HI. The results can contribute to a better
understanding of natural variations of HI, and provide a
useful resource for marker-assisted selection breeding.
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