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Abstract

Background: The migratory locust, Locusta migratoria manilensis, is an immensely destructive agricultural pest that
forms a devastating and voracious gregarious phase. The fungal insect pathogen, Metarhizium acridum, is a specialized
locust pathogen that has been used as a potent mycoinsecticide for locust control. Little, however, is known about
locust immune tissue, i.e. fat body and hemocyte, responses to challenge by this fungus.

Methods: RNA-seq (RNA sequencing) technology were applied to comparatively examine the different roles of locust
fat body and hemocytes, the two major contributors to the insect immune response, in defense against M. acridum.
According to the sequence identity to homologies of other species explored immune response genes, immune related
unigenes were screened in all transcriptome wide range from locust and the differential expressed genes were
identified in these two tissues, respectively.

Results: Analysis of differentially expressed locust genes revealed 4660 and 138 up-regulated, and 1647 and 23 down-
regulated transcripts in the fat body and hemocytes, respectively after inoculation with M. acridum spores. GO (Gene
Ontology) enrichment analysis showed membrane biogenesis related proteins and effector proteins significantly
differentially expressed in hemocytes, while the expression of energy metabolism and development related transcripts
were enriched in the fat body after fungal infection. A total of 470 immune related unigenes were identified, including
members of the three major insect immune pathways, i.e. Toll, Imd (immune deficiency) and JAK/STAT (janus kinase/
signal transduction and activator of transcription). Of these, 58 and three were differentially expressed in the insect fat
body or hemocytes after infection, respectively. Of differential expressed transcripts post challenge, 43 were found in
both the fat body and hemocytes, including the Lmlys4 lysozyme, representing a microbial cell wall targeting enzyme.

Conclusions: These data indicate that locust fat body and hemocytes adopt different strategies in response to M.
acridum infection. Fat body gene expression after M. acridum challenge appears to function mainly through activation of
innate immune related genes, energy metabolism and development related genes. Hemocyte responses attempt to limit
fungal infection primarily through regulation of membrane related genes and activation of cellular immune responses
and release of humoral immune factors.
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Background
The migratory locust, Locusta migratoria manilensis,
undergoes a striking behavioral phase transition, from a
solitary, essentially harmless animal to a seemingly end-
less cloud of voracious, traveling swarms that devour
the vegetation in their path. Both significant historical
and modern accounts of their rampaging effects have
been recorded. Continued outbreaks and infestations in
Madagascar, the Red Sea coast, and in the Caucasus and
Central Asia are but several recent examples [1]. Inverte-
brates, including locusts, lack the ability to produce true
antibodies as part of adaptive immune responses, and in-
stead rely on innate mechanisms for mitigating microbial
infections, consisting of cellular and humoral responses [2].
Humoral factors include the production of oxygen and ni-
trogen free radicals, anti-microbial peptides (AMPs), and
enzyme cascades, e.g. the prophenoloxidase (PPO) pathway,
the latter of which produce cytotoxic quinones and mediate
coagulation and melanization responses upon pathogen de-
tection [3]. Many humoral compounds are produced and
secreted into the hemocoel by the fat body, the main insect
organ of intermediate metabolism [3]. The fat body pro-
duces most of the proteins and metabolites found in the
hemolymph, and acts as the central controller of the syn-
thesis and utilization of energy reserves, i.e. glycogen and
lipids [4]. This organ also functions to sequester, and re-
lease upon appropriate (hormonal) signal, proteins or other
molecules required for morphogenesis, egg maturation, and
lipid/hormone transport, examples of which include growth
factors, vitellogenins, and lipophorins, respectively [5].
Insects also have macrophage-equivalent cells termed
hemocytes that circulate in the hemolymph and are
capable of secreting a number of humoral immune factors.
One of the main activities of hemocytes is to phagocytose
foreign cells and material. Hemocyte aggregation seeks to
isolate and entrap foreign materials within the hemocoel,
resulting in nodule formation and encapsulation that is
coupled with melanization via PPO activation, thus linking
aspects of the humoral and cellular responses [6]. Insect
hemocytes are produced by stem cells that are mesoder-
mally located, and differentiate into a variety of different
morphologically and functionally distinct lineages. De-
pending upon the insect, a combination of a number of
the most common types of hemocytes, i.e. granulocytes,
prohemocytes, plasmatocytes, spherulocytes, and/or oeno-
cytoids are produced [7]. One mechanism of hemocytes
action occurs via recognition of foreign microbial targets
by pattern recognition receptors (PPRs) that respond to
pathogen-associated molecular pattern (PAMP) molecules
found on microorganisms. Significant information con-
cerning insect immune systems is known for dipterans, i.e.
the Drosophila model system as well as various mosquito
species [8, 9], hymenopteran honey bees, Apis mellifera
[10], and more recently the coleopteran (beetles) insect
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Tribolium castaneum [11]. A variety of immune related
genes have been shown to be expressed in insect hemocytes
and fat bodies. In the mosquito, Anopheles gambia, 1053
genes were found to be predominantly expressed in adult
female hemocytes [12], with 13 and 44 immune related
genes were differentially transcribed in A. gambiae hemo-
cytes after challenged by Escherichia coli or Micrococcus
luteus [13]. In the mosquito species, Aedes aegypti and
Armigeres subalbatus, 169 and 103 immune related EST
clusters were identified in hemocytes, with a small
subset, 11 and 16 genes, differentially expressed after
bacterial inoculation, respectively [14]. In the tsetse fly,
Glossinia morsitans, 60 putative immunity-pathway-
related genes were identified in the fat body [15], and 80
putative immune clusters were identified in the fat body
of Antheraea mylitta after challenged by Escherichia
coli [16]. Whole body transcriptional responses of several
insects, including of the corn borer, Ostrinia furnacalis
and the whitefly, Bemesia tabaci to infection by B. bassi-
ana have been reported [17, 18]. Although changes in the
expression of various immune-related genes were noted,
such whole organism approaches are likely to obscure sig-
nificant portions of the immune response, and informa-
tion concerning the reactions of specific immune-related
tissues is lacking. In addition, far less is known concerning
both general and specific microbial immune responses of
hemimetabolous orthopterans that include locusts, than
their holometabolous counterparts.

Insect pathogenic fungi, especially Beauveria and Metar-
hizium species, have long been considered as potential pest
biological control agents, with several commercial products
currently available worldwide [19, 20]. Entomogenous fungi
have been suggested to engage in a co-evolutionary arms
race with their insect hosts [21]. These agents pose less
environmental risk than chemical insecticides and are com-
patible with organic and sustainable farming practices,
notably available in developing countries. While many
entomopathogenic fungi are broad host range insect patho-
gens, e.g. B. bassiana and M. roberstsii, several lineages
have evolved high but restricted virulence towards certain
insect hosts [22, 23]. M. acridum is one such restricted
host-range species, particularly effective against orthop-
teran insects and has been used in both Africa and Asia as
an effective agent as part of Integrated Pest Management
(IPM) programs for locust control [24]. Infection occurs via
attachment of fungal spores (conidia) to host surfaces,
followed by germination and penetration of the insect cu-
ticle [25]. As penetrating hyphae reach the hemocoel, they
produce single celled structures that are capable of evading
various immune reactions including hemocytes and fat
body activated antimicrobial responses [26, 27]. Death of
the host typically occurs within 3-7 days, after which the
fungus sporulates on the dead insect, producing cells cap-
able of infecting another round of hosts. A number of
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genes implicated in M. acridum virulence have been char-
acterized, and intriguingly, addition of a single esterase
gene can expand the host range of M. acridum to certain
Leptidoperans [28—30].

Here, we explored the transcriptional responses of critical
host immune tissues, namely the hemocytes and the fat
body, of L. migratoria, to fungal infection by M. acridum.
Transcriptomic analysis revealed that hemocytes and the
fat body adopt distinct strategies in response to infection by
the fungus. A relatively small number of genes were af-
fected in hemocytes, which appeared to elevate the expres-
sion of pathways for the release of reactive nitrogen
intermediates (RNI), and alter aspects of membrane, poten-
tially to facilitate phagocytosis or engulfment pathways
involved in defense against fungi. In contrast, a larger set of
genes was activated in the fat body including those affecting
known classical antimicrobial pathways, e.g. Toll and JAK/
STAT. In addition, altered expression of cell differentiation
and maturation genes, and changes in basic energy metab-
olism were noted, perhaps linked to an increase in meta-
bolic energy needed in attempts to thwart the infection.
Analysis of conserved immune pathways led to their identi-
fication in L. migratoria (~470 transcripts). Among them,
59 (13 %) and three (6.5 %) showed significant differential
expression in the fat body and hemocytes, respectively,
after M. acridum infection. These results reveal the tran-
scriptional responses of the fat body and hemocytes in
defense against a locust specific entomopathogenic fungus,
and detail immune related genes in the transcriptome of
the Orthopteran, L. migratoria manilensis.

Methods

Insects, fungal strains, and inoculation protocol

Adult males of the migratory locust, Locusta migratoria
manilensis (Orthoptera: Acrididae), reared until 5 days
after final ecdysis were used in all experiments. Locusts
were maintained in metal cages at 30 +3 °C with 70—
75 % relative humidity and a photoperiod of 16 h light,
8 h dark, and supplied with fresh wheat shoots, wheat
bran (supplemented with dried brewer’s yeast) and water
as described [31]. The fungal strain M. acridum
CQMal02, was isolated from the yellow-spined bamboo
locust, Ceracris kiangsu Tsai, by the Genetic Engineering
Center of Chongqing University. The fungus was grown
on one-quarter strength Sabouraud dextrose agar (SDA)
for 15 days at 28 °C, after which conidia were harvested
and suspended in cottonseed oil. Mycelia were removed
by filtration through sterile lens paper. The concentra-
tion of spores was determined using a Neubauer haemo-
cytometer. Healthy locusts were selected and inoculated
with 5 pl of conidial suspensions adjusted to 1 x 10°* co-
nidia as described [32]. Control insects were treated with
the same volume of cottonseed oil. Treated insects were
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reared in individual cages. Assay were performed using
20 locusts and each assay was repeated three times.

Sample preparation, library construction and sequencing
Locusts were collected after 8, 16, 24, and 32 h post in-
fection, respectively. For each time course, ~30 infected
and 30 control male adults were placed on ice to
anesthetize them and the fat bodies were dissected in a
Petri dish on ice in locust physiological saline solution
(LoPS, 150 mM NaCl, 10 mM KCl, 4 mM CaCl,, 2 mM
MgCl,, 4 mM NaHCO3, 5 mM 4-(2-hydroxyethyl)-1-pi-
perazine ethanesulphonic acid pH 7.2, 0.1 % Ficoll).
Hemolymph were collected from locusts at the same
time as described [33]. The dissected fat bodies and he-
mocyte were immediately transferred to mortars con-
taining liquid nitrogen and homogenized, followed by
RNA isolation using the Trizol Reagent (Invitrogen) ac-
cording to the manufacturer’s instructions. The RNA
samples were further digested with ten units of DNase I
(Takara, China) for 1 h at 37 °C to remove residual gen-
omic DNA. The quantity and quality of the RNA sam-
ples were examined using a Nanodrop ND-1000
spectrophotometer (LabTech, USA) and an Agilent 2100
Bioanalyzer (Agilent Technologies, California, USA). Se-
lect RNA samples from different time courses derived
from the same treatment and tissue were pooled in
equal proportions to construct ¢cDNA libraries using
TruSeq RNA Sample Prep Kit v2 (Illumina, USA) fol-
lowing manufacturer’s instructions. Briefly, poly(A)
mRNA from 1 pg of total RNA was isolated using oli-
go(dT)-conjugated magnetic beads. Purified mRNAs
were fragmented (200 nt to 700 nt) and reverse tran-
scribed into ¢cDNA using Super Script II Reverse Tran-
scriptase (Invitrogen, USA). Second-strand cDNA was
synthesized in reaction mixtures containing 1x buffer,
dNTPs, RNase H, and DNA polymerase 1. Short frag-
ments were purified using the Agencourt” AMPure® XP
beads (Beckman Coulter Inc., Beverly, MA, USA) and
resolved with EB buffer for end repair and single nucleo-
tide A (adenine) tailing. Fragments were then connected
with sequencing adapters, and enriched by 15 cycles of
PCR amplification to obtain adequate fragments for the
final cDNA library. The quantification and qualification
of the ¢cDNA library were assessed by an Agilent 2100
Bioanalyzer and ABI Step One Plus Real-Time PCR Sys-
tem, and sequenced on the Illumina HiSeq™ 2000 pair-
end system (Illumina, USA). Illumina sequencing was
performed at the Beijing Genomics Institute (BGI-Shen-
zhen, China).

Assembly and annotation of transcriptomes

All raw transcriptome data generated from Illumina se-
quencing were deposited in the SRA database (NCBI)
with accession number SRX1036497 (fat body control),
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SRX1036507 (fat body infected), SRX1036511 (hemocyte
control) and SRX1036517 (hemocyte infected). Before
assembling the clean reads, the raw reads were prepro-
cessed using filter-fq software. The raw reads containing
only adaptor, sequences, reads with >5 % unknown nu-
cleotides, and low quality reads (reads containing more
than 20 % bases with Q-value <10) were removed. The
obtained clean read datasets were assembled using Trin-
ity (release 20130225) [34] under default parameters, ex-
cept for min_kmer_cov and min_glue set at three. The
four SRA datasets in our experiment were assembled
separately at the beginning. Another 37 locust SRA data-
sets were downloaded from the NCBI. Among these
downloaded SRA datasets, those who have same sequen-
cing lengths were assembled separately similarly. These
41 partially assembled datasets then were combined to
assemble together according to the following processes.
The Trinity-based assembled unigenes from each sample
were further processed using the Clustering software
TGICL platform [35], to identify sequence splicing and
redundancy, resulting in data containing the non-redun-
dant unigenes of maximum sequence length. These re-
sultant unigene datasets from each sample were then
assembled into a unique “All-unigene sequence” dataset
using the TGICL platform. The All-unigene sequences
were then separated into two classes: clusters (CL, col-
lection of homologous unigenes, i.e. sharing >70 % se-
quence identity) and singletons (unigene).

The unigene sequence datasets were annotated using
available protein databases including Nr (non-redundant
protein databases), SwissProt, KEGG (Kyoto Encyclopedia
of Genes and Genomes) and COG (Cluster of Ortholo-
gous Groups), using the blastx algorithm (http://
www.ncbinlm.nih.gov/) with a cut-off E-value of 107
[36]. Provisional protein functional information was
assigned from comparative annotation to the most similar
protein in those databases.

Differentially expression and immune related unigene
analysis
Fat body and hemocytes genes that were differentially
expressed between control and infected populations
were identified, respectively, using a table of counts con-
structed with fragments per kb per million fragments
(FPKM) values, which adjusted the number of fragments
by the total number of fragments mapped and the length
of the gene [37, 38]. Difference gene expression (DEG)
of fat body and hemcoyte between control and infection
group were determined by using FPKM value under the
standard of false discovery rate (FDR) <0.001 and an ab-
solute value of the log,ratio >1.

The locust transcriptome database was used as the
background to search for GO terms enriched within the
DEG dataset using the hypergeometric test and a p-value
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<0.05 as the parameters for determining significantly
enriched terms. Similarly, pathways significantly
enriched with the DEG datasets were identified by map-
ping all differentially expressed genes to terms in the
KEGG database using the hypergeometric test with a p-
value <0.05.

Immune related genes were preliminary identified via
screening using the BLASTX search algorithm against
immune-related family members downloaded from the
orthodb database (http://cegg.unige.ch/orthodb7), which
included Insecta, waterflea and tick sequences. Searches
were parameterized with a cut-off E-value of <107°.
Putative immunity-related genes were further analyzed
by comparing their protein domains with the deduced
protein domains of different family members. Protein
domains are determined using Pfam (http://www.
sanger.ac.uk/Software/Pfam/) and SMART (http://
smart.embl.de/). Manual screening was further per-
formed to verify all identified immune related genes,
which were classified into different immune-gene related
families.

Quantitative RT-PCR analyses

To validate the results of the DEG, the expression
change between control and fungal infected groups were
examined by qRT-PCR for all of immune-related differ-
entially expressed genes in the fat body (58 total) and
hemocyte (three total) transcriptomes. Specific primers
were designed for each gene and are listed in Additional
file 1: Table S1. Total RNA from each sample was ex-
tracted as described above. 1 pg total RNA was reverse-
transcribed in a 20 pl reaction using the Primescript TM
RT reagent kit (TaKaRa, China). qRT-PCR was con-
ducted using the CFX96TM Real-Time System (Bio-Rad,
Hercules, CA, USA) with SYBR green (TaKaRa, China)
using the following cycling parameters: 95 °C for 3 min,
and 40 cycles of 95 °C for 5 s, 60 °C for 15 s, followed by
melting curve generation from 65 to 95 °C. Primers de-
signed to the actin genes were used as a reference con-
trol, and nuclease-free water was used as a negative
control. All protocols for qRT-PCR experiments are in
accordance with the Minimum Information Required for
Publication of Quantitative Real-Time PCR Experiments
guidelines [39]. Ct value was calculated from the results
of three biological replications. The relative expression
levels of each gene was analyzed according to 2°44¢T
[AACt = ACt(test) - ACt (calibrator)] method [40].

Results

lllumina sequencing and read assembly

Locusts infected with spores of M. acridum and un-
inoculated insects were used to generate cDNA libraries
for examining insect responses to the fungal pathogen.
The fat bodies and hemocytes of M. acridum-infected
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and untreated locusts were isolated and RNA purified
from these tissues as detailed in the Methods section.
Four ¢DNA libraries corresponding to control and
fungal-treated, fat body and hemocyte derived tissues,
respectively, were generated and sequenced using the
[llumina platform. A total of 18.79 Gb of nucleotide se-
quences were obtained. Q20 percentages (sequencing
error rate <1 %) and GC percentages for the different
samples were as follows; (1) hemocyte (control), 95.56
and 40.31 %, (2) hemocyte treated, 94.19 and 40.23 %,
(3) fat body (control), 93.89 and 41.55 %, and (4) fat
body treated, 85.33 and 44.39 %, respectively. These GC
percentages are in agreement with a previous report
[41]. For assembly, 37 locust SRA datasets were down-
loaded from NCBI. After removal of adaptor sequences,
ambiguous reads, and low quality reads (Q20 <20) from
the combined (41 SRA) datasets, clean reads with same
sequencing lengths were assembled separately, and then
the resultant partial assembly further assembled to-
gether. In comparison with an analysis examining the
separate assembly of our four datasets, the N50 and
mean length of unigenes assembled from the combined
SRAs dataset increased significantly, from 559-804 bp
to 1607 bp and from 484—-603 bp to 914 bp (Table 1),
respectively. The total number of nucleotides (nt), mean
nt length, N50 values, assembly into contigs, scaffolds, and
the unigene sets for each condition/library is given in
Table 1. These final mean lengths and N50 values are
comparable or exceed that reported by others [42, 43].
Total assembled nucleotides was equal to 47.5G, repre-
senting a 22-fold coverage of the coding sequence space
of the locust genome (~2.5G) [44], indicating a robust
dataset and analysis pipeline for accurate sequence as-
sembly and adequate transcriptome coverage. The final
assembled sequences have been submitted to the NCBI
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Transcriptome Shotgun Assembly (TSA) Database
under the accession #: GDIO00000000.

Gene identification, functional annotation and
classification

Among the 50,809 unigenes, approximately 22,698 were
annotated. Within each ¢DNA dataset, 22,496, 19,009,
16,502 and 9781 unigenes could be provisionally annotated
by searching against the Nr (non-redundant protein data-
bases), SwissProt, KEGG (Kyoto Encyclopedia of Genes
and Genomes) and COG (Cluster of Orthologous Groups),
respectively. Searches performed using the Nr database
resulted in the largest proportion of provisional annota-
tions, producing hits for 44.3 % of all distinct sequences.
Analysis of the E-value distribution for those sequences for
which a hit could be identified in the Nr database, showed
a relatively even distribution across the range parameters
used, i.e. 10~ >E-value >0 (Fig. 1a). Overall similarity for
the majority of identified sequences (~70 %) was greater
than 40 %, with the remainder (~30 %) showing similarity
values ranging from 17 to 40 % (Fig. 1b). The species
distribution for ~40 % of the best-matching sequences
were seven other main insects, with the red flour beetle,
Tribolium castaneum (11.7 %), and the human body louse,
Pediculus humanus corporis (9.5 %), representing the top
two insect species to which best-matching hits were seen
(Fig. 1c). Approximately 58 % of the best-matching
sequences were distributed to other organisms, e.g. Apis
mellifera (2.4 %).

Unigene sequences were mapped using the international
standardized gene functional classification (GO) system,
which offers a dynamic-updated controlled vocabulary
and a strictly defined concept to comprehensively describe
properties of genes and their products in any organism.
Annotated genes were binned into the three GO

Table 1 Summary for the lllumina sequencing and de novo assembly of Locusta migratoria manilensis transcriptome

Sample Total number Total length (nt) Mean length (nt) N50
Contig FB Control 76,610 24,270,667 214 244
FB Treated 90,480 35948413 248 302
Hemo Control 102,738 37,214,667 241 298
Hemo Treated 96,108 36,214,648 247 310
Scaffold FB Control 78,784 25901123 329 442
FB Treated 104,204 37,589,106 361 519
Hemo Control 104,946 39,524,954 377 587
Hemo Treated 98,818 38,331,782 388 621
Unigene FB Control 44,235 21,396,869 484 559
FB Treated 58,552 31,524,499 538 663
Hemo Control 56,995 33,350,180 585 764
Hemo Treated 53,979 32,541,902 603 804
Together with SRA 50,809 46,450,242 914 1607
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search hit for each sequence in the analysis
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Fig. 2 GO annotation of the overall unigene dataset. The total locust transcriptome dataset (9781 unigenes) were classified into biological
process, cellular component, and molecular function subcategories
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system processes. The cell/cell part categories had 5308
unigenes assigned to them. Within the molecular func-
tion category, catalytic activity (enzymes, 5809) and
binding (5565) were the two most abundant transcript
annotation subcategories (Fig. 2).

COGs were delineated by comparing protein se-
quences encoded in complete genomes, representing
major phylogenetic lineages. Each COG consists of indi-
vidual proteins or groups of paralogs from at least 3 lin-
eages and thus corresponds to an ancient conserved
domain. In this study, 9781 unigenes were functionally
grouped into the 25 COG categories. Of the total uni-
gene set, 41 % identified within the COG annotation
were found to belong to the subcategory of general
function prediction (via the top hit). Translation, ribo-
somal structure and biogenesis were the second most
abundant (1998 unigenes), followed by genes involved
in transcription (1812 unigenes), replication, recombin-
ation and repair (1773 unigenes), and function un-
known (1674). Among them, 2.3 % of unigenes were
divided into the subcategory of defense mechanisms
(Fig. 3).
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Identification of differentially expressed genes in
response to Metarhizium acridum infection

Pairwise comparisons of the transcriptome of locust fat
body and hemocyte tissues untreated and infected by M.
acridum were performed. After infection by M. acridum,
a large alteration in the transcriptome of the locust fat
body was seen, with 4660 genes up-regulated and 1674
genes down-regulated. In contrast, the hemocyte response
was much smaller with 161 and 23 genes up- and down-
regulated, respectively, after infection by the fungus. The
amplitude of the signals, i.e. the extent of transcriptional
activation or repression, also differed between the fat body
and hemocytes upon exposure to the pathogen. The fold
changes (log, ratio) of gene expression in the fat body
ranged from -13.92 to 15.90, whereas in hemocytes the
range was from —4.81 to 9.81.

GO annotation analyses resulted in 128 (69.6 %) and
4700 (74.2 %) differential expressed unigenes that could
be mapped to the term “biological process” in the hemo-
cyte and fat body datasets, respectively (Fig. 4a & b). For
hemocytes, enriched expressed genes including those in-
volved in nitric oxide biosynthesis, cellular amino acid

COG Function Classification of All Unigene

A: RNA processing and modification

4000 —

3000 —

2000 —

Number of Unigenes

1000 —

[

A B CDETFGHI

Function Class

and sub-catagories

J K LMNOPQRSTUVWYZ

Fig. 3 Analysis of clusters of orthologous groups of proteins (COGs). In all, 9781 unigenes were functionally grouped into the 25 COG categories

B: Chromatin structure and dynamics

C: Energy production and conversion

D: Cell cycle control, cell division, chromosome partitioning
E: Amino acid transport and metabolism

F: Nucleotide transport and metabolism

G: Carbohydrate transport and metabolism

H: Coenzyme transport and metabolism

I: Lipid transport and metabolism

J: Translation, ribosomal structure and biogenesis

K: Transcription

L: Replication, recombination and repair

M: Cell wall/membrane/envelope biogenesis

N: Cell motility

O: Posttranslational medification, protein turnover, chaperones
P: Inorganic ion transport and metabolism

Q: Secondary metabolites biosynthesis, transport and catabolism
R: General function prediction only

S: Function unknown

T: Signal transduction mechanisms

U: Intracellular trafficking, secretion, and vesicular transport
V: Defense mechanisms

W: Extracellular structures

Y: Nuclear structure

Z: Cytoskeleton
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GO Classification of Fat body Differential Expressed Genes
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Fig. 4 GO classification of differential expressed genes (DEGs) in the locust fat body (a) and in hemocytes (b) after M. acridum infection

(Table 2). Overlap between the DEGs (differential expressed

biosynthesis, cold acclimation, organic acid biosynthesis,

genes) enriched in the fat body and hemocytes after expos-
ure to M. acridum was small (Fig. 5a), with those GO

annotated within cellular and metabolic processes having

annotation indicated enrichment of transcripts involved  the maximum number differentially expressed unigenes, i.e.

carboxylic acid biosynthesis, cuticle development and

the chitin-based cuticle molting cycle, small molecule

biosynthesis (Table 2). In the fat body response, GO

six. The six unigenes were: aspartate 1-decarboxylase, phos-
phoserine phosphatase, two proteophosphoglycan ppg4,

protein tyrosine phosphatase and zinc finger protein 768

(Fig. 5b).

in development and cell differentiation including; mRNA
translation (e.g. negative regulation of oskar involved in

germ-plasm formation), oocyte development, pole plasm

assembly, cytoplasmic organization, and cell maturation
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Table 2 GO enrichment analysis
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Gene ontology term

Cluster frequency

Genome frequency of use

Corrected P-value

Biological process
Hemocyte

Nitric oxide biosynthetic process

Cellular amino acid biosynthetic process

Cold acclimation

Nitric oxide metabolic process
Response to cold

Organic acid biosynthetic process

Carboxylic acid biosynthetic process

Cuticle development involved in chitin-based cuticle molting cycle

Cellular amino acid metabolic process
Small molecule biosynthetic process
Single-organism biosynthetic process

Fat body

Regulation of pole plasm oskar mRNA localization

Regulation of oocyte development

Negative regulation of oskar mRNA translation

Pole plasm assembly
Cytoplasm organization

Cell maturation

Oocyte anterior/posterior axis specification

Cellular component
Hemocyte
Integral to membrane
Intrinsic to membrane
Membrane
Membrane part
Extracellular region
Fat body
Intracellular

Intracellular part

Proton-transporting ATP synthase complex

Respiratory chain
Cytosolic small ribosomal subunit
Molecular function
Hemocyte

Nitric-oxide synthase activity

Oxidoreductase activity, acting on paired donors, with incorporation or
reduction of molecular oxygen, NAD(P)H as one donor, and incorporation

of one atom of oxygen
FMN binding
NADP binding

Oxidoreductase activity, acting on paired donors, with incorporation or

reduction of molecular oxygen

Transaminase activity

2/29,7 %
4/29, 14 %
2/29,7 %
2/29,7 %
2/29,7 %
4/29, 14 %
4/29, 14 %
2/29,7 %
5/29,17 %
4/29, 14 %
4/29,14 %

11/893, 1 %
11/893, 1 %
5/893,1 %

11/893, 1 %
11/893, 1 %
23/893, 3 %
13/893, 2 %

8/17,47 %
8/17,47 %
11/17,65 %
8/17,47 %
3/17,18 %

548/659, 83 %
523/659, 79 %
8/659, 1 %
14/659, 2 %
10/659, 2 %

2/31,7 %
2/31,7 %

2/31,7 %
2/31,7 %
3/31,10 %

2/31,7 %

4/8538, <0.01 %
89/8538, 1.0 %
7/8538, 0.1 %
7/8538,0.1 %

9 out of 8538 genes, 0.1 %
128/8538, 2 %
128/8538, 2 %
18/8538, 0.2 %
265/8538, 3 %
174/8538, 2.0 %
183/8538, 2 %

25/8538, 0.3 %
27/8538,0.3 %
6/8538, 0.1 %

30/8538, 0.4 %
33/8538, 04 %
104/8538, 1 %
45/8538, 0.5 %

893/6281, 14 %
907/6281, 14 %
2186/6281, 35 %
1322/6281, 21 %
257/6281, 4 %

4915/6281, 78 %
4660/6281, 74 %
23/6281, 04 %
58/6281, 0.9 %
35/6281, 0.6 %

3/9203, 0 %
4/9203, 0 %

1079203, 0.1 %
18/9203, 0.2 %
79/9203, 0.9 %

27/9203, 0.3 %

0.01231
0.03972
0.04282
0.04282
0.07310
0.15838
0.15838
0.30486
0.33062
049169
0.59005

0.03332
0.08004
0.13125
0.24967
0.65908
0.71693
0.95554

0.03580
0.03976
0.34152
044314
0.90284

0.19681
0.22058
0.56557
0.73999
0.83309

0.00213
0.00426

0.03158
0.10560
0.1491

0.23774
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Table 2 GO enrichment analysis (Continued)

Transferase activity, transferring nitrogenous groups 2/31,7 % 27/9203, 0.3 % 0.23774
Hydrolase activity, acting on ester bonds 6/31,19 % 558/9203, 6 % 0.63056
Monooxygenase activity 2/31,7 % 45/9203, 0.5 % 0.64579
Calmodulin binding 2/31,7 % 46/9203, 0.5 % 067373
Structural constituent of cuticle 2/31,7 % 49/9203, 0.5 % 0.76074
Phosphoric ester hydrolase activity 4/31,13 % 280/9203,3 % 0.89824
Fat body

mRNA 3'-UTR binding 9/955, 1 % 19/9203, 0.2 % 0.02320
O-methyltransferase activity 5/955 genes, 1 %  9/9203 genes, 0.1 % 0.51422
Stearoyl-CoA 9-desaturase activity 3/955,03 % 3/9203, 0 % 0.54600
Acyl-CoA desaturase activity 3/955, 0.3 % 3/9203, 0 % 0.54600
Nucleic acid binding 159/955, 17 % 1241/9203, 14 % 0.89676
mRNA 5'-UTR binding 5/955,1 % 10/9203, 0.1 % 0.94087
A FB Dif Hemo Dif

GO Classification of Overlap genes

Percent of Unigenes
Number of Unigenes

biological_process cellular_component molecular_function

Fig. 5 a Overlap between differentially expressed genes in the locust fat body and in hemocytes after M. acridum infection. b GO classification of
fat body and hemocyte overlapping DEG dataset
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Annotations of transcripts into the “cellular component”
category resulted in 57 (31 %) and 2588 (41 %) unigenes
placed into various subcategories from the hemocyte and
fat body DEGs, respectively (Fig. 4a & b). In hemocytes,
membrane proteins and processes dealing with membrane
biogenesis were the most enriched differentially expressed
genes (Table 2). In the fat body, general metabolism,
including ATP (Adenosine triphosphate) synthase and re-
spiratory chain enzymes, along with intracellular processes
and ribosomal subunits were the top subcategories show-
ing differential expression enrichment (Table 2). A small
set of co-differentially expressed unigenes were identified
which included aspartate 1-decarboxylase, zinc finger pro-
tein, and multidrug resistance protein 1, the former two of
which were also identified in the development and cell dif-
ferentiation GO analysis.

GO “molecular function” analysis could assign 1388
(22 %) and 48 (26 %) of unigenes derived from the fat body
and hemocyte DGE sets, respectively (Fig. 4a & b). Within
the molecular function, the most abundant subcategories
in hemocyte DEG dataset were nitric oxide synthase, oxi-
doreductase, FMN (flavin mononucleotide) and NADP
(nicotinamide adenine dinucleotide phosphate) binding
proteins, transaminase, transferase, hydrolase, monooxy-
genase, calmodulin-binding, and cuticle structural pro-
teins and enzymes. (Table 2). In the fat body, abundant
GO terms subcategories were identified to include; mRNA
3’- and 5'-UTR binding, O-methyltransferase activity,
stearoyl-CoA 9-desaturase activity, acyl-CoA desatur-
ase activity, and nucleic acid binding (Table 2). The co-
differentially expressed unigene set included functions
within catalytic activity (8), binding (3) and structural
molecule activity (2).

KEGG pathway enrichment analysis revealed genes
homologous to those found in pathways corresponding to
neural processes, e.g. Parkinson’s disease, and myotrophic
lateral sclerosis (ALS), as well as mRNA surveillance,
spliceosome, and oxidative phosphorylation as being the
top five most abundantly populated differentially (control
versus fungal infected) expressed pathways in the fat body
dataset. KEGG analysis of the hemocyte DEG dataset indi-
cated enrichment of genes involved in amino acid metab-
olism, e.g. arginine, proline, glycine, serine, threonine, and
tyrosine. Co-differential expressed pathways found in both
the fat body and hemocyte datasets included sugar metab-
olism and response, and immune and infection responses,
and signal transduction pathways, e.g. protein tyrosine
phosphatases (PTP, Unigene21232_All) that are part of the
JAK/STAT pathway.

GO enrichment analysis and KEEG pathway analysis re-
vealed that complex biological processes or metabolic
pathways were affected in both hemocyte and fat body.
Overall, two major categories of genes were activated in
hemocyte after infection. The first involved pathways
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linked to release of humoral immune factors, e.g. nitric
oxide synthesis related genes, including two nitric oxide
synthase [45], GTP (Guanosine-5’-triphosphate) cyclohy-
drolase I [46] mitochondrial uncoupling protein 2 [47], and
melanization related genes, like GTP cyclohydrolase 1
[48]. The second category encompassed cellular im-
mune function, and included protein rhomboid, cdc42,
lipopolysaccharide-induced tumor necrosis factor-
alpha factor homolog, which are proteins involved in
phagocytosis [49-51], etc. By contrast, some humoral
innate immune related genes, like Caspase-1 precursor,
were activated in the fat body (more detailed informa-
tion is given in the Discussion section concerning iden-
tification of immune related genes). Meanwhile, energy
metabolism and reproduction related genes were affected
significantly in fat body.

Identification of immunity-related genes

A number of locust immune related genes expressed in
the fat body and hemocyte were identified using NCBI-
BLAST analysis combined with conserved domain com-
parisons. Initial analyses were set to identify all immue
related genes present in the transcriptome data. A second
analysis was subsequently performed examining the
differential expressed, i.e. control versus fungal infected,
immune related gene sets in fat body and hemocyte sub-
datasets. In total 470 immune-related transcripts were
identified. Immune-related responses found in the fat body
encompassed genes involved in: (1) cellular pathogen
recognition pathways and humoral immune reactions, (2)
immune signal modulation and signal transduction, and
(3) effectors and related-activties released into hemolymph.
In the dataset obtained, 36 immune related genes were up-
regulated and 23 were down-regulated in the fat body after
infection (Fig. 6). In contrast, only three immune related
genes, one lysozyme and two involved in NOS (nitric oxide
synthases) pathway, were identifed in the hemocytes after
infection, all of which were up-regulated. Within the fat
body immune related dataset, DEGs included pathogen
recognition and binding proteins, e.g. peptidoglycan
recognition proteins (PGRPs, 2/14), C-type lectins (3/14),
scavenger receptor class B protein (SCRB, 3/15), and
immunoglobulin-like cell adhesion molecules (dscam pro-
teins, 5/99); innate immune activation and suppression
factors, e.g., serine protease inhibitors (serpins, 7/36), and
prophenoloxidases (2/10); antimicrobial proteins, e.g. lyso-
zymes (3/7); oxidative and stress responses, e.g. peroxidase
(Pox, 2/37), superoxide dismutases (SODs, 3/12), and
peroxiredoxin (1/11); cell death and inflammation, e.g.
caspases (6/18); viral response and RNAi (RNA interfer-
ence), e.g. argonaute (2/9), and NOS pathways, e.g. NOS
synthase (2/5). In addition, members of the JAK/STAT im-
mune realted signal trasnduction pathways were found
including: domeless (1/2), SOCS (suppressor of cytokine
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84

Number of up or down unigenes

FB dif immune genes

Fig. 6 Functional classification of fat body DEGs in response to M. acridum infection

signaling, 5/14), and PIAS (protein inhibitor of activated
STAT, 2/6); as well as members of the Toll pathway, e.g.
Toll receptors (2/21), Tollip (Toll Interacting Protein, 1/2),
Pellino (6/12); and of the IMD pathway, e.g. IMD (1/2). A
summary of the immune related gene identified is given in
Additional file 1: Table S1.

gRT-PCR analysis of immune-related genes

qRT-PCR (Real-Time fluorescence quantitative PCR) was
used to validate the differential expression of the immune
related genes in the transcriptomic data. Sixty genes,
including the 58 immune related DEGs identified in the fat
body analysis and the three found in the hemocyte dataset
were examined (one unigene is codifferentially expressed in
fat body and hemocyte). For two genes (Lys4, SCRBY),
primers could not be designed due to the limited sequence
lengths isolated. Overall, 50/58 (86.2 %) were consistent
with respect to expression between the transcriptomic and
q-RT-PCR data (Fig. 7, Additional file 2: Table S2). With
respect to the fat body DEGs, 7/55 (13 %) were found to be
inconsistent with respect to expression between the tran-
scriptomic and q-RT-PCR data (Fig. 7, Additional file 2:
Table S2). These included Dscam9 and Dscam 75, the
serpins, SRPN23 and SRPN30, Pellino7 involved in the Toll
pathway, Domeless2, part of the JAK/STAT pathway, and
NOS5. OF the hemocyte DEGs, 1/2, namely the NOSI
gene, showed inconsistent results comparing the transcrip-
tomic and the q-RT-PCR data. A summary of the main
immune-related pathways and specific genes up- or down-
regulated in the fat body and in hemocytes, respectively
after M. acridum infection is given in Fig. 8.

Discussion

Insect responses to microbial pathogens begin at the cuticle
and continue within the body of the organism with innate
and induced responses. The insect fat body is the major
organ mediating immune responses in insects, and it also
governs organismal energy homeostasis including inter-
mediary metabolism tissue, energy storage and utilization,
and the synthesis of many hemolymph proteins and circu-
lating metabolites [15]. Thus, changes in fat body gene
expression in response to pathogens can result in a steep
energy and/or reproductive cost [52]. Our results using the
locust specific fungal pathogen, M. acridum showed similar
changes in host gene expression broadly affecting repro-
ductive and energy metabolism, effects consistent with
other reports of such changes as a result or response to in-
fection, acting as a potentially adaptive strategy to minimize
or delay the spread of the infection [53]. In addition,
phagocytic hemocytes, cells that freely float within the open
circulatory system of insects, can consume foreign objects,
including microbes, as well as initiate and/or contribute to
encapsulation and melanization reactions that seek to limit
the spread of invading microbes.

Limited reports [54], however, have focused on these
two essential aspects of immune reactions, particularly
examining specific tissue transcriptomic responses to
pathogen attack. Here, we have examined the response
of locust fat body and hemocytes to infection with the
necrophytic insect pathogen, M. acridum. These data
have allowed for the reconstruction of significant aspects
of the locust immune pathways and the nature of the re-
sponse to the fungal pathogen.
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Fig. 7 Q-RT-PCR analysis of DEGs and comparison to transcriptomics data
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Microbial recognition

Carbohydrate moeities appear to be important microbial
antigens recognized by the insect innate immune system.
These include often repeating polysaccharide units found
on microbial surface strcutures and glycoproteins, e.g.
lipopolysaccharide (LPS) on gram negative bacteria, pep-
tidoglycan on gram positive bacteria, and high mannose
and other surface glucans on yeast and filamentous fungi
[55, 56]. Recognition initiates insect innate immune re-
sponse and this step is mediated by pattern recognition
molecules (pathogen sensors) that recognize conserved
molecular patterns found on pathogens but presumably
lacking in the host [57]. A variety of pattern recognition
molecules have been described including peptidoglycan
recognition protein (PGRP), -1,3-glucan recognition pro-
tein (BGRPs), gram-negative binding proteins (GNBPs),
Calcium-dependent (C-type) lectins (CTLs), and scavenger
receptors (SCRs) [58]. Recognition, e.g. PGRP family mem-
bers capable of distinguishing between various invading
bacteria, acts upstream of Toll and Imd pathways to medi-
ate. PGRPs can be categorized into short (PGRP-S) and

long (PGRP-L) members, although all of these proteins
have at least one conserved N-acetylmuramyl-alanine
amidase-like domain [59].

Various insects have different PGRP repertiores; Dros-
ophila has 13 PGRP genes encoding 19 proteins (due to
alternative splicing) [60], mosquito (Anopheles gambiae);
7 PGRP genes encoding 9 proteins [61], and the silkworm,
Bombyx mori, has 12 distinct PGRP genes [62]. Here, we
identified 14 putative PGRP transcripts. Among them, two
unigenes, PGRP-SA and PGRP-LC-like, were upregulated
in the fat body in response to M. acridum infection.
PGRP-SA is an essential component for activating the Toll
pathway in Drosophilia [63]. PGRP-LC activates the Imd
pathway [64]. These data indicate that in response to M.
acridum both the Toll and Imd pathways have the poten-
tial to be activated.

The PGRP/GNBP proteins are another pattern recogni-
tion protein family found in most insects [65], including
Drosophila (three genes) [66], A. gambiae (seven genes)
[61], the honey bee, Apis mellifera (two genes) [10], to-
bacco hookworm, Manduca sexta (two genes) [67, 68],
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and in the beetle, Tribolium castaneum (three genes) [11].
BGRP proteins have high affinity for p-1,3-glucans found
in fungal cell walls, while GNBPs bind to gram-negative or
-positive bacteria [66]. All these members of this family
contain a conserved N-terminal (3-1,3-glucan-recognition
domain for the detection of pathogens or parasites. Here,
we found five GNBP genes (LmGNBP1-5) in the overall
transcriptomic data, however none of these were differen-
tially expressed after M. acridum infection in either the fat
body or hemocytes. Our sequence alignment revealed that
LmGNBP1 and 5 are identical to GNBP1 as named in
Wang et al. [69] and LmGNBP3 is identical to GNBP2 [69]
which was also the same as BPGRP as reported by Zheng
et al. [70]. In the Wang et al. report, LmGNBP1 and 5
(termed GNBP1) was initially expressed in hemocytes and
was induced in the fat body 6 and 9 h after conidial injec-
tion into the hemocoel (note that this infection prtocol is

different than ours in which infection was topical, i.e.
followed the “natural route). We did not see any signifi-
cant differential expression of LmGNBP1 and 5 although
both LmGNBP1 and 5 are highly expressed (high FPKM
values = 1619.8831 and 2318.7453, respectively) in heom-
cytes, with low expression in the fat body. Only a slight in-
crease in expression of these genes were seen in the fat
body after infection (FPKM from 11.26 to 16.05 and 4.4 to
4.7, respectively). These data suggest that LmGNBP1 and
5 are constitutively expressed in hemocytes, with only
minor expression in the fat body consistant with the over-
all results of Wang et al. [69], althoug we did not see
appreciable induction in the fat body. As noted above, this
can be due to the different infection methods used.
Regarding LmGNBP2 (termed PGRP in the Zheng et al.
report [70], and GNBP3 in the Wang et al. report [69]),
this gene was induced in hemocytes 8 and 12 h after
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inoculation of conidia, but no differences were seen earlier
(4 h) or later (24, 48 and 72 h) post infection (as measured
by q RT-PCR) in Zheng et al. paper. However, LmGNBP2
was detected in hemocyte in the absence of infection [70].
In our research, LmGNBP2 (= BGRP = GNBP3) simmi-
larly showed high expression in hemocytes and low
expression in the fat body. As we did not examine inter-
mediate time points, it is possible that a transient increase
in LMGNBP2 was missed in our dataset. However, other
have also reported constitutive but no significant differen-
tial expression of LmGNBP2 in any tissues [69], consistent
with our results.

CTLs are a large family of carbohydrate binding pro-
teins [71] that contribute to a number of inverberate im-
mune responses, including microbial clearance [72],
hemocyte nodule formation [73], activation of propheno-
loxidase [74] and opsonisation [75]. In our study, 14 CTLs
were identified in the transcriptome of the locust. Within
the fat body differentially expressed gene set, LmCTL8
and LmCTL14 were significantly down regulated, whereas
LmCTL9 was up-regulated after fungal challenge.

Galectins are a phylogenetically ancient lectin family
with evolutionary conserved carbohydrate binding
domains [62]. Galectin-like proteins have been identi-
fied in D. melanogaster (DmGALEs) and A. gambiae
(AgGALEs). In vitro experiments indicate that
DmGALEs can bind to 3-galactoside sugar [76], and
that these proteins may play functions via facilitation
of microbial recognition and/or phagocytosis [77].
Here, we identified five galectin-like proteins in the
overall locust transcriptome, however, none of them
appeared to be differentially expressed in either the
fat body or in hemocytes after M. acridum infection.

Scavenger receptors are cell surface glycoproteins with
structurally diverse transmembrane multidomains, di-
vided into at least eight subfamilies (classes A to H,
with A, B, and C, representing the major subfamilies)
[78]. Class A scavenger receptors (SCRAs) are thought
to function in phagocytic recognition of unoposonized
and opsonsonnized microorganisms [79]. Class B SCRs
participate in the phagocytosis of microbes [80],
apoptotic-cell binding [81], etc. Class C SCRs are trans-
membrane or secreted multidomain proteins character-
ized by two complement-control protein (CCP) domains
followed by a MAM domain (meprin A5 antigen and
RPTP Mu), and usually a somatomedin-B-like (BO) do-
main. Drosophila has four class C SCRs subtypes (types
I-1V), three of which has been shown to be involved in
phagocytosis and innate immunity [82]. Our overall
transcriptome dataset contained four unigenes corre-
sponding to class A SCRs, 15 class B SCRs, and five
class C SCRs. None of these genes, however, were
found to be differentially expressed in either the fat
body or in hemocytes after expsoure to M. acridum.
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Immunoglobulin-like genes

The Down syndrome cell adhesion molecule (DSCAM) is
a immunoglobulin (Ig)-superfamily member with con-
served architecture containing variable Ig and transmem-
brane domains [83]. Dscam is encoded by a single gene in
Drosophilia but it can generate more than 18,000 isoforms
via alternative splicing in Drosophila immune-competent
cells [84]. DSCAM deficiency correlates with reduced
phagocytotic uptake of bacteria [84] and differential splice
variants of Dscam during exposure to different bacterial
strain in A. gambiae has been reported [85] indicated that
the complexity of dscam and its function in pathogen rec-
ognition. In the overall locust transcriptome dataset, we
found ~100 Dscam unigenes (designated as DSCAM1-
100), however, these likely represent splice variants.
Among these, six unigenes showed significant differen-
tial expression in the locust fat body after M. acridum
infection; three of which were upregualted (Dscam9, 69,
and 76), with the latter >11-fold, whereas the other
three unigenes were down regulated in the locust fat
body (Dscam14, 18, and 71).

Modulation
Once microbial pathogens are recognized by various re-
ceptor or recognition factors, different signalling cascades
are activated via amplifaction or supressed via dampening.
This typically occurs via activation/repression of extracellu-
lar proteases, via interplay between serine proteases and
(serine) protease inhibitors (serpins). Clip domain serine
proteases (CLIPs) are a large family of proteases that con-
tain disulfide knotted clip domain(s), unique to arthropods.
These domains are coupled to the active, C-terminal
serine protease domain [86]. CLIPs are involved in mel-
anization [87] and stimulation of the Toll pathway via
activation of the phenoloxidase cascade by acting on
the Toll-ligand Spétzle and other downstream proteins
[88, 89]. Drosophila has 37 CLIP genes, Anopheles 41,
Bombyx 15 and Apis 18. In L. migratoria, we ientified
34 potential CLIP unigenes, however, none were signifi-
cantly differentially expressed after fungal infection.
Serpins (serine protease inhibitors) are a superfamily of
proteins found in all higher eukaryotes as well as some vi-
ruses [90] that function through a unique suicide
substrate-like inhibitory mechanism [91]. Serpins, typically
composed of 350—-400 amino acid residues, usually have a
reactive center loop (RCL) located 30-40 residues from
the C-terminal end that functions to bind the active site of
specific proteases mimicking a substrate. Once an RCL
moeity binds to its target protease, the protease can cleave
the serpin at the scissile bond resulting in a covalent link
of the serpin to the protease, thus blocking its activity
[91]. Thirty-six serpin (srpn) transcripts were identified in
the overall transcriptome dataset. Of these four were up-
regulated and three down-regulated in the fat body after
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M. acridum infection. No srpn transcripts showed any sig-
nificant differential expression in hemocytes after fungal
infection.

Signal transduction pathways: Toll, Imd, and JAK/STAT
After the extracellular signal derived from pathogen recog-
nition has been modulated, and concomittant with activa-
tion of extracellualr defense pathways, the immune signal
is transduced to target cells that activate cellular responses
including the production of antimicrobial compounds and
effectors. A number of immune related signal transduction
pathways are present in insects including the Toll, Imd,
and JAK/STAT pathways [10]. The Toll pathway is initiated
by the input from PGRP/GNBP recognition of epitopes on
the cell surfaces of bacteria or fungi [92]. Recognition
(binding) activates extracellular serine protease cascades
via cleavage of the extracellular cytokine pro-Spétzle to ma-
ture Spatzle. Mature Spétzle (C-terminal 106 amino acids)
then binds to Toll receptors on insect cell surfaces, result-
ing in the recruitment (inside the cell) of the Tube/Myd88
complex that acts to stimulate the Pelle kinase [3]. Pelle
phosphroylates Cactus, an inhibitory factor, resulting in its
dissociation from the Cactus/Dorsal/Dif complex [93].
Dorsal and Dif are then free to translocate from the cyto-
plasm into the nucleus to activate the transcription of add-
itional defense responses including the production of
antimicrobial peptides. This is achieved via the activities of
a host of additional proteins including Tollip, Pellino,
TRAF2 (TNF receptor associated factor-2), and ECSIT
(evolutionarily conserved signaling intermediate in Toll
pathway), [94—-96].

Spétzle shares high structural similarity with cystine-
knot superfamily proteins, e.g. nerve growth factor (NGF)
and Coagulogen [97]. Both D. melanogaster and A. gam-
biae contain six Spitzle genes, whereas B. mori has only
three orthologs. However, thus far, it appears that only one
Spiitzle ortholog participates in immunity in Drosophila
[98], and one Spiitzle gene has been shown to be up regu-
lated after bacterial infection in A. gambiae. In this study,
four distinct Spdtzle transcripts were identified, but none
showed any significant differential expression in either the
fat body or in hemocytes after fungal challenge. Toll and
Toll-like receptors (TLR) are evolutionarily conserved pro-
teins found from insects to mammals [99]. Toll/Toll-like
receptors numbers vary from nine in Drosophila, to ten in
A. gambiae, fourteen in B, mori, and five in Apis mellifera
[62]. In L. migratoria manilensis, we have identified two
Toll and twenty-one Toll-like receptor unigenes in the tran-
scriptome dataset. Amongst these, expresssion of one
Toll receptor was down-regulated, and expression of
two Toll-like receptors were up-regulated in the locust
fat body post fungal challenge. No changes were seen for
any Toll/Toll-like receptors in hemocytes after fungal infec-
tion. Of downstream componenet of the Toll pathway, one
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MyD88 (death domain containing myeloid differentiation
factor 88) unigene was identified in the transcriptome data-
set. Tube and Pelle are two additional proteins that share
homology with MyD88 proteins (include Death domains).
In our study, no Tube transcript was identified while two
Pelle unigenes were found in the overall transcriptome
dataset. None of the these genes, i.e. MyD88/Pelle, showed
any differential expression in the fat body or in hemocytes
after exposure to M. acridum. Twelve Pellino unigene tran-
scripts were found in the overall locust transcriptome data-
set, with expression of six Pellino unigenes up regulated in
the locust fat body after M. acridum infection. Four Cactus
and two Rel family transcription factor Dorsal/Dif unigenes
were identified in the transcriptome dataset, none of which
showed significant differential expression in the presence
of M. acridum. Additonal intercellular components identi-
fied included Tollip (two unigenes), TRAF2 (TNF receptor
associated factor-2) (two unigenes) and ECSIT (a single
unigene). Amongst these, only one Tollip unigene was
found to be significantly up regulated in infected locust fat
bodies. Intruigingly, manipulation of the Toll system via
genetic engineering of the insect pathogenic fungus B.
bassiana to express a Drosophila serpin resulted in in-
creased viruelnce towards a Lepidopteran host [100].

The Imd pathway has been shown to be induced by bac-
terial mesodiaminopimelic acid (DAP)-type peptidoglycans
as well as their fungal counterparts, with weaker activation
by lysine (Lys)-type peptidoglycan. Imd activation proceeds
via epitope recognition by the transmembrane receptor
PGRP-LC or by the receptor PGRP-LE [101]. Activated
receptors then bind to the Imd protein which in turn inter-
acts with the FADD (FAS-associated death-domain) pro-
tein. FADD associates with the apical caspase death-related
Ced-3/Nedd2-like protein (DREDD) leading to the cleav-
age of Imd by DREDD. Proteolyzed Imd interacts with the
Drosophila inhibitor of apoptosis-2 (d[AP-2) protein [102],
which results in recruitment of downstream components,
ie. TAK1 (Transforming growth factor beta activated
kinase-1) [103] and its adaptor TAB2 (TGF-beta activated
kinase) [104]. Once recruited, TAK1 activates the IkB-
Kinase (IKK) complex, resulting in the phosphorylation of
the NF-kB protein (Relish) [105]. Further proteolytic cleav-
age of Relish by DREDD, results in a protein that can be
translocated into the nucleus leading to transcriptional in-
duction of the expression of defense compounds including
antimicoribal peptides and other effectors [106, 107]. All
essential components of the Imd pathway were identified
in L. migratoria manilensis indicating that the Imd path-
way is conserved in Orthoptera. In addition, three unigenes
coding for Caspar proteins that act to suppress immune
activation by blocking nuclear translocation of Relish were
identified in the locust transcriptome dataset. Among this
pathway, only IMD1 showed significant down-regulation
in infected locust fat bodies.
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The JAK/STAT pathway is known to respond to viral
infections [108] and tissue damage [109]. Upon infection,
hemocytes release cytokines, e.g. Unpaired-3 (Upd-3), that
bind to the Domeless receptor [109] resulting in activation
of JAK kinases (Janus kinase, e.g. encoded by the Hopscotch
gene). Activated JAKs phosphorylates cytosolic STATs
(signal transducers and activators of transcription) promot-
ing their translocation to the nucleus where they act as
transcriptional activators. With the exception of one com-
ponent, Upd, all members of this pathway, including a
single Hopscotch and two STAT unigenes, were identi-
fied in the locust transcriptome dataset. However, Upd
has also not been found in A. mellifera, A. gambiae, T.
castaneum, and B. mori, indicating that it may be a
Drosophila specific ligand for the JAK/STAT Pathway.
Two unigene transcripts for Domeless were identified in
the locust, and one of them was significantly down regu-
lated in the fat body after M. acridum infection. A num-
ber of additional JAK/STAT interacting proteins were
identified. These included SOCS and PIAS genes. In this
study, fourteen SOCS unigenes were identified, five of
which were up regulated in the locust fat body after fun-
gal challenge. Six unigene transcripts corresponding to
PIAS genes were identifed, one of which (LmPIAS1) up
regulated, whereas another (LmPIAS6) was down regu-
lated in the locust fat body after M. acridum infection.

Effectors

As part of the insect microbial defense response, patho-
gen recognition and signal modulation and transduc-
tion lead to the expression of various effectors that
target the invading organism. These effectors stimulate
phenoloxidase-dependent melanization, cellular apoptosis,
and the production of antimicrobial compounds and pep-
tides. PPO exists as an inactive zymogen in hemolymph.
Recognition and regulation by serine proteases as de-
scribed above, leads to PPO activation (conversion of PPO
to PO) by an ultimate protease [110]. PO hydroxylates and
oxidizes monophenols to quinones, resulting in several
physiological consequences including toxicity to microbes,
stimulation of melanin synthesis, faciliatation of the
sequestreation of parasites, and wound healing [111]. Our
overall transcriptome dataset contained ten PPO unigens,
two of which were significantly down regulated in the
locust fat body after M. acridum infection. Lysozyme
(chicken or conventional type, C-type) is one of three clas-
ses (A, B, & C) of lysozymes found in the animal kingdom,
with only the C-type found primarily in the Arthropoda
and the phylum, Chordata. All lysozymes are characterized
by their ability to hydrolyze the -(1,4)-glycosidic bond be-
tween the alternating N-acetylmuramic acid (NAM) and
N-acetylglucosamine (NAG) residues of peptidoglycan,
the predominant cell wall polymer found in bacteria [112].
In this study, seven c-type lysozyme unigenes were
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identified in the L. migratoria transcriptome. Within the
fat body response to M. acridum infection, two lysozyme
unigenes were down-regulated and one up-regulated after
fungal exposure. The latter lysozyme unigene was also up-
regulated in hemocytes post-fungal infection. AMPs can
be classified into three main groups; (a) proline, histidine
or other amino acids-rich peptides, (b) linear peptides
with a-helical conformations (e.g. cecropins and magai-
nins), and (c) cyclic or open-ended cyclic peptides with
pairs of cysteine disulfide bonds (e.g. defensins and prote-
grin). Unigenes corresponding to a defensin and a dipteri-
cin were identified in the overall transcriptome library,
however, no differential expression of any of these was
found in either the fat body or in hemocytes after M.
acridum infection. This result is in accordance with pre-
vious report [69]. Oxygen-derived free radicals and ni-
tric oxide are known to play important roles, both
directly and/or as signalling molecules, during pathogen
induced immune responses. For example, local produc-
tion of free radicals is a critical component of acute-
phase oxidative defense that targets invading microbes
[113]. The production of these free radicals involved a
variety of enzymes including, NOS, NADPH oxidases
(NOX), peroxidases (POX), glutathione oxidases (GTX),
superoxide dismutases (SOD), catalases, thioredoxins,
thioredoxin reductases, and peroxiredoxins. In the over-
all transcriptome dataset we identified five NOS, seven
NOX, 37 POX, 12 SOD, three catalase, 19 thioredoxin
reductase, and 11 peroxiredoxin unigenes. Of these, two
NOS unigene showed up regulation in the fat body, with
two other NOS unigenes up regulated in hemocytes
post-fungal infection. In addition, one POX and three
SOD unigene were up-regulated whereas another POX
and one peroxiredoxin unigene were down-regulated in

the fat body.

Other immune molecules

Caspases (cysteine aspartate-specific proteinases) both
initiate and execute cellular apoptosis via cleavage of
target proteins that lead to cell death. However, cas-
pases are also involved in immune responses in non-
apoptotic mechanisms, e.g. the Drosophila DmDredd
and DmIAP2 gene products are essential for Imd sig-
naling [104, 114]. Caspases are also involved in insect
antiviral responses [115]. Our transcriptome analysis
of L. migratoria manilensis identified 20 caspase uni-
genes, five of which were down regulated and two of
which were up regulated in the fat body of infected
locusts. RNAi pathways play important roles not in
normal development and in the targeted of foreign
nucleic acids (primarily viral). Key components of the
RNAI pathway include Dicer, enzyme that cleave RNA
into siRNA (Small interfering RNA), and the RNA-
induced silencing complex (RISC) that includes
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argonaute, which captures the siRNA, and targets
gene transcription. Within the locust overall tran-
scriptome dataset, four Dicer and nine argonaute uni-
genes were identified. Two argonaute unigenes were
identified as being down regulated in the fat body of
infected locusts, with no transcripts of any RNAI
components identified found to be significantly differ-
ential expressed in hemocytes post M. acridum infec-
tion. However, glucose dehydrogenase was found to
be a locust differential expressed protein in hemocyte
in response to M. acridum that has been shown to be
involved in encapsulation [116], and protein spinster
homolog one induced caspase-independent autophagic
cell death, factors which might facilitates removal of
dead hemocyte after infection.

Conclusion

Significant aspects of the locust physiology, including
the main immune pathways were identified in the
overall transcriptome analysis performed. By examin-
ing the reponse to infection of the two major organs
or tissues involved in the immune response, namely
the fat body and hemocytes, a set of differentially
expressed genes were identified in each tissue. As M.
acridum is a specific fungal pathogen of locusts, these
data indicate that the locust attempts to mount a
challegene to the fungal infection. The most signifi-
cant responses, in terms of changes in gene expres-
sion levels, were found in the fat body, with
hemocytes showing altered expression of only three
genes (LmLys4, LmNOS1, LmNOS2). This may not be
too surprising, as hemocytes are general scavengers,
primed to target any invading microbe, depedning
upon proper stimulation. In contrast, the fat body is
capable of responding to specific threats via induction
and signaling pathways to turn on the production of
specific effectors, e.g. lysozyme and free radical pro-
duction. Locust pathways for melanization, phagocyt-
osis, and encapsulation were identified, however none
of these were enough to thwart the fungus, indicating
that it has evolved mechanisms for overcoming these
defenses. These data establish the groundwork for fur-
ther exploration of locust immune responses and the
identification of potential targets for locust control.
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