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Abstract

Background: The advent of the NGS technologies has permitted profiling of whole-genome transcriptomes (i.e, RNA-Seq)
at unprecedented speed and very low cost. RNA-Seq provides a far more precise measurement of transcript levels and
their isoforms compared to other methods such as microarrays. A fundamental goal of RNA-Seq is to better identify
expression changes between different biological or disease conditions. However, existing methods for detecting
differential expression from RNA-Seq count data have not been comprehensively evaluated in large-scale RNA-Seq
datasets. Many of them suffer from inflation of type | error and failure in controlling false discovery rate especially
in the presence of abnormal high sequence read counts in RNA-Seq experiments.

Results: To address these challenges, we propose a powerful and robust tool, termed deGPS, for detecting differential
expression in RNA-Seq data. This framework contains new normalization methods based on generalized Poisson
distribution modeling sequence count data, followed by permutation-based differential expression tests. We systematically
evaluated our new tool in simulated datasets from several large-scale TCGA RNA-Seq projects, unbiased benchmark
data from compcodeR package, and real RNA-Seq data from the development transcriptome of Drosophila. deGPS can
precisely control type | error and false discovery rate for the detection of differential expression and is robust in the
presence of abnormal high sequence read counts in RNA-Seq experiments.

Conclusions: Software implementing our deGPS was released within an R package with parallel computations
(https://github.com/LL-LAB-MCW/deGPS). deGPS is a powerful and robust tool for data normalization and detecting
different expression in RNA-Seq experiments. Beyond RNA-Seq, deGPS has the potential to significantly enhance future
data analysis efforts from many other high-throughput platforms such as ChIP-Seq, MBD-Seq and RIP-Seq.
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Background

Next-generation sequencing (NGS) technologies parallelize
the sequencing processes and produce millions of short-
read sequences concurrently. The advent of the NGS
technologies has permitted profiling of whole-genome
transcriptomes by RNA-Seq, at unprecedented speed and
very low cost. RNA-Seq provides a far more precise meas-
urement of transcript levels and their isoforms compared
to other methods such as microarrays [1].
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In RNA-Seq experiments, millions of short sequence
reads are aligned to a reference genome and the number
of reads that fall into a particular genomic region is re-
corded, as read count data. These regions of interest are
annotated as microRNA (miRNA), small interfering RNAs
(siRNA), long noncoding RNAs (IncRNA), or messenger
RNA (mRNA) in the context of RNA-Seq experiment,
here all referred to as transcripts. The read count is
linearly related to the abundance of target transcripts [2].
A major objective of RNA-Seq is to better identify count-
based expression changes between different biological or
disease conditions. A major challenge in differential ex-
pression analysis in RNA-Seq data is the unexpectedly
large variability of sequence count data among transcripts.
The observed count data are integers ranging theoretically
from zero to infinite. Furthermore, read counts observed
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at a particular transcript location are limited by the depth
of sequencing coverage and are dependent on the relative
abundance of other transcripts. This differs from micro-
array experiments, where probe intensities for measuring
transcript expression are independent of each other [3].

These unique features contained in RNA-Seq data
have motivated the development of a number of statis-
tical methods for data normalization and differential ex-
pression (DE) detection. Typical approaches use Poisson
or negative binomial (NB) distribution to model count-
based expression data. The Poisson distribution is com-
monly applied to models resulting in counting processes.
It has a single parameter, which is uniquely determined
by its mean. An important property of the Poisson dis-
tribution is that the mean equals its variance. However,
read counts show a large variability in RNA-Seq experi-
ments, and their variance is often much larger than their
mean [4]. This is called the overdispersion problem.
When overdispersion exists, the resulting Poisson-based
tests will lead to biased and misleading conclusions.

To address the overdispersion problem, several statis-
tical methods including DESeq [5] and edgeR [6] have
been developed to model count data with NB distribu-
tion. The NB model adds an extra term to the variance
of Poisson model to account for overdispersion. There
are some technical differences between DESeq and
edgeR for estimating the variance parameter of NB dis-
tribution. For instance, edgeR assumes that mean and
variance are related and thus allows for estimating a
common dispersion parameter throughout the whole ex-
periment, followed by estimating trended and tagwise
dispersions. DESeq allows for a flexible, mean-dependent
location estimation of the dispersion.

Another alternative to the Poisson distribution is the
generalized Poisson (GP) distribution [7]. The GP distri-
bution introduces an extra parameter to the usual Poisson
distribution. This extra parameter induces a loss of
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homogeneity in the stochastic counting processes mod-
eled by the distribution. Both the NB and GP distributions
can address the overdispersion problem and fix the bias
resulting from using standard Poisson models. With same
first two moments, GP distribution has heavier tail than
NB distribution while NB distribution has larger mass at
zero [7]. It is commonly observed that RNA-Seq data
carry excessive zeroes or small read counts and are cen-
sored due to potential mapping errors. The GP distribu-
tion appears to fit such sequence count data better than
the NB distribution on small values.

There are also some other methods developed for finding
DE in RNA-Seq studies, e.g., NBPSeq [8], TSPM [9], baySeq
[10], EBSeq [11],NOISeq [12], SAMseq [13] ShrinkSeq [14]
and PoissonSeq [15]. Many of them were comprehensively
reviewed and evaluated for their performance for finding
count-based DE in several recent studies [3,16].

Here, we propose a powerful normalization method
based on GP distribution modeling sequence count data,
followed by regular permutation-based DE tests of GP-
normalized data. Through comprehensive simulations,
our method shows improved results for DE expression,
in terms of false discovery rate (FDR), and sensitivity
and specificity, in RNA-Seq experiments.

Results

Overview of deGPS

To identify biologically important changes in RNA ex-
pression, we propose a more accurate and sensitive two-
step method for analyzing sequence count data from
RNA-Seq experiments (Fig. 1). Here, we implement our
method in an R statistical package, termed “deGPS”
(https://github.com/LL-LAB-MCW). To speed up permu-
tation tests, deGPS also provides efficient parallel computa-
tion using multi-core processors. In Step 1, two different
methods based on the GP distribution, namely GP-
Quantile and GP-Theta, were developed for normalizing

Step 1.
Normalization

GP-Quantile

GP-theta

Fig. 1 Overview of deGPS for analyzing sequence count data in RNA-Seq
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sequence count data. These two GP-based methods differ
in parameter estimation and data transformation. Gener-
ally, GP distributions fit sequence count data better than
NB distributions on transcripts over a wide range of rela-
tive abundance in RNA-Seq experiments (Fig. 2). Other
commonly used normalization methods including global,
quantile [17], locally weighted least squares (Lowess) [18],
and trimmed mean method (TMM) [19] for high-
throughput data, as is used for microarrays, can be also
adopted in deGPS. The latter normalization methods are
based on either linear scaling or sample quantiles instead
of modeling sequence count data. Normalization in Step 1
removes potential technical artifacts arising from unin-
tended noise, while maintaining the true differences be-
tween biological samples.

After data normalization, DE detections are performed
in Step 2. We employ the empirical distribution of
T-statistics to determine the p-values of DE tests. To ob-
tain empirical distributions, we first randomly shuffle
the samples between groups, then calculate T-statistics
in permuted samples, and finally merge T-statistics from
all transcripts without any averaging as one whole em-
pirical distribution. The number of transcripts analyzed
in a typical RNA-Seq experiment is often large, ranging
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from hundreds to ten of thousands. Using this sampling
strategy, reliable empirical distributions can be obtained
in small sample sizes. The permutation-based DE test in
Step 2 is robust and powerful when sample size is small.

Simulation strategies

To evaluate the performance of deGPS, we conducted
comprehensive simulations under a range of scenarios
comparable to recent RNA-Seq studies. The advantages
and disadvantages of each tool are difficult to elicit for a
particular small data set. Therefore, we first simulated se-
quence count data from two large-scale RNA-Seq studies
from The Cancer Genome Atlas (TCGA), including 491
miR-Seq libraries (Additional file 1) and 100 mRNA-Seq
libraries in human lung tumor tissues (Additional file 2).

To estimate type I error under null hypothesis, we
randomly sampled the same number of subjects from
our downloaded RNA-Seq datasets into two groups each
with 5 subjects. Type I error is defined as the proportion
of transcripts with nominal p-values less than 0.05 from
statistical tests under null hypothesis. To estimate FDR
and true positive rate (TPR) (i.e., statistical power) under
alternative hypotheses, we first randomly generated two
groups of samples and randomly chose a subset of
transcripts. Subsequently, we made two types of changes
in the selected transcripts to create DE between two
groups. In the “shift” transformation, we added varied
quantities (with variations as one fifth of the added
values) of read counts into the selected transcripts in
either group. In the “scaling” and “shift” transformation,
we multiplied the read counts of selected transcripts by
varied quantities (with variations as one fifth of the
multiplied values) after applying the “shift” transform-
ation (Additional file 3). In our deGPS method, nominal
p-values were adjusted by the Benjamini-Hochberg
procedure [20]. FDR is defined as the proportion of
transcripts identified by a statistical test with a significance
level of 0.05 (i.e., adjusted p-values < 0.05) that are indeed
false discoveries (i.e., non-DE transcripts); TRP is defined
as the proportion of DE transcripts identified by a statis-
tical test with a significance level of 0.05. Each simula-
tion was replicated 1,000 times.

In the real data-driven simulations, sequence count
data were normalized by GP-Theta or GP-Quantile
methods before applying our permutation-based DE
tests. For the purpose of comparison, we also included
in the simulation four other normalization methods
(namely, Global, Lowess, Quantile, and TMM) that are
not based on the GP distribution, but are commonly
used for high throughput data such as those from micro-
array [21,22]. Our DE tests were then applied to the nor-
malized data generated by all of these methods
(Additional file 4). We also chose four additional tools,
edgeR (v3.6.7), DESeq (v1.16.0), DESeq2 (v1.4.5), and



Chu et al. BMC Genomics (2015) 16:455

SAMseq (v2.0) which are currently among the top per-
formers of differential analysis of sequence count data
[16]. Prior to DE tests, edgeR performs TMM, relative
log expression (RLE) or upper quartile for data
normalization in its own R package [19]. DESeq and its
variant (DESeq2) use a similar RLE approach for data
normalization by creating a virtual library that every sam-
ple is compared against [5]. Similarly, nominal p-values
output from these R packages were adjusted by the
Benjamini-Hochberg (BH) procedure for evaluating FDR
and TPR [20]. Note that edgeR has multiple user-defined
parameter settings while both DESeq and DESeq2 were
applied by default setting. We present the results from the
most commonly used TMM normalization with glmLRT
(named edgeR1) and gImQLF tests (named edgeR2),
which generally have better performance than the other
setting (Additional file 3). SAMseq were implemented
with default parameter setting.

In addition to the above data-driven simulation strategy,
we also used compcodeR for benchmarking of DE analysis
methods [23]. The compcodeR package provides function-
ality for simulating realistic RNA-seq count data sets and
an interface for implementing several commonly used
statistical methods such as DESeq and edgeR for DE
analysis. We set the proportion of upregulated transcripts
as 50 %, set sample size as 5, 8, and 10 subjects per
group, and introduced 0, 0.5, 1.0 and 2.0 % probability
of random outliers to model abnormally high counts in
RNA-Seq studies. All of the other parameters are
default. compcodeR-based simulations were replicated
100 times in each scenario. Type I error, FDR, TPR and
AUC were evaluated and compared by its own functions
in the compcodeR. It is worth noting that compcodeR
simulates sequence count data from NB distributions,
which potentially favors DESeq and edgeR.

To evaluate different FDR adjustment methods, we in-
troduced R package fdrtool [24] to further compare BH
method [20] to area-based FDR (QVAL) and density-
based FDR (LFDR) in compcodeR-based simulations.
We took permutation T-statistics instead of p-values in
deGPS as the input of fdrtool and extract the QVAL and
LFDR from the output. Since sample sizes in RNA-Seq
experiments are typically small, the estimated variances
and their associated T-statistics used in permutation
tests are probably highly variable. We thus compared or-
dinary T-statistic to regularized T statistic in permuta-
tion tests for DE detection. Regularized T-statistic was
implemented in R package st [25].

Type | errors and false positive rates

We first evaluated type I error and FDR of different
methods in datasets simulated from two large-scale
RNA-Seq studies, including 491 miRNA and 100 mRNA
TCGA samples (Fig. 3). FDR is used for quantifying the
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rate of false discoveries when multiple hypothesis testing
is concerned especially in RNA-Seq experiments. Among
these methods, only three methods (GP-Theta, TMM
and DESeq) can precisely control both type I error and
FDR in both miRNA and mRNA datasets. SAMseq has
correct type I error and FDR in miR-Seq dataset, but in-
flates type I error and FDR in mRNA-Seq dataset. DESeq
is the most conservative among these methods in terms
of type I error and FDR. Its variant DESeq2 becomes less
conservative but leads to higher FDR than expected.
edgeR appears to be unable to control both type I error
and FDR in all scenarios (Fig. 3 and Additional file 5).
Six of these methods (GP-Theta, GP-Quantile, Global,
Lowess, Quantile, and TMM) use different strategies of
data normalization, but use the same DE tests as deGPS.
They yield very different type I error and FDR. Only GP-
Theta and TMM are able to control both type I error and
EDR at the desired level; whereas the other four methods
have inflated type I error and/or FDR. These results sug-
gest data normalization has substantial impacts on the
performance of DE tests in terms of type I error and FDR.

True positive rates

Next, we evaluated TPR (i.e., statistical power) of different
methods in these RNA-Seq datasets (Fig. 4 and Additional
file 6). These methods show different TPR among differ-
ent RNA-Seq datasets. GP-Theta consistently produces
the highest TPR among the methods that also have cor-
rect type I error and FDR in both miRNA and mRNA
datasets. SAMseq has roughly similar TPR to deGPS with-
out regard to the consequence of type I error and FDR.
DESeq?2 has improved TPR, but at the cost of inflated type
I error and FDR, when compared with its original version
DESeq. Generally, edgeR has high TPR but also exhibits
high FDR too.

We also observed that data normalization dramatically
influences statistical power of DE tests. Although the
same DE tests were applied after data normalization, six
different normalization methods result in varied TPR.
Besides GP-Theta, TMM performs reasonably better
than the other four methods.

Sensitivity and specificity

We compared deGPS with other methods in terms of
sensitivity and specificity in these two RNA-Seq studies.
We thus calculated the receiver operating characteristic
(ROC) curve and area under curve (AUC) of different
methods to measure their sensitivity and specificity
(Fig. 5 and Additional files 7). For the clearer presenta-
tion, AUC with false positive rate (FPR) less than 0.05
was calculated. In general, SAMseq, GP-Theta, DESeq2
and TMM are the top four performers for DE analysis of
sequence count data according to the AUC metric.
Among the methods that have correct type I error and
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FDR, GP-Theta performs the best as it has the largest
AUC. DESeq2 often has higher AUC than its original
version DESeq. Generally, DESeq and its variant DESeq2
perform better than edgeR in mRNA datasets in terms
of AUC, whereas their performances are comparable in
miRNA datasets. The normalization methods other than
GP-Theta and TMM usually result in lower AUC.

Benchmark data

We further compared deGPS with SAMseq, DESeq and
edgeR using compcodeR. compcodeR is an R package
for benchmarking of DE analysis methods, in particular
methods developed for analyzing RNA-Seq data [23].
In the analysis, deGPS with GP-Theta normalization,
SAMSeq, DESeq and DESeq2, and edgeR1 and edgeR2

were evaluated in benchmark data (Fig. 6 and Additional
file 8).

In compcodeR-based simulations, both deGPS and
SAMSeq consistently control both type I error and FDR
and are robust against the occurrence of random outliers
in RNA-Seq experiments; whereas DESeq2 and edgeR1
are not able to control type I error and/or FDR in most
of scenarios. DESeq is still conservative in terms of type
I error, but its ability of FDR control varies among differ-
ent levels of random outliers and samples. edgeR2 gener-
ally performs much better than edgeR1 in terms of FDR
control in compcodeR-based simulations. edgeR1 is
based on generalized linear model in which regular like-
lihood ratio test (LRT) is performed; whereas edgeR2 re-
places the Chi-square approximation to the LRT statistic
with a quasi-likelihood F-test [26].
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In terms of TPR and AUC, SAMseq performs slightly
better than deGPS, but the difference between these two
methods becomes small when increasing sample sizes from
5 to 8 subjects per group (Fig. 6 and Additional file 8).
edgeR2 performs similarly to deGPS in RNA-Seq data
without random outliers or very low proportion of outliers
(i.e, <0.5 %) . However, deGPS outperforms edgeR2 when
random outliers increase up to 1 % in RNA-Seq data.
Interestingly, deGPS achieves similar TPR under different
levels of random outliers, suggesting it is a robust ap-
proach for DE analysis in the presence of abnormal high
sequence read counts in particular transcripts in RNA-Seq
experiments. It should be also noted that both DESeq and
edgeR model sequence count data with NB distribution;
whereas deGPS is based on GP distribution. Therefore,

compcodeR benchmark analysis that simulates sequence
count data from NB distributions may favor DESeq and
edgeR and thus overestimate their performance as com-
pared with deGPS in real RNA-Seq data.

We also evaluated effects of different FDR adjustment
methods on the performance of deGPS. The median FDR
of QVAL or LFDR is a little smaller than that of BH
method although the later can precisely control both FDR
and type I error. QVAL and LFDR do not always outper-
form BH method when repeating simulation in each
scenario as they have much bigger interquartile range in
the boxplot (Additional file 9). It may worth further investi-
gation why the performances of these three FDR adjusting
methods differ from case to case. Finally, we compared or-
dinary T-statistic with regularized T-statistic in permutation
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tests for DE detection. The simulation results showed that,
based on deGPS-transformed data, ordinary T-statistic
has a little higher TPR and is generally comparable with
regularized T-statistic in terms of type I error and AUC
(Additional file 9).

Real data analysis of the developmental transcriptome of
Drosophila

In addition to simulated datasets, we also analyzed the
developmental transcriptome of Drosophila melanoga-
ster (Fig. 7 and Additional file 10) [27]. We compared

six different methods (i.e, deGPS, SAMseq, DESeq,
DESeq2, edgeR1 and edgeR2) to identify genes that were
differentially expressed between four development stages of
Drosophila, which include early embryo (0 to 12 days), late
embryo (13 to 24 days), larval and adult stages. Each stage
contains 6 RNA-Seq samples. The RNA-Seq read count
data in 14,869 genes from these 24 samples were down-
loaded from http://bowtie-bio.sourceforge.net/recount [28].
Prior to the analysis, we filtered genes without any read
counts in all samples from any two compared groups.
Similar to the above simulations, the BH procedure was
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Fig. 7 Analysis of the development transcriptome of Drosophila Melanogaster. Four development stages (early embryo, later embryo, larval and
adult) were analyzed (Graveley, et al, 2011). The numbers of genes differentially expressed between two adjacent stages are presented at a FDR
threshold of 0.05. The “overlap proportion” is calculated as dividing overlap numbers by its column’s DEs
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used to control FDR [20], and all genes found to be DE
at a FDR threshold of 0.05 were considered signifi-
cantly DE. As expected, there were a large number of
developmental-regulated DE genes in early embryo de-
velopment, compared with adult Drosophila. Gener-
ally, edgeR1 and DESeq?2 identified the largest number
of DE genes than the other methods. This is perhaps
due to their failure in controlling FDR, as observed in
simulations. DESeq is the most conservative and iden-
tified the smallest number of DE genes among these
methods. edgeR methods show extremely high concord-
ance; all of DE genes that were identified by edgeR2 were
identified by edgeR1. Similar observations are also true in
DESeq methods; about 99 % of DE genes that were identi-
fied by DESeq were identified by DESeq2. Approximately
70, 70 and 87 % of DE genes found by deGPS overlap
with SAMseq, edgeR1 and DESeq2, respectively.

Next, we evaluated the ability of the above methods to
control type I error and false positive numbers. We ran-
domly assigned equal number of subjects (without re-
placement) from the same development stages into two
groups of 5 subjects each. Each group contained equal
number of subjects from the same development stages
and thus had similar gene expression profiles. Therefore,
we expected that no genes are truly DE when comparing
these two synthetic groups. Nevertheless, among 100 sim-
ulations, these methods identified DE genes ranging from
16 to 277 false positives per genome scan. deGPS found
the lowest number of false positives, whereas edgeR1l
found the highest number of false positives. edgeR1 in-
flates type I error, whereas the other four methods can
control type I error at the desired level (Additional file 11).

Discussion

In this study, we developed a novel tool, deGPS, for data
normalization and DE detection in RNA-Seq studies.
deGPS shows improved results for analyzing count-
based expression data in most cases through comprehen-
sive simulations. Among 11 methods evaluated in our
simulations, it is the only one that can precisely control
type I error and FDR in all of scenarios while maintain-
ing high statistical power for DE detection. Good
performance of deGPS results from two significant
methodological improvements. First, the newly proposed
normalization methods model sequence count data by
using GP distribution. Data normalization has substan-
tial impact on the performance of statistical methods for
DE analysis of sequence count data. Among the six
normalization methods evaluated in our study, GP-Theta
achieved highest power and AUC while controlling type
I error and FDR in either real data-driven simulations or
compcodeR-based benchmark data. One possible reason
why GP-Theta outperforms the other normalization
methods is that it gives a definite estimate of how much
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the sample mean should be shrunk to alleviate the im-
pact of overdispersion. Second, the regular permutation-
based DE tests in deGPS are robust and powerful.
Though the data may be skewed, simulations have
proved that it is appropriate to pull T-statistics from all
transcripts to form one whole empirical distribution.
Using this strategy, reliable empirical distributions can
be obtained in small sample sizes where many statistical
models are prone to inflated type I error and/or FDR.
Appropriate use of FDR adjustment methods and regu-
larized T-statistics in permutations may further improve
the performance of deGPS. This requires further investi-
gation in future studies.

We compared our deGPS with edgeR, DESeq and
SAMseq, which are currently among the top performers
for DE analysis of sequence count data [16]. There are
methodological distinctions between deGPS and edgeR/
DESeq. Our deGPS assumes a GP distribution on the data
for a single library across all genes, whereas edgeR and
DESeq assumes a NB distribution on the data for a single
gene across non-differenentially expressed libraries. Our
simulations showed that DESeq is relatively conservative
in terms of type I error and is prone to inflated FDR when
outliers are introduced to RNA-Seq data. Its variant
DESeq2 becomes less conservative and has an increased
power but at the cost of poor FDR control. edgeR1 ap-
peared unable to control type I error and FDR in either
real data-driven simulations or compcodeR-based bench-
mark data. edgeR1 method uses LRT statistics that are
approximated by a Chi-square distribution, whereas
edgeR2 replaces the Chi-square approximation to the
LRT statistic with a quasi-likelihood F-test [26]. As a re-
sult, edgeR2 has improved FDR control as compared
with edgeR1 in most cases. SAMseq is a nonparametric
method for finding DE. It performs reasonably better in
compcodeR-based simulations, whereas it inflates type
I error and FDR in real data-driven simulations from
mRNA datasets.

It is not uncommon that some extremely high abun-
dant transcripts (e.g., pseudogenes, ribosomal RNAs,
mitochondrial RNAs, contaminant mRNAs and unanno-
tated RNAs) are presented in RNA-Seq data, for ex-
ample, as seen in the above Drosophila RNA-Seq data
(Additional file 12) [27]. These abnormally high read
counts (i.e., outliers) in RNA-Seq data will lead to in-
creased numbers of falsely declared DE genes if standard
normalization is applied. For example, DESeq, DESeq2
and edgeR1 inflate FDR and lose TPR (i.e., power) when
increasing the proportion of outliers up to 0.5 % in
RNA-Seq data. Although edgeR2 maintains correct FDR,
TPR is dramatically decreased with the increase of out-
liers in the data. Interestingly, our deGPS consistently
controls both type I error and FDR, and maintains simi-
lar TPR under different levels of random outliers. This
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suggests that deGPS is a robust approach for DE analysis
in the presence of abnormal high sequence read counts
in RNA-Seq samples. In the GP-Theta method,
normalization factor is estimated as sample mean multi-

plied by (l—fl) where 1 is an overdispersion parameter
accounting for unexpectedly high variability in sequence

count data. We observed that large variability of 1/

(l—i) exists across RNA-Seq samples from the analysis

of two large-scale TCGA data (Additional file 13), sug-
gesting the necessity of shrinkage normalization strategy
in these overdispersed count data. Such shrinkage strat-
egy in the analysis helps maintain statistical power and
robustness of DE detection.

There are several limitations in deGPS. First, the per-
mutation traversing all the probabilities becomes compu-
tationally time-consuming when the sample size
increases, though a maximum of permutations can be
specified to avoid the problem. To partially alleviate the
computational burden, deGPS provides efficient parallel
computation in multi-core processors to speed up permu-
tation tests. Runtime of deGPS for RNA-Seq experiments
with less than 10 subjects per group is comparable, if par-
allel computation is applied, to edgeR and DESeq which
are currently one of the fastest and most commonly used
R packages for DE analysis of RNA-Seq data (Additional
file 14). For example, deGPS takes about 3 min for analyz-
ing the Drosophila developmental transcriptome on a
Dell PowerEdge r620 with Intel Xeon E5-2660 2.20 Ghz
dual-socket 8-core. Although sample sizes will affect run-
time of deGPS, it is worth noting that as compared with
other methods, permutation-based DE detection imple-
mented in deGPS is robust against different sample sizes.
Second, deGPS cannot handle complex experimental de-
signs. Only two-group differential test is currently consid-
ered in deGPS. However, our GP-Theta normalization
method can be potentially adopted in complex design of
RNA-seq experiments or using other statistics instead of
a t statistic. Third, it may be inappropriate to compare
two groups with library sizes of all samples in one group
several times consistently larger than another. Under such
very rare circumstances, the shrinkage on sample mean is
heavy because of the severely overdispersed read counts.
As a result, the normalization factors may not increase
as fast as the library size does. The variations within
groups may therefore not be large enough to eliminate
the large library size differences so that empirical distri-
bution of t statistics may be biased. In that case, TMM
normalization is suggested in the application of deGPS
package. Fourth, in mRNA data, our method is currently
applicable to gene-level read count data while the appli-
cation on position-level read count data remains further
investigations.
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In summary, we developed a powerful and robust tool
for differential analysis of count-based expression of
RNA-Seq data. We implemented our methods in an R
package deGPS with parallel computations. deGPS per-
forms better than existing methods in most cases. It is a
robust approach against the occurrence of data outliers
in RNA-Seq experiments. Beyond RNA-Seq, deGPS has
the potential to significantly enhance future data analysis
efforts from many other high-throughput platforms such
as ChIP-Seq, MBD-Seq and RIP-Seq [29].

Methods

GP distribution

Sequence count data, X, observed in a RNA-Seq experi-
ment can be modeled with a GP distribution with pa-
rameters 0 and \:

(0 + x\) et
Pr(X = x) = —
0

x=0,1,2,...
forx > qifA <0

(1)

where 6 >0, max(-1,-2)<\<1,, and q(>4) is the largest
positive integer for which © + g\ > 0 when A < 0. The mean
of X is 8(1-)N)""' and the variance of X is 6(1-\)">.
When A =0, GP becomes a Poisson. The parameter 0 is
the mean for the natural Poisson process. The parameter
\ is the average rate of effort that the subjects are making
to deviate from the process. A positive value of \ indicates
that the subjects are making an effort to accelerate the
natural process while the negative one denotes an effort to
retard the process [30]. In the context of RNA-Seq, 6 rep-
resents the average number of reads mapped to transcripts
in a sample. It is correlated to the depth of sequence
coverage and total reads mapped to reference genome in
the sample. A represents the bias during the sample prep-
aration and sequencing process [31]. Note that all the fit-
ted As are always far away from zero, which suggests
sequence count data is highly over-dispersed in RNA ex-
periments. It is worth noting that deGPS models gene- or
transcript-level sequence count data within the same sam-
ple. This is distinct from GPseq that instead models
position-level count data [31].

The maximum likelihood estimate (MLE) of A in the
GP model (1) can be obtained by solving the following
equation:

n Xi(1-X) o
=———=-—nX=0 2
DX o (2)
where X = Zin:lXi /n and is the sample mean of reads
mapped to transcripts. The MLE of 0 can be estimated

as X (1-4).
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Normalization methods
We propose two new normalization methods for se-
quence count data based on the above GP distribution:
GP-Quantile and GP-Theta. The GP-Quantile method
fits every sample in the data with GP distribution, and
maps every read count to the corresponding probabil-
ity, P(X < x), of the fitted GP. Despite that read counts
in every sample are normalized between 0 and 1, the
data information may be lost during the GP-Quantile
normalization process.

In the GP-Theta method, read counts from each sam-
ple are divided by the parameter 6 of the fitted GP dis-

tribution. The MLE of 8 is X (I—X) where \ is the MLE

of the over-dispersion parameter A and X is the sample
mean of sequence reads mapped to transcripts. This

MLE 6 can be treated as a shrunk value of X. A major
purpose of the GP-Theta method is to remove sample
bias due to depth of sequence coverage in RNA-Seq ex-
periments. Similar ideas were previously used for the
normalization of RNA-Seq data such as trimmed mean
method (TMM) [19].

Differential expression tests
After the data normalization, a procedure using empir-
ical distributional of T-test statistic is conducted in our
DE test. To eliminate potential technical noise arising
from RNA-Seq experiments, T-test statistics are calcu-
lated after normalizations:

M X/ - Y/
T.stat(X,Y') = ea,n( )-Mean( ,)
v/ Var(X) /Ny + Var(Y') /Ny

where “Var” is the variance function and “Mean” is the
mean value of read count of a transcript in the sample.
X’ and Y are GP-transformed read counts from two
groups of samples; N, and N, are sample sizes of the
two groups.

We propose to use empirical distribution of T-
statistics to determine the p-values of DE tests. We
generate empirical distributions by randomly shuffling
the samples into two groups and calculate T-test statis-
tics for each transcript in the permutated samples. Due
to the abundance of the transcripts, our permutation
strategy can produce reliable empirical distributions
even with small sample sizes (e.g., two samples for each
group) that are still common in RNA-Seq experiments.
The p-values are therefore calculated according to the em-
pirical distribution of T statistics. However, the pooled
t-statistics is mixture of a “null group” of statistics corre-
sponding to non DE genes and an “alternative” group cor-
responding to DE genes. Thus we also include fdrtool [24]
to adjust p values in our R package.
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The estimated variances and thus T-statistics used in
permutation tests are probably highly variable due to a
typically small sample sizes in RNA-Seq experiments.
Instead of the above ordinary T-statistics, regularized T-
statistics, implemented in R package st, are also included
in our deGPS.

The real data analysis of the developmental transcrip-
tome of Drosophila can be found in our released R pack-
age—deGPS (https://github.com/LL-LAB-MCW). compco
deR-based simulations can be repeated by the R codes
which are available in Additional file 15.

Availability of supporting data
The data sets supporting the results of this article are in-
cluded within the article and its additional files.
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Additional file 1: Table S1. -TCGA samples used in microRNA-Seq
simulations.

Additional file 2: Table S2. -TCGA samples used in mRNA-Seq
simulations.

Additional file 3: Document S1. -Simulation settings.

Additional file 4: Figure S1. -A flowchart for method comparisons in
simulations.

Additional file 5: Figure S2. -Type | error and false discovery rate of
edgeR with different parameter settings. Different parameter settings in
edgeR were defined in Document S1. Methods in red font are those inflate
type | error and/or false discovery rate.

Additional file 6: Figure S3. -True positive rate of edgeR with different
parameter settings. Methods in red font are those inflate type | error and/
or false discovery rate.

Additional file 7: Figure S4. -AUC of edgeR with different parameter
settings. Methods in red font are those inflate type | error and/or false
discovery rate.

Additional file 8: Figure S5. -Simulation results from compcodeR. Sample
size was set as 8 subjects per group. Note that edgeR2 does not control
correct type | error when increasing sample size although its FDR is at the
desired level.

Additional file 9: Figure S6. -Effects of different FDR adjustment
methods and T-statistics on the performance on deGPS. Sample sizes were
setas (A) 5 and (B) 8 subjects per group. The default FDR adjustment of
deGPS is BH method; two additional FDR adjustments QVAL and LFDR were
evaluated. The default statistic of deGPS is ordinary T-statistic in permutations;
regularized T-statistic (st) was evaluated.

Additional file 10: Figure S7. -Genes differentially expressed between
any two non-adjacent developmental stages of Drosophila melanogaster

Additional file 11: Figure S8. -Average false positive number and type |
error when comparing two groups that are randomly and equally sampled
from different developmental stages of Drosophila melanogaster.

Additional file 12: Figure S9. -Outliers in Drosophila data. Blue points
represent the logarithm of the difference between quantiles and five times
sample mean. And red points represent the logarithm of the difference
between quantiles and ten times sample mean. compcodeR generates
outliers by multiplying the read counts by 5-10. The figure shows that
top 2 % read counts are larger than 5 times sample mean and top 1 %
read counts are larger than 10 times sample mean. Though sample mean
may not represent the read counts randomly generated by compcodeR
properly, we can conclude that up to 1-2 % random outliers are not rare in
real data.
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