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Abstract

Background: Grape cultivars and wines are distinguishable by their color, flavor and aroma profiles. Omic analyses
(transcripts, proteins and metabolites) are powerful tools for assessing biochemical differences in biological systems.

Results: Berry skins of red- (Cabernet Sauvignon, Merlot, Pinot Noir) and white-skinned (Chardonnay, Semillon) wine
grapes were harvested near optimum maturity (°Brix-to-titratable acidity ratio) from the same experimental vineyard. The
cultivars were exposed to a mild, seasonal water-deficit treatment from fruit set until harvest in 2011. Identical sample
aliquots were analyzed for transcripts by grapevine whole-genome oligonucleotide microarray and RNAseq technologies,
proteins by nano-liquid chromatography-mass spectroscopy, and metabolites by gas chromatography-mass spectroscopy
and liquid chromatography-mass spectroscopy. Principal components analysis of each of five Omic technologies showed
similar results across cultivars in all Omic datasets. Comparison of the processed data of genes mapped in RNAseq and
microarray data revealed a strong Pearson'’s correlation (0.80). The exclusion of probesets associated with genes with
potential for cross-hybridization on the microarray improved the correlation to 0.93. The overall concordance of protein
with transcript data was low with a Pearson’s correlation of 0.27 and 0.24 for the RNAseq and microarray data,
respectively. Integration of metabolite with protein and transcript data produced an expected model of phenylpropanoid
biosynthesis, which distinguished red from white grapes, yet provided detail of individual cultivar differences. The mild
water deficit treatment did not significantly alter the abundance of proteins or metabolites measured in the five cultivars,
but did have a small effect on gene expression.

Conclusions: The five Omic technologies were consistent in distinguishing cultivar variation. There was high
concordance between transcriptomic technologies, but generally protein abundance did not correlate well with transcript
abundance. The integration of multiple high-throughput Omic datasets revealed complex biochemical variation amongst
five cultivars of an ancient and economically important crop species.
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Background

Grapes (Vitis vinifera L.) are an economically important
agricultural commodity, having an economic impact
greater than $162 billion to the American wine and
grape industry alone (http://www.ngwi.org). Cultivated
grapes are grown and consumed as fresh fruit, used as
the root stocks for fruit producing scions, and in the
production of a range of wines with distinct and com-
plex flavor profiles [1]. Grapevines are a long-lived per-
ennial fruit species intertwined within the culture of
many countries dating back more than 7000 years.

There are more than 5000 distinct cultivars of grapes
in the world. Grape production is found on every arable
continent around the globe [2, 3]. Grapevines have
maintained a rich genetic diversity since domestication
as a result of vegetative propagation practices that both
immortalize existing traits and unknowingly encourage
unique phenotypes to arise from clonal cuttings that
carry somatic mutations [2, 4]. Regional environments
often referred to as “terroir”, in conjunction with human
selective pressures have shaped the cultivar characteris-
tics associated with many of the popular wines enjoyed
today [5].

The color of a grape berry’s skin contributes a
recognizable cultivar characteristic that differentiates
red- and white-skinned grapes. Anthocyanins are the
purple, blue and red pigments that provide the color as-
sociated with the skins and wines from red cultivars, and
are extracted from the berry skins during winemaking;
they are crucial constituents for quality in high-end
wines [6]. White cultivars do not synthesize anthocya-
nins as a result of two adjacent mutations within the
genes of the MYB transcription factors, in VviMYBAI
and VWiMYBA2 [7, 8]. Human selective pressures from
domestication are believed to have maintained this
phenotype in many of today’s popular cultivars [2].

Other phenylpropanoids, besides anthocyanins, con-
tribute to distinct cultivar differences in both grapes and
wine. For example, genetic and environmental factors
account for cultivar-dependent differences in abundance
of the flavon-3-ols, catechin and epicatechin, in red
wines produced from diverse regions [9]. Wine and table
grapes also differ in their concentrations of both hydro-
xybenzoic and hydroxycinnamic acids levels, with wine
grape content significantly higher [10]. The qualities of
bitterness and astringency in wine are attributed to mono-
meric flavan-3-ols and polymeric proanthocyanidins or
condensed tannins [11-14], and have been studied for
their effects upon human health, including antioxidant
and anti-inflammatory properties [15-18].

Cultivar differences also extend to subtle variations in
amino acid composition at harvest [19-21]. Ammonia
and certain amino acids are the main nitrogen-containing
compounds assimilated by yeasts within fresh grape juice
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or musts before fermentation commences [22]. Nitrogen-
ous substances become available to yeasts from pressed
berry juice or via extraction from the skins, in the case of
fermenting red wines. The assimilable nitrogen levels in
grapes must also play a role in determining the duration
of fermentation, and musts are often amended with am-
monium salts (DAP) to ensure efficient fermentation [22].
Yeast assimilates free amino acids under anaerobic fer-
mentation conditions, with the exception of proline
that stoichiometrically requires oxygen for degradation
[19, 23]. Aroma composition of wines shares a close
relationship with must amino acid composition, where
volatile compounds such as isoamyl acetate, isobutanol,
isobutyric acid and methionol are significantly different
among cultivars [24]. Grape composition at harvest can
therefore impact the quality of the finished wine.

The environmental influence of water deficit has been
positively correlated with the enhancement of quality
attributes such as color, aroma and flavor [25, 26]. For
example, Deluc et al. [27] investigated seasonal water
deficit in Cabernet Sauvignon observing 2-fold increases
in the accumulation of the five major anthocyanins, as
well as significant increases to the MYB transcription
factors that regulate the final steps in anthocyanin bio-
synthesis. Drought tolerance amongst cultivars also var-
ies between grapevine cultivars and species [28, 29].
Wine produced from low water status vines had signifi-
cant reductions in vegetal aroma, but were rated highly
for fruity aromas associated with red and black fruit
[30]. Water-deficit-treated berries also showed signifi-
cantly induced transcripts involved in fatty acid cleavage
or hydroxylation of monoterpenes leading to plant vola-
tile production [31]. Severe water deficit can also increase
berry nitrogen status [32] by differentially affecting the
transcription of amino acid metabolism, including proline,
glutamate and phenylalanine [27].

In the present study, an integrated analysis (transcrip-
tional, translational, and intermediary and end-products of
metabolism) is presented to test the uniqueness of three
red-skinned and two white-skinned cultivars: Cabernet
Sauvignon, Merlot, Pinot Noir, Chardonnay and Semillon,
respectively. Here, the same berry samples from the same
vineyard and climate, free of disease and insect pressures,
were sampled and utilized for each Omic analysis. The
cultivars were exposed to a mild, seasonal water-deficit
treatment from fruit set until harvest in 2011 to provide a
more diverse molecular expression that underlies the
unique responses of each cultivar. The major goal of this
research was to elucidate the major biochemical and signal
transduction pathways that were active at berry maturity.
This was accomplished using an Omics approach to iden-
tify and quantify the relative abundance of transcripts, pro-
teins and metabolites in the berry skins. Another goal was
to evaluate the platform performance of gene expression


http://www.ngwi.org

Ghan et al. BMC Genomics (2015) 16:946

profiled by NimbleGen Grape Whole-Genome Microarray
and Illumina RNAseq technologies. In addition to compar-
ing abundance changes of individual proteins and tran-
scripts, ancillary components of the berry biological system
were determined through primary and secondary metabol-
ite analyses using gas chromatography-mass spectroscopy
(GC-MS) and liquid chromatography-mass spectroscopy
(LC-MS). Interestingly, the cultivars’ proteomic, transcrip-
tomic and metabolomic responses to the drought treatment
were divergent, reflecting, at the level of the berry skin,
unique grape profiles. In this comprehensive assessment of
five grape berry cultivars at harvest, we found that there
was concordance amongst the Omics platforms in differen-
tiating each cultivar’s uniqueness.

Results

Five Omic data sets comprising transcripts, proteins, and
metabolites, generated from the same harvested skins, were
used to investigate cultivar differences in biochemistry and
signal transduction at berry maturity. An emphasis upon
known, biologically-important molecules of the mature
berry that affect color and amino acid metabolism will be
presented here.

Growth conditions and physiological data
Cabernet Sauvignon, Merlot, Pinot Noir, Chardonnay,
and Semillon were grown at the University of Nevada,
Reno Experimental Vineyard during the 2011 growing
season in relatively normal and stress-free conditions.
This vineyard is located at high elevation (1372 m) in a
very dry climate (see seasonal precipitation (Fig. 1a), esti-
mated daily evapotranspiration (Fig. 1b) and daily mean
temperatures (Fig. 1c)). Seasonal precipitation from fruit-
set through veraison (July — September) was marginal, to-
taling 0.501 cm, with daily mean temperatures of 22.5 °C.
The majority of rain accumulation occurred late in the
season (early October 2011), which also coincided with a
period of cooler daily mean temperatures (8.9 °C) and the
harvests for Semillon, Pinot Noir, and Merlot. The
remaining growing days of the 2011 season maintained
warmer temperatures (daily mean 14.3 °C) and an absence
of rain. Cabernet Sauvignon fruit were harvested the day
prior to the season’s first freezing temperatures (-3.3 °C)
in order to avoid potential frost damage to berries.
Grapevines were grown in two adjacent experimental
vineyards with independent irrigation controllers. Merlot,
Pinot Noir, and Semillon were grown in the experimental
south, which had a randomized-block experimental design
(see Methods and Additional file 1 for details). Different
rows were under different irrigation controls. Drip irriga-
tion was initiated when stem water potentials of the vines
reached their target treatment level, stem water potentials
() of —0.6 MPa for control vines and -0.8 MPa for a
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mild water deficit. Mid-day stem water potentials were
monitored weekly for well-watered (WW)- and water-
deficit (WD)-treated vines to assess plant water status and
to determine the amount of water to be applied to
maintain stem water potentials over the season
(Table 1; Additional file 2). The water potentials of
vines were close to target stem water potentials at the
time of harvest.

Berries were monitored weekly from fruit set through
to harvest, to assess “Brix and titratable acidity (TA)
levels by sampling two average clusters per replicate,
cultivar and treatment from two non-adjacent vines. The
timing of harvest for each cultivar was determined by
berries sampled for a target “Brix to TA ratio of 3.5. The
average °Brix and TA (g L") were 23.3 and 7.1, respect-
ively, with a ratio of 3.3. For each cultivar, WW and WD
grape berries were harvested on the same day. Mild
water deficit treatment had no significant effect upon
berry diameter, °Brix, or TA at harvest (Table 2), with
the exception of a 4 % reduction of Pinot Noir berry
diameters that was statistically significant at p < 0.01. Re-
ported physiological measurements and water deficit
levels were similar to data reported by Grimplet et al.
[33] in their proteomic analysis of grape berry tissues
under water deficit.

Comparative Omic analyses of grape berry skin

Our comparative Omic analyses focused on the skins,
which had been separated from the pulp and seeds of
ripe berry clusters at harvest and rapidly frozen in liquid
nitrogen. At least two clusters per experimental replicate
(six individual vines in total) were harvested in preparation
for each sample extraction and analysis (Additional file 1).
Berry skins were combined from each experimental repli-
cate and ground and mixed in liquid nitrogen before divid-
ing samples into separate aliquots for chemical extraction.
Proteins were extracted from aliquots of three experimental
replicates with a modified phenol-based protocol [34],
digested with trypsin and Lys-C and analyzed using nano-
flow liquid chromatography-mass spectrometry (nanoLC-
MS/MS) [35]. Peptide to spectrum matching, protein
identification, and normalized spectral abundance fac-
tors (NSAF), were computed as described previously
[36] (see Methods for details). Approximately 50,000
spectra per sample were assigned to peptides matching
a total of 2867 non-redundant Vitis vinifera proteins in
the UniProtKB database (Table 3; Additional file 3).
From the non-redundant proteins, 1211 were shared
across all five of the cultivars and had spectra assigned
for all experimental replicates (Additional file 4).

Total RNA was extracted with a modified CTAB proto-
col [37-40] from aliquots of five experimental replicates
for NimbleGen (Roche NimbleGen, Madison, Wi) Grape
Whole-Genome Microarray analysis, with standard
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Fig. 1 Seasonal precipitation and temperature at the Nevada Agricultural Experiment Station Valley Road Vineyard were collected from the Desert
Research Institute’s weather station. The double sigmoidal phases of berry development are highlighted: Pre-veraison in green refers to fruit set and
enlargement before color change; Veraison in pink refers to the transition in color of berries; and Post-veraison in purple refers to full color change and
heightened sugar and decreased organic acid levels until harvest. Harvest time points in October 2011 are denoted by cultivar abbreviations in their
respective order of harvest: Semillon (SM), Pinot Noir (PN), Merlot (ME), Chardonnay (CD), and Cabernet Sauvignon (CS). a Daily precipitation (mm)
values are illustrated by blue circles, scaled to the amount of precipitation on a given day. b The daily total Penman evapotranspiration (mm) values
were based on the 82 Kimberly-Penman equation. ¢ The daily high (red), low (blue) and mean (black) temperatures and the extreme high (36.7 °C)
and low (—=3.33 °C) are indicated

microarray processing and data normalization as in
Cramer et al. [41]. Microarray analysis profiled 29,549
genes as predicted in the 12x V1 annotation of the grape
genome (Additional file 5). Ground skin sample aliquots
from the same three experimental replicates used for the
protein analysis were sequenced with an Illumina HiSeq
2000 sequencing system to determine transcript abun-
dance. Transcript data were generated by aligning
quality-filtered sequence reads to the grape genome

Table 1 Mid-day stem water potentials at harvest time point.
Measurements conducted on mature, fully expanded leaves.
Values are mean + SE

C

Treatment®

Vineyard® U (MPa)® n

North Water deficit -0.84 (+0.11) 6
Well watered -0.61 (£0.03) 8

South Water deficit —0.95 (+0.04) 15
Well watered —0.68 (+0.04) 14

“North = Cabernet Sauvignon and Chardonnay; South = Merlot, Pinot Noir,

and Semillon
PMPa = megapascal

“Inconsistencies between sample size were due to damaged leaves at time

of sampling

[42], assigning transcript counts to the V1 annotation
with the htseq-count tool [43], and then performing a
differential expression analysis with the edgeR [44]
package (Table 3, Additional file 6). We detected the
expression of 27,252 transcripts of the 29,971 tran-
scripts in the V1 annotation.

Metabolites were extracted in parallel from aliquots of
all six experimental replicates, three additional replicates
from the aforementioned, with a protocol previously
described [45]. For metabolite analyses, the peaks of
each metabolite were normalized to the total peak area
giving a relative metabolic abundance value. The relative
metabolic abundance from berry skins of primary and
secondary metabolites (Table 3, Additional file 7) were
analyzed by GC-MS and LC-MS based methods.

Venn diagrams illustrate the distributions of identified
(Fig. 2a) and quantified (Fig. 2b) proteins in the different
cultivars. In each case, subsets of proteins were distrib-
uted to each cultivar. The majority of transcripts were
assessed by both platforms (Fig. 2c). Microarrays mea-
sured probe fluorescence for 2481 transcripts that did
not receive unique counts by RNAseq. A subset of 1201
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Table 2 Berry physiological measurements at the harvest time point

Varietal Treatment® Berry diameter (mm)° °Brix“ TA (g |71)cd
Cabernet Sauvignon WwW 11.16 (+0.07) 23.11 (+0.20) 843 (+0.25)
WD 11.09 (+0.07) 23.66 (+0.27) 842 (£0.29)
Merlot WwW 11.72 (0.09) 22.99 (x£0.23) 5.50 (x0.38)
WD 11.55 (£0.08) 2331 (x0.30) 6.06 (£043)
Pinot Noir WwW 12.09 (+0.07) 22.85 (+£0.46) 5.80 (+0.09)
WD 11.51 (+0.07) 22.95 (+£0.46) 6.12 (£0.24)
Chardonnay WwW 12.11 (2£0.06) 2335 (x£0.39) 9.18 (+0.26)
WD 12.07 (+0.07) 2342 (+0.25) 8.83 (+0.44)
Semillon WwW 1347 (+£0.09) 23.18 (£0.40) 640 (+0.32)
WD 13.29 (£0.09) 23.82 (x0.33) 6.53 (+0.28)

WW = well watered; WD = water deficit
PMeasurements conducted on individual berries
“Measurements conducted on whole clusters
YExpressed in g L~ tartaric acid

Values are mean * SE, with n =3 for berry diameter and n =6 for °Brix and titratable acidity (TA) measurements. Differences between treatments were determined

to be significant (p-value < 0.01) by the Student’s t-test

transcripts from both platforms could be paired to the
quantified proteins. The majority of metabolites were
measured in each cultivar (Fig. 2d), with the main me-
tabolite differences attributed to the anthocyanin pro-
duction in red cultivars.

The most abundant proteins and transcripts from each
of the five cultivars were determined. Only proteins
detected in all samples (1211) were assessed, but all
transcripts measured were considered for this analysis in
both platforms. The top ten most abundant proteins
(Table 4) surveyed in each cultivar consisted of only
17 proteins, many of which can be classified as
pathogenesis-related (PR). Additionally, three of the
proteins were in the top ten most abundant of each culti-
var: -1, 3, glucanase [UniProtKB:F6HLL9], major latex
protein 22 [UniProtKB:A5BAXI1], and a peroxiredoxin-5
[UniProtKB:D7TBKS8]. Both transcript platforms were
assessed for the degree of concordance in reporting highly
expressed transcripts. The top most abundant transcripts
by microarray (Table 5) consisted of a common set of 16
uniquely annotated transcripts from the cultivars. Again,
several of the top transcripts were PR protein-related
including a class IV chitinase, a non-specific lipid-transfer
protein and two thaumatins. Five of the transcripts were
also ranked in the top ten of each cultivar: invertases/pectin
methylesterase inhibitor [UniProtKB:Q9M4HS; Ensemble

Table 3 Comparative omic analyses

Data set n
Proteins (nanoLC-MS/MS) 2867
Transcripts (microarray) 29,549
Transcripts (RNAseq) 27,252
Metabolites measured by GC-MS 67
Metabolites measured by LC-MS 42

Plants:VIT_16s0022g00960], chitinase class IV [UniProtKB:
Q7XAU6; EnsemblePlants:VIT_05s0094g00340], putative
ripening-induced protein 1 [UniProtKB:Q6VEQ6; Ensem-
blePlants:VIT_0550049g00760], photosystem II protein
D1 [UniProtKB:F6GXB0; EnsemblePlants:VIT_11s005
2g01680], and one transcript without a known annota-
tion [UniProtKB:F6H8M]1; EnsemblePlants:VIT_05s00
49g00520). A BLAST search of the unannotated tran-
script references a putative proline-rich protein in sev-
eral species including grape. For RNAseq transcripts
(Table 6), a common set of 18 uniquely annotated
transcripts made up the top ten from the cultivars. As
with the proteins and microarray transcripts, many of the
top transcripts were the same PR proteins in the microar-
rays. Five of the transcripts were also ranked in the top
ten of each cultivar: putative ripening-induced protein 1
[UniProtKB:Q6VEQ6;  VIT_05s0049g00760], chitinase
class IV [UniProtKB:Q7XAU6; EnsemblePlants:VIT_05s0
094g00340], abscisic stress ripening protein 2 [UniProt
KB:F6GY46; EnsemblePlants:VIT_18s0072g00380], aller-
genic protein Pt2L4 [UniProtKB:Q9M4H7; Ensemble-
Plants:VIT_12s0059g00590], and the same unannotated
transcript in the microarrays [UniProtKB:Q9M412;
EnsemblePlants:VIT 05s0049g00520]. Microarray tran-
scripts that did not fully correspond with the RNAseq are
annotated as containing probesets that potentially cross
hybridize with other closely related genes. For example, all
four probes that map to the cupin and Photosystem II pro-
tein D1 genes listed in Table 5 have the potential for cross
hybridization (see Cramer et al., [41] for a full list of genes
with potential hybridization, Additional file 5).

A multifactorial (5 x 2; cultivar x treatment) experimen-
tal design was used for each platform to determine signifi-
cant differences (adjusted p-value with a false discovery
rate < 0.05; herein referred to as “significant” throughout
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Fig. 2 Venn diagrams of the (a) identified and (b) quantified proteins, the overlap of (c) transcripts assessed with either platform, and (d) all the
metabolites measured in each cultivar, Cabernet Sauvignon (CS), Merlot (ME), Pinot Noir (PN), Chardonnay (CD) and Semillon (SM)
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this paper) amongst treatments and cultivars. ANOVA
indicated that the cultivar level contributed the largest
amount of significant changes in each of the data sets
(Table 7). Statistically significant transcript abundance
changes were found for both transcript technologies for
cultivar, treatment, and cultivar x treatment effects [46].
Neither the treatment effect nor the interaction effect
(treatment x cultivar) was statistically significant with the
protein or metabolite data, but significant cultivar effects
were found with protein and metabolite abundances.
Differential expression analysis of transcripts was
similarly performed for both platforms. Standard pro-
cessing and data normalization of the microarrays was
performed. ANOVA indicated transcript abundance of
27,064 transcripts changed significantly with cultivar, the
transcript abundance of 195 transcripts changed signifi-
cantly with treatment, and 1546 transcripts changed with
the cultivar x treatment interaction term. RNAseq data
were normalized and modeled with the standard edgeR
pipeline. Generalized linear models were fit to a multifac-
torial design formula (5 x 2; cultivar x treatment) for sig-
nificance testing, and indicated 15,149 transcripts changed
significantly with cultivar; the transcript abundance of one

transcript changed significantly with treatment; and 241
transcripts changed with the cultivar x treatment inter-
action term.

There was a common set of 1211 proteins that was
quantifiable across each of the cultivars and treatments.
This consistent set of proteins was considered for fur-
ther reliable comparative quantitative analyses. The pro-
tein abundance of 832 proteins changed significantly
with cultivar (Table 7), but there were no significant
changes in protein abundance for either treatment or
cultivar x treatment interaction terms. In addition, the
relative metabolic abundance of primary and secondary
metabolites (Additional file 7) changed significantly with
cultivar, but no metabolite abundances were changed
significantly for either treatment or cultivar x treatment
interaction terms (Table 7).

A comparison of Tables 3 and 7 reveals that the percent-
age of the transcripts varied substantially with cultivar
between the two transcriptomic platforms, 92 % for the
microarray platform and 56 % for the RNAseq platform.
The percentage of proteins varying with cultivar was
approximately 69 % and the percentage of metabolites
varying with cultivar was approximately 95 % for both
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Cultivar®
UniProtkB V11D Annotation® cs ME PN cD SM
D7TBK8 VIT_11s0016g03630 Peroxiredoxin-5 1 2 10 6 5
FeGY46 VIT_1850072g00380 Abscisic stress ripening protein 2 2 - - 5 9
A5BQON6 VIT_0350038g01930 Peptidyl-prolyl cis-trans isomerase ROC5 3 3 - - -
Q9M4H4 VIT_0650004g02560 Kiwellin Ripening-related protein grip22 4 - - - -
QIM4H7 VIT_1250059900590 Allergenic protein Pt2L4 5 - - 10 -
F6HUD!1 VIT_0250025g03600 Phospholipid hydroperoxide glutathione peroxidase 6 - - - -
Q7XAU6 VIT_05500949g00340 Chitinase class IV 7 7 5 - 6
D7SKR5 VIT_0650004g03550 L-ascorbate peroxidase 1, cytosolic 8 10 - - 7
FEHLLY VIT_08s0007g06040 Beta-1, 3-glucanase 9 8 7 8 10
A5BAX1 VIT_01s0011g05110 Major latex protein 22 10 4 8 7 3
FEHUH1 VIT_0250025g04330 Thaumatin WTL1 - 1 1 1 2
D7TXF5 VIT_1450081g00030 Pathogenesis-related protein-4 (Chitinase) - 5 4 - 4
Q9FS43 VIT_0550077g01580 Pathogenesis protein 10 - 6 - - -
A5COF1 VIT_0250025g04300 Thaumatin - 9 3 4 8
FEHUG9 VIT_02s0025g04310 Thaumatin - - 2 2 -
F6HUGE VIT_0250025904280 Osmotin - - 6 9 -
FEGXX3 VIT_0850058g01230 Non-specific lipid-transfer protein - - 9 3 1
2Annotation by Grimplet et al. [80]
bCS Cabernet Sauvignon, ME Merlot, PN Pinot Noir, CD Chardonnay, SM Semillon
The number within each cultivar column represents the abundance rank for that cultivar, with the number ‘1’ being the highest
Table 5 Top ten most abundant transcripts (microarray) within each cultivar

Cultivars®

UniProtkB V11D Annotation? s ME PN (@D SM
F6H8W9 VIT_1250034901970 Cupin 1 1 4 - -
F6HBM1 VIT_0550049g00520 Putative uncharacterized protein 2 2 1 1 1
QI9M4H8 VIT_1650022g00960 Invertase/pectin methylesterase inhibitor 3 3 3 7 6
QIM4H7 VIT_1250059900590 Allergenic protein Pt2L4 4 - 9 9 8
Q7XAU6 VIT_0550094g00340 Chitinase class IV 5 5 6 8 5
Q6VEQ6® VIT_0550049g00760 Putative ripening-induced protein 1 6 4 7 2 2
D7SLRO VIT_1550021g02700 Beta-expansin (EXPB4) 7 - - - -
FEHFY8® VIT_01s0010g01260 23S ribosomal RNA 8 - - 7
A5B118 VIT_0850007g03830 fructose-bisphosphate aldolase cytoplasmic isozyme 9 10 - - -
F6GXBO“ VIT_1150052g01680 Photosystem Il protein D1 10 9 8 5 4
FEHUGY9 VIT_0250025g04310 Thaumatin - 6 2 3 -
FEHUH1 VIT_0250025g04330 Thaumatin WTL1 [Vitis vinifera] - 7 5 4 10
F6GV13 VIT_0650004g04650 Metallothionein - 8 - 6 -
A5C670° VIT_1350064g01210 Zf A20 and AN1 domain-containing stress-associated protein 2 - 10 - -
F6GXX3 VIT_0850058g01230 Non-specific lipid-transfer protein - - - 10 3
FEHPX1¢ VIT_13s01019g00220 Ribosomal RNA 16S - - - - 9

@Annotation by Grimplet et al. [80]
PCS Cabernet Sauvignon, ME Merlot, PN Pinot Noir, CD Chardonnay, SM Semillon
“Not identified in protein data set
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Table 6 Top ten most abundant transcripts (RNAseq) within each cultivar
Cultivar®

UniProtKB V1_ID Annotation® CS ME PN [@D) SM
FEH8M1 VIT_0550049900520 Putative uncharacterized protein 1 1 1 1 1
Q6VEQ6S VIT_0550049900760 Putative ripening-induced protein 1 2 2 2 2 2
F6HELO VIT_1950090g01370 Putative uncharacterized protein 3 6 - 7 -
F6H8MO® VIT_0550049g00510 Ethylene response factor ERF1 4 7 7 - 5
Q7XAU6 VIT_0550094g00340 Chitinase class IV 5 3 3 5 6
FeGY46 VIT_1850072g00380 Abscisic stress ripening protein 2 (ASR2) 6 4 5 4 3
QIM4H7 VIT_1250059900590 Allergenic protein Pt2L4 7 10 10 9 8
D7T852 VIT_1950090g01340 Putative uncharacterized protein 8 - 9 - -
D71853 VIT_1950090g01350 Aspartyl protease 9 - - - -
FeGU22 VIT_0650004g02560 Kiwellin Ripening-related protein grip22 10 - - - -
FEHUH1 VIT_0250025904330 Thaumatin WTL1 [Vitis vinifera] - 5 4 3 4
QIM4H8 VIT_1650022g00960 Invertase/pectin methylesterase inhibitor - 8 6 - -
F6GV13 VIT_0650004g04650 Metallothionein - 9 - - -
F6EHUGY VIT_0250025g04310 Thaumatin - - 8 - -
F6GXX3 VIT_08s0058g01230 Non-specific lipid-transfer protein - - - 6 10
D7TAI4 VIT_01s0010g02030 Gamma-thionin precursor - - - 8 -
FEHMPO® VIT_0850056g01600 Putative uncharacterized protein - - - 10 9
D7T2C8 VIT_0550094g00350 Chitinase class IV - - - - 7

#Annotation by Grimplet et al. [80]

BCS = Cabernet Sauvignon; ME = Merlot; PN = Pinot Noir; CD = Chardonnay; SM = Semillon

“Not identified in protein data set

platforms. Thus, all Omic platforms revealed a large vari-
ability in molecular abundance amongst all the cultivars.
In summary, data variability was mostly attributed to
the cultivar effect. The mild water deficit treatment ef-
fect was much less. ANOVA results indicate that mild
water deficit did induce a significant change in the abun-
dance of a small percentage (<6 %) of transcripts. Pro-
tein and metabolite abundances in this study were
significantly affected only by a specific cultivar.
Experimental samples from each platform were ana-
lyzed by principal components analysis (PCA) (Fig. 3),
which reduced the dimensionality of the data and
allowed a clearer observation of the underlying

Table 7 Statistically significant results from each Omics dataset
adjusted for multiple testing using FDR (0.05)

Dataset Treatment Cultivar Cultivar x Treatment

Proteins 0 832 0

Transcripts

Microarray 195 27,064 1,546
RNAseq 1 15,149 241
Metabolites

GC-MS 0 63 0
LGMS 0 40 0

structure. Each PCA biplot showed the directions where
there was the most variance in the data. Cultivars sepa-
rated from one another similarly on the first principal
component in each platform providing substantial con-
cordance amongst the different Omic approaches. Gen-
erally, red cultivars separated from white, but Pinot Noir
samples separated somewhere in between. Biological
variability in samples was evident particularly in protein
and metabolite biplots. The secondary metabolites were
separated along the first component, separating the red
cultivars that synthesize anthocyanins, and anthocyanin
moieties separated Cabernet Sauvignon and Merlot from
Pinot Noir. Water-deficit and well-watered samples at
harvest could not be differentiated clearly in PCAs
reflecting the results from the ANOVA.

A functional analysis (Additional file 8) was performed
to identify gene ontology (GO) categories for the quantifi-
able proteins with the BinGO (3.0.2) plugin for Cytoscape
(3.1.1), using a custom annotation derived from UniProt
(uniprot.org), EnsemblPlants (plants.ensembl.org), and
Gramene (gramene.org) [47, 48]. There were 479 signifi-
cantly overrepresented GO categories after correcting for
FDR (adjusted p-value of 0.05). To aid our analysis, over-
represented GO terms were visualized (Fig. 4) with a tree-
map using REVIGO and the treemap R package that
depicts loosely related GO terms by color [49]. Rectangles
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in the treemap are size adjusted to reflect their enriched
p-value. The functional analysis examined the results both
by the level of significance and by the number of constitu-
ents of each GO category, in an effort to look beyond
generic or overly encompassing functional categories (e.g.
metabolic process). Some of the major biological process
GO categories for proteins that were overrepresented
included organic acid metabolic process, monosaccharide
metabolic process, generation of precursor metabolites
and energy, alcohol metabolic process, and response to
abiotic stimulus.

Correlations between proteomic and transcriptomic data

To investigate the linear relationship of the relative tran-
script abundance with relative protein abundance, we fit
linear regression models to the transcript-protein pairs
and computed Pearson’s correlation. A direct sample-to-
sample comparison was performed for the RNAseq
using the same experimental replicates as were used in
the proteomics. The microarray analysis contained two

additional experimental replicates for each treatment
and cultivar, preventing a direct one-to-one comparison
between replicates; thus, mean expression (transcript)
and abundance (protein) values were computed for each
treatment and cultivar prior to regression analysis.
When the transcriptomic and proteomic abundance
values were compared for all transcript-protein pairs by
a single linear regression (see Additional file 9 for indi-
vidual), the goodness of fit or coefficient of determin-
ation was low (*=0.07 for RNAseq; r°=0.06 for
microarray); a small positive correlation between the
pairs was observed (Pearson correlation coefficient =
0.27 and 0.24 for protein abundance with RNAseq and
microarray abundance, respectively) (Fig. 5). Regression
with only the top 10 % most abundant proteins in-
creased the correlation coefficient to 0.4 with the RNA-
seq data, whereas use of the lower 90 % of the abundant
proteins reduced the correlation coefficient to 0.14 (data
not shown). There was essentially no correlation (0.00)
with the RNAseq data and the least abundant proteins
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correlation between 1201 transcript-protein pair abundance levels

from either (@) RNAseq or (b) microarray analyses

of 50 % or less. With the top ten most abundant pro-
teins in the skins (actually 14 proteins for all five cul-
tivars; see Table 4), the number of proteins with
significant positive correlations increased to 57 % (8
of 14) and 71 % (10 of 14) for the microarray and
RNAseq data, respectively (see Additional file 9 for
individual details). Thus, there was an increase in cor-
relation coefficient with increasing protein abundance,
but for the majority of the proteins the correlation
was very low.

Some proteins with strong positive correlations in-
cluded pathogenesis-related proteins, carboxyesterases
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and proteins related to phenylpropanoid and flavonoid
production (Fig. 6); all of these proteins had a minimum
Pearson correlation coefficient of 0.86 (r* = 0.74). Gener-
ally, protein-transcript pairs grouped together by cultivar
and occasionally by skin color. Stronger negative correla-
tions were observed with the microarray data (-0.93) than
with RNAseq data (-0.68). Protein-transcript pairs with
strong negative correlations included a translation initi-
ation factor eIF3 subunit (2 =041, Pearson correlation
coefficient = —0.67; [UniProtKB:D7TMG2, EnsemblePlants:
VIT_1350019g03470]) and a chlorophyll A-B binding pro-
tein (+* = 0.46, Pearson correlation coefficient = —0.68; [Uni-
ProtKB:A5BPB2, EnsemblePlants:VIT_12s0028g00320]), a
constituent of the light-harvesting complex. Other nega-
tively correlated protein-transcript pairs included several
heat shock proteins and a putative serine/threonine kinase.

Overall, for the abundance of the 1201 proteins identi-
fied, 24 and 33 % had a significant correlation with their
transcript abundance for microarray and RNAseq data,
respectively. These data sets of significantly correlated
protein-transcript pairs were analyzed for overrepresen-
tation of functional categories using the GO categories
for biological processes (data not shown). There were
many functional categories overrepresented, however,
these same categories were overrepresented also in the
full set of 1201 proteins. Additionally there were no sub-
stantial changes in the percentages of each functional
group in their respective data sets. Thus, the correlation
of the protein-transcript pair appears to be independent
of their functional category.

Transcriptomic platform concordance

The protein-transcript pair comparison indicated that a
larger number of proteins were more significantly corre-
lated with the RNAseq data than the microarray data.
Therefore, we measured how similar the two different
platforms, open (RNAseq) and closed (microarray), mea-
sured gene expression levels by Pearson correlation and
linear regression, on a gene-by-gene basis. In Cramer et
al. [41], we cautioned readers about the likelihood of
cross-hybridization potential of approximately 13,000
genes on the NimbleGen Grape Whole-Genome micro-
array. Many of these transcripts belong to Vitis gene
families with high sequence similarity that creates an op-
portunity for at least one probe from a set of four probes
to cross-hybridize with probes from another gene on the
array. A global comparison of measureable transcripts
shared between the methods presented an opportunity
to investigate their concordance. In Fig. 7, a pairwise
comparison of each platform’s transcript expression
was separated into subsets by the number of probes
with the potential for cross-hybridization (0, 1, 2, 3
or 4 probes). Platforms were positively correlated as
a whole (Pearson’s correlation coefficient 0.80), but
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the correlation decreased when examining subsets of
transcripts based on the number of probes that cross-
hybridize (Table 8). In particular, lowly expressed tran-
scripts in the RNAseq dataset had a variable range
(high to low) of expression values measured by
microarray.

Pathway Omic analyses

To gain a better understanding of the biochemical pro-
cesses in the mature berry skin and to emphasize how dif-
ferentiated the cultivars were at harvest, we mapped our
Omic data sets to two important biochemical pathways
for further analysis. We used the quantifiable protein data
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as a framework for each map and their matching tran-
scripts. Additionally, metabolite intermediates and final
products were also mapped, including amino acids, flavan-
3-ols, and anthocyanins. Each pathway summarizes abun-
dance differences depicted as side-by-side heat maps that
display the ratio of the individual cultivars average to the
overall cultivars average abundance for each data point.
The Omic data were overlaid onto customized metabolic
pathway maps based upon annotated maps located at

Table 8 Probesets (1 to 4) with potential for cross-hybridization
Probe count®

Coefficients®  Number of transcripts  Paired-to-protein

0 093 15,945 830
1 091 3280 177
2 0.83 2061 101
3 0.69 2036 63
4 0.51 3746 30

®Flagged transcripts from Cramer et al. [41]

PCorrelation between RNAseq & microarray

Pearson’s correlation of transcripts annotated for cross-hybridization potential.
Affected transcript counts for all transcripts and the subset paired with
protein data

KEGG [50], PlantCyc [51], and VitisCyc [52]. Mapped en-
zymes without heat maps did not contain protein data.

Differences in phenylpropanoid through anthocyanin
biosynthesis

A large number of proteins, transcripts and metabolites
could be mapped in the phenylpropanoid pathway (Fig. 8).
There was a loose correspondence of proteins and tran-
scripts from red-skinned grapes with their metabolites.
We primarily observed higher protein abundance in the
red cultivars for enzymes involved in phenylalanine
through anthocyanin biosynthesis, such as flavanone 3-
hydroxylase and leucoanthocyandin dioxygenase. Missing
spectra within the experimental replicates of the white
cultivars was evidence of their lesser abundance. Relative
to the red cultivars, Chardonnay and Semillon proteins
involved in phenylpropanoid and flavonoid were less abun-
dant, although, a chorismate mutase (CM) in Chardonnay
was an exception to that observation. Chorismate is an
important precursor that interfaces the biosynthesis of
phenylalanine and tyrosine, tryptophan, folate, and phyllo-
quinone [53]. Four phenylalanine ammonia-lyases (PAL;
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[UniProtKB:A5BPT8, F6HNEF5, F6HR33, F6HS12]) were family encoding the first committed step in phenylpropa-
identified only within the red-skinned cultivars. Phenylalan-  noid biosynthesis [54]. Chalcone synthase (CHS; 2.3.1.74)
ine ammonia-lyases (4.3.1.24) are a multigene enzyme and stilbene synthase (STS; 2.3.1.95) enzymes both
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catalyze reactions that condense the substrates 3-
coumaroyl-CoA and three malonyl-CoA units in pro-
duction of flavonoids and stilbenoids, respectively.
Three grapevine chalcone synthases [UniProtKB:A
2ICC5, F6H419, Q8W3P6] were identified within the
proteomic data set [55]. UDP glucose:flavonoid 3-O-
glucosyltransferase (UFGT; 2.4.1.115) proteins were
observed only in the red cultivars. They catalyze the
O-glycosylation of anthocyanidins or anthocyanins
that enhance the stability and hydophilicity of antho-
cyanins in planta [56-58]. Of the proteins quantified
in each cultivar, all but 3-dehydroquinate synthase
(DHQS; 4.2.35) were significantly present at the culti-
var level.

In contrast, the transcripts of differentially expressed
genes (DEGs) between cultivars in the phenylpropa-
noid pathway were generally few and occurring after
naringenin chalcone in the pathway. More evident
were differences between red and white cultivar DEGs
of enzymes that centered on flavonoid and anthocya-
nin biosynthesis such as chalcone synthase, flavanone
3-dioxygenase (F3H; 1.14.11.9) and UDP glucose:flavo-
noid 3-O-glucosyltransferase (UFGT, 2.4.1.115). These
three enzymes had the most abundant transcripts
mapped, and are similar to the gene expression for all
cultivars but Merlot (not measured) in Boss et al. [57].
No members of the multi-gene stilbene synthase fam-
ily were detected in the proteomic data set, but one
stilbene synthase (VviSTS3) encoding transcript (in
microarrays) was significantly changed under the
interaction term [UniProtKB:F6HIRS8; EnsemblePlants:
VIT_10s0042g00880], with Cabernet Sauvignon ex-
periencing a —1.6 fold decrease in expression as a re-
sult of water deficit [59, 60]. However, V¥iSTS3 was
lowly expressed in microarrays (1-probe with cross-
hybridization potential) relative to other transcripts
and contained few counts in RNAseq. Only the UDP
glucose:flavonoid 3-O-glucosyltransferase transcript [Uni-
ProtKB:D7T7R5; VIT_16s0039g02230] was significant at
the treatment level in the microarrays, but each transcript,
with the exception of the shikimate dehydrogenase, was sig-
nificant at the cultivar level.

Both primary and secondary metabolites were mea-
sured for each cultivar. Shikimate was among the most
abundant metabolites in Cabernet Sauvignon. Aromatic
amino acid biosynthesis stems from this intermediate
product within the shikimate pathway [53]. Phenylalan-
ine, tryptophan and tyrosine amino acids were recovered
in each cultivar. Stilbenoids were also recovered to in-
clude cis- and trans-resveratrol, their glucosides and the
polymerized §-viniferin. Catechin and epigallocatechin,
two flavan-3-ol monomers, and procyanidin dimers B2
and B3, consist of two molecules of (+)-catechin or
(-)-epicatechin respectively. Flavan-3-ols co-localize

Page 15 of 26

with anthocyanins in the hypodermal cells of the berry
skin, comprising a diverse and highly abundant class
of soluble phenolic compounds [61]. The astringent
mouth feel sensations experienced in red wines are de-
rived from these phenolic compounds, with increasing
concentrations associated with quality wines [13].

Given that most observable protein and transcript
ratio changes were centered at the end of anthocyanin
biosynthesis, we present the relative abundance of these
metabolites for the three moieties of anthocyanins that
were determined (Additional file 10). The importance of
color to the sensory experience of red wines is derived
from the red, purple and blue anthocyanin pigments
produced in the berry skin. Observable differences of
anthocyanidin content and their glycosylated, acetylated
and coumaroylated moieties amongst the red cultivars
were strongly cultivar dependent. All metabolites were
significantly different at the cultivar level except malvi-
din 3-O-(6-p-coumaroyl)glucoside and petunidin 3-O-
(6-acetyl)glucoside. Malvidin 3-glucoside had the largest
relative abundance of any anthocyanin, and the acety-
lated and coumaroylated forms of malvidin were also in
high abundance in Cabernet Sauvignon and Merlot rela-
tive to the other four anthocyanins. Mild water deficit did
not have any significant effects on anthocyanin abundance
in any cultivar. Thus, all of the variation in metabolite
composition could be attributed to the cultivar and not to
water deficit.

Differences in amino acid metabolism

The mature grape berry, via pressed must, provides a
source of nitrogenous substances in the form of free amino
acids and cleaved peptides, proteins and nucleic acid deriv-
atives, and in mineral ammonium salts that collectively
make up the fermentable nitrogen metabolized by yeast
during alcoholic fermentation [62]. There was greater
correspondence of the mapping of transcripts and proteins
with the relative abundance of amino acids as compared
with the phenylpropanoid pathway (Fig. 9). Three glutam-
ine synthetases [UniProtKB:A5AP38, D7T6P4, and P51119]
were identified in each cultivar; glutamine synthetase is an
important enzyme for the condensation of glutamate and
ammonia into glutamine. Glutamine synthetases (6.3.1.2)
aid in berry nitrogen incorporation [33] and were the most
abundant of the enzymes related to amino acid metabolism
in each of the five cultivars, with hundreds of peptides
identified in each experimental replicate. Of the mapped
proteins quantified in each cultivar, all but ornithine amino-
transferase (2.6.1.13) and ornithine carbamoyltransferase
(2.1.3.3) were significantly different. Transcript abundance
differences between cultivars were muted, with the
exception of an argininosuccinate lyase (4.3.2.1). Only the
arginase (3.5.3.1) transcript [UniProtKB:D7U7W7; Ensem-
blePlants:VIT_15s0048g00420] in the microarray was
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Fig. 9 Comparative analysis of three Omic data sets related to amino acid metabolism. The relative abundances of transcripts, proteins and
metabolites are displayed as colored boxes. Abundance ratios are of the cultivar average relative to the average of all cultivars. Only transcripts
(RNAseq) paired to proteins are shown. Cultivar order is from left to right Cabernet Sauvignon (CS), Merlot (ME), Pinot Noir (PN), Chardonnay (CD), and
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significant for the cultivar x treatment term, but all tran-
scripts were significant for cultivar. Chardonnay contained
the highest amount of each mapped amino acid (arginine,
glutamate, glutamine, ornithine, and proline), except for
proline, which was highest in Cabernet Sauvignon (Fig. 9

and Additional file 7). Proline was also the most abundant
amino acid quantified by GC-MS. The relative abundance
of proline more closely corresponded with the protein
abundance of pyrroline-5-carboxylate reductase, but did
not correspond with the transcript abundance. The relative
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abundance of arginine was not significantly different in any
measured cultivar, but the abundances of glutamine, glu-
tamate, ornithine and proline were significantly different
between cultivars. The higher relative abundance of orni-
thine, glutamate and glutamine in Chardonnay corre-
sponded to a higher relative transcript abundance of
arginosuccinate synthase and glutamine dehydrogenase.
The amino acids, glutamate and glutamine, are important
sources of available nitrogen for yeast fermentation [1].

Discussion

The experimental design in this study allowed for a very
powerful set of comparative analyses. First, all berry
tissues were sampled from the same vineyard site, with
vines exposed to the same environment, with nearly
identical climate, water and soil (terroir). Second, study-
ing five cultivars further allowed for phenotypic variation
of berry metabolism at harvest to be assessed [63]. Third,
the Omic analyses benefited from using aliquots of the
same tissue, allowing us to better correlate changes
between the proteome and transcriptome and observe
variations in intermediates and end-products of metabol-
ism. Finally, the power of two transcriptomic methods,
closed and open platforms, provided an opportunity to
examine potential cross-hybridization events of repeat
elements, such as closely related gene family members.

Omic analyses

While previous proteomic analyses have investigated the
proteome of grape berry skin [33, 64—66], our approach
estimated protein abundance changes by label-free quan-
tification using spectral counting. A recognized challenge
in quantitative proteomics stems from missing data values
across replicates for a variety of reasons [67]. Despite the
high dynamic range for identifying large numbers of
proteins, current label-free proteomic methods are disad-
vantageous for the detection and quantification of low
abundant proteins [68, 69]. Nevertheless, the proteomic
results from this study did provide further insight into
hundreds of proteins residing within a mature berry skin
at harvest in three red and two white cultivars.

Transcript profiling of grapevine was used to assess spe-
cific interactions related to cultivar or treatment affects.
Both whole and incomplete genome microarrays have
been previously utilized in research [27, 31, 41, 70-72] to
investigate berry development and the effects of water and
salinity stress in both vegetative and berry tissues. For
example, a recent investigation of berry pulp and skin
revealed a dynamic and active ripening process occurring
in the late stages of berry development, with ethylene sig-
naling appearing to play a bigger role in non-climacteric
fruit ripening than previously thought [41]. Transcrip-
tionally, the mature berry was very active, and this was
evident with the number of transcripts significantly
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changed for each factor and interaction term. In a pre-
vious study, water deficit had significant effects in the
fruit of Chardonnay and Cabernet Sauvignon, revealing
distinct effects on transcript and metabolite abundance
in the pathways for ABA, isoprenoid and stilbene bio-
synthesis [27, 72]. In our study, only transcription was
sensitive enough to detect a significant treatment effect,
probably due to the mild treatment level. In addition, the
use of five experimental replicates in the microarrays and
the detection accuracy of the RNAseq may have increased
the ability to detect significantly changing transcripts.
Nevertheless, the transcript data presented here offers a
rich data set of cultivar differences at harvest that can be
used in the future.

Other grape researchers have used high-throughput
expression profiling technologies to globally characterize
gene expression [59, 73-75]. Dal Santo et al. [76] exam-
ined the phenotypic plasticity of Corvina berries from
the three most important wine regions around Verona,
Italy at various stages of development that revealed a
number of non-plastic genes that display stage-specific
expression increases or decreases irrespective of vine-
yard, such as PR and photosynthesis-related transcripts.
The observation of non-plastic transcriptome program-
ming partly explains the strong presence of the PR pro-
teins detected in our analysis that accumulate as a
disease-prevention strategy.

Comparative Omic analysis has also been used to thor-
oughly investigate specific metabolic pathways, similar
to the metabolic profiling done in this study. Profiling of
Sauvignon Blanc with whole genome microarrays [77]
putatively identified forty-two carotenoid biosynthesis
genes that updated our understanding of one pathway
responsible for flavor and aroma production in grapes.

More recently, the measurement of individual gene
expression using RNAseq technologies have been used
to further our understanding of the transcriptome and
are greatly benefited by the higher dynamic range for
detection of expression. With unprecedented sensitivity,
Zenoni et al. [78] were the first group to utilize RNAseq
to profile grape gene expression through berry develop-
ment; with this approach they were able to identify differen-
tial splicing activity and single nucleotide polymorphisms.
The observation of unique reads that did not directly map
to the reference genome was particularly interesting, fur-
ther highlighting the power of RNAseq. For example, de
novo assembly of the Corvina transcriptome [79] revealed
180 new or unique genes (the authors referred to them as
private genes) not annotated in the PN40024 reference
genome [42]. RNAseq has also been used to describe the
expression of specific transcription factors over-expressed
at single developmental stages, such as those belonging to
the ERF, WRKY and UPBEAT transcription factor families
[73]. Knowledge of the timing of transcription factor
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activity can be used for generating new hypotheses for in-
vestigating the regulation of berry development. Collect-
ively, these studies have assisted in furthering our
understanding of grapevines and improving the functional
annotation of the genome [80]. These transcription stud-
ies are very powerful, often for the information not men-
tioned explicitly in the text but contained in their
corresponding data sets.

The availability of the grape genome coupled with micro-
array and next generation sequencing technology allows
global gene expression profiling. Platform concordance was
informative of how well each of the technologies performed
at measuring transcript abundance. Similar workflows were
used beginning with identical tissue and methodology for
total RNA extraction and quality assurance checks [81].
Samples also went through similar cDNA syntheses prior
to hybridization or library preparation. Closed platforms
like microarrays are not readily adapted to improvements
made to genomes as are gff3 annotation files and suffer
from potential cross-hybridization events. Figure 7 illus-
trated the decrease of concordance between the platforms
for annotated genes with the potential for one or more
probe cross-hybridizations. Many of the lowly expressed
transcripts in the RNAseq were not accurately modeled in
the arrays with a wide range of expression values. The
dynamic range of detection was not as high in the microar-
rays, evident by the right-tail in the pairwise plots. But, the
expression profiles of the arrays did follow the relative
abundance levels of transcripts seen with RNAseq.

Read numbers per gene are a function of the expres-
sion level of the gene, the number of reads generated by
the technology and the length of the transcript for those
reads to align with. Inefficiencies in measuring gene
expression can be related to the degree of read mapping
due to poor or incomplete annotations, and RNA that is
lost during extraction, or during cDNA conversion and
ligation to adaptors. Ultimately, measuring mRNA levels
is only a proxy for protein abundance, which is even
more complicated when considering the importance of
post-translational modifications that affect protein or
enzyme activity. While the two transcriptomic platforms
were highly correlated with each other, neither platform
was an accurate predictor of protein abundance in gen-
eral. The finding that the abundance of most transcripts
is not correlated with the abundance of proteins from
the same gene is consistent with a classic study in yeast
[82] and many other findings in plants [83—87]. Like the
yeast study of approximately 100 proteins [82], our study
of approximately 1200 proteins indicated that there was
an increased correlation coefficient if one enriched the
data set with more abundant proteins. Nevertheless, even
in the top 10 % of the most abundant proteins, the abun-
dance of the majority of the proteins did not correlate
with its transcript abundance, with less than 50 % of

Page 18 of 26

the proteins being significantly correlated with their
transcript partner.

Model assessment and correlation

Why is the relationship of protein abundance to tran-
script abundance low? Regulation of gene expression can
be controlled at many different stages, which may
explain partly the poorly observed correlation [45, 79].
For example, transcriptional and post-transcriptional
regulation related to the processing of RNA (e.g. alterna-
tive or differential splicing) and the stability of the RNA
itself can determine the level of expression, where tissue
specificity or stress response determines a specific
isoform [88]. The general translation of mRNA into pro-
tein can also be affected by translational regulation from
different regulatory elements (e.g. depletion of ternary
complex or hormone signaling) [89, 90]. Protein stability
(often measured as a half-life) might also be influenced
by the specific isoform or by the conditions that lead to
its formation. These examples do not even include the
potential for post-translational modifications of the pro-
tein [91], which only increases the complexity and
reduces the probability for a high correlation of tran-
script abundance with protein abundance. Yet, subsets
of different transcript-protein pairs were strongly corre-
lated, particularly some pathogenesis-related proteins in
the skin. At least in the mature berry, the regulation of
these genes appears to be tightly controlled at levels
upstream of translation.

Transcript-protein pair relationships that lack any cor-
relation can also reveal insights into the biology shared
across cultivars. For example, three of the top most
abundant proteins quantified [UniProtKB:D7SKR5,
EnsemblePlants:VIT_06s0004g03550; UniProtKB:F6H
UD1, EnsemblePlants:VIT_02s0025g03600; UniProt
KB:D7TBKS, EnsemblePlants:VIT_115s0016g03630] as-
sist in scavenging H,O, and are involved in ascorbate-
glutathione metabolism; they can offer protective
qualities to a maturing berry, irrespective of cultivar,
and benefit vine fitness [92, 93]. Both the protein and
transcript abundances of ascorbate peroxidase and a
glutathione peroxidase were high in each of the culti-
vars. These data support the hypothesis that high pro-
tein abundance levels at this berry developmental
stage are important for sustained H,O, scavenging
and antioxidant activities.

Effects on berry skin phenolics at harvest

Phenylpropanoids, derived from phenylalanine, are a di-
verse class of secondary metabolites and are important
factors that influence antioxidant activities in grapes and
wines. The biosynthesis of small molecular weight phe-
nolics, such as caffeic acid and caftaric acid, peak around
the onset of ripening (veraison) and then decrease in the
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weeks thereafter [75]. As in Castellarin et al. [94], we
wanted to link observable changes in our transcriptional
and translational data sets with changes in metabolism
following a seasonal water deficit. In the present study,
numerous protein-transcript pairs and metabolites in-
volved in phenylpropanoid biosynthesis were mapped
(Fig. 8), showing the phenotypic diversity of various or-
ganoleptic properties (e.g. color and astringency) and
berry biochemistry. Enzymes related to anthocyanin
biosynthesis were highly abundant relative to other
enzymes mapped. Similarly, Deytieux et al. [64] ob-
served high relative abundance of chalcone synthase,
flavanone 3-hydroxylase and UDP glucose:flavonoid 3-
O-glucosyltransferase enzymes that initiate the grad-
ual accumulation of these phenolic compounds.

Many of the phenylpropanoids were among the most
abundant metabolites measured, with the genotype
determining the abundance distributions. Metabolic pro-
filing of anthocyanins in the three red cultivars revealed
variation in the relative metabolic content of each selected
metabolite (Additional file 10). Our results for high levels
of malvidin were consistent with those reported previously
for Cabernet Sauvignon [45], Malbec [95] and Yan73
(Muscat Hamburg x Alicante Bouschet) [96]. The strong
effect of cultivar was evident in protein and metabolite
differences observed between the cultivars.

Stilbene abundance also varied between cultivars when
compared at harvest. In Cabernet Sauvignon and Shiraz
fruit, levels of trans-resveratrol accumulated at similar
levels from veraison to maturity, whereas its glucoside,
trans-piceid only increased in Shiraz [45]. Similarly, our
cultivars displayed divergent stilbene levels at harvest,
with the highest levels observed in Pinot Noir. This is
consistent with two comprehensive studies of cultivar
comparisons of stilbene concentrations [97, 98], in which
Pinot Noir was the cultivar that had the highest stilbene
concentrations. Under more severe water deficit, trans-
piceid metabolite abundance increases 5-fold along with
increasing steady state transcript abundance in Cabernet
Sauvignon, but not in Chardonnay [72]. These observa-
tions are further supported by a 3-year survey of 78 Italian
red, white and pink grape cultivars, where large variability
in stilbene abundance was consistent with gene expression
analysis in the healthy, developing grape berries [97]. The
abundance of different stilbenes, like other phenylpropa-
noids, can distinguish one cultivar from another.

Importance of assimilable nitrogen in berry skins

Assimilable nitrogen within grape must (fermenting
juice) can be a limiting factor to yeast growth during fer-
mentation [22]. The total nitrogen content is distributed
primarily in skins and seeds of ripe berries, with the
amino acid content ranging from 30 to 40 % depending
upon cultivar [1]. Proline, arginine, glutamine, alanine,
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and glutamate are the major amino acids in fresh grape
juice, but the specific composition and concentration of
amino acids varies by cultivar, vineyard location and
winemaking practices [19, 22, 65]. By sampling and pro-
cessing berry tissues from the same experimental vineyards,
we hoped to reduce some of the variability introduced in
our previous studies where the metabolisms of Cabernet
Sauvignon and Chardonnay were compared from grapes
grown in different geographic locations, root stock and
trellis systems [27]. Transcripts related to glutamine and
glutamate metabolism were significantly different between
cultivars. The metabolite abundance for these two amino
acids in this study was low, and reflected different cultivar
distributions (Fig. 9). Levels of glutamine and glutamate
abundance decrease overtime from veraison to maturity
in studies located in Israel and Australia [45, 99]. Proline
is one of the major amino acid constituents in both juice
and wine, and is formed from 1-pyrroline-5-carboxylate
[19, 20, 100]. In two studies, Chardonnay, Cabernet
Sauvignon and Shiraz berry skins showed large increases
in proline relatively late in the ripening process (post-ver-
aison) peaking at maturity [45, 99]. High proline abun-
dance was observed in each of the cultivars in our study.
Ornithine, derived from the urea cycle, can function as a
substrate for further amino acid biosynthesis when con-
verted to glutamate 5-semialdehyde (2.6.1.13) by ornithine
aminotransferase, which links proline and arginine metab-
olism [65]. Non-protein amino acids like ornithine and
y-aminobutyric acid (GABA) also contribute to total
available nitrogen content within grape must [20]. Bach
et al. [101] observed varying GABA concentrations
amongst 21 cultivars that changed with region, cultivar
and year of harvest, observing the highest GABA levels
in Chardonnay. We did not directly measure GABA in
this study, but we can hypothesize that GABA levels
like other nitrogen contributing compounds measured
in this study varied with the cultivar.

Minor effects of water deficit

Water deficit treatment did not significantly alter the
abundance of proteins or metabolites in the five cultivars
in this study. Berry physiology was also unaffected by
water stress, which indicated that the stress was mild.
Matthews et al. have shown that mild water deficit does
not significantly affect levels of soluble sugars, titratable
acidity or berry diameter [102—104]. These grapes, how-
ever, did produce wines with significantly different flavor
and aroma profiles [26]. In contrast, more severe water
deficit causes significant reductions in berry diameter in
Cabernet Sauvignon [31] and Chardonnay [27] and sig-
nificantly alters metabolite composition and abundance.
The lack of significant differences observed in the present
study was possibly related to the mild water deficit, thus
inducing only small differences in metabolite abundance.
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With a higher number of replications and lower CV for the
samples, statistically significant changes in metabolite abun-
dance in response to water deficit may have been detected.

Another explanation for only a few molecules with
significant differences may be attributable partly to the
single sampling time point at maturity. Dai et al. [105]
surveyed a number of central metabolic signatures from
whole berry samples displaying developmental specifi-
city, with large abundance changes primarily occurring
shortly before, through, and shortly after veraison. This
argument is further supported by a fruit development
experiment comparing Cabernet Sauvignon and Shiraz
berry skins [45], which showed similar developmental
trends in both central and secondary metabolites where
large metabolic changes occurred early in development
rather than at near-maturity. Additionally, the mild water
deficit very likely caused subtle Omics changes that made
it difficult to detect common responses with this level of
replication.

Post-veraison, the berry undergoes rapid cellar expan-
sion and increases in soluble sugars for a time, but as
development continues, progressively towards senes-
cence, the berry undergoes withering or dehydration.
Perhaps the poor detection of treatment related effects
was simply due to both treatments having experienced a
degree of water deficit-related stress, although no visible
withering or shrivel was observed. The high observed
abundance of peroxiredoxin proteins across cultivars is
consistent with the fact that they are known to be ele-
vated in vines exposed to water deficit [36], although
other environmental stress factors such as high light or
UV intensity could also influence protein abundance. In
an extreme example, Corvina berries undergo a wither-
ing process in the process of making the famous Ripasso
and Amarone wines [79]. As a result of the mild water
deficit used in this study, cultivar effects were the dom-
inant differentiating factor in metabolic content.

Conclusions

In summary, this study provides a rare and powerful
glimpse into the molecular underpinnings of grape. It com-
pares the skin of the berries of five cultivars of grapevines
at maturity, a tissue that is a source of texture, color, flavor
and aroma for grapes and wines. An enormous amount of
effort and money went into collecting these data, but there
was a much greater effort expended for the complex data
analyses in this study. Few plant studies have collected such
a large amount of data from five molecular platforms from
identical tissue samples coming from a very similar envir-
onment (vineyard). The comparisons showed that the plat-
forms were concordant with each other, that each variety
can be distinguished from each other in a similar way with
each of the platforms. Yet each platform was reproducible,
providing a unique view, showing unique differences at
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each molecular level, and revealing some of the complexity
of these biochemical pathways.

The phenotypic variation in the cultivars resulted in
unique and large differences in abundance in many of
the most common classes of proteins and metabolites
measured in berry skins. Analysis of functional categories
showed that metabolism was very active and there were
substantial responses to abiotic and chemical stimuli in
the berry skin. In this study, only transcript analyses were
sensitive enough to detect significantly induced changes
from the moderate water deficit treatment. Overall, tran-
script abundance was poorly correlated with protein abun-
dance. Omic analyses elucidated cultivar differences in
phenylpropanoid biosynthesis and amino acid metabolism
that influence winemaking, including color, astringency
and yeast assimilable nitrogen levels. In addition, this
study showed that there were significant differences in the
classes of pathogenesis proteins in the berry skins of each
cultivar in the absence of pathogenic pressures.

The models presented here are simple and crude. One
of the goals of the systems biology approach (Omics) is
to construct models and make predictions. This study
represents only the first steps in the path of achieving
such goals. The integration of the data here and the
models constructed are just the beginning. These simple
models showed again that biochemical pathways are com-
plex and cultivars can vary significantly in simple primary
metabolic pathways, such as amino acid metabolism, as
well as more complex secondary metabolic pathways,
such as phenylpropanoid metabolism. To be predictive,
more data will need to be collected over time to better
estimate molecular activities and transport. Nonetheless,
this study is valuable, depositing a large amount of infor-
mation into public data repositories that can be used to
build and create future molecular annotation and models.
The data presented here can be utilized and explored for
years to come.

Methods

Plant material and experimental conditions

Berries from five grapevine (Vitis vinifera L.) cultivars,
Cabernet Sauvignon, Merlot, Pinot Noir, Chardonnay
and Semillon, were harvested during the fall of 2011
from the University of Nevada, Reno experimental vine-
yards (Additional file 1). The North Vineyard was di-
vided in half and separated into 15 rows (5-well watered;
10-drought stressed), with Chardonnay on the northern
half and Cabernet Sauvignon on the southern half. Each
row in the North Vineyard maintained 23 vines of each
cultivar. The South Vineyard was divided into six blocks
(A-F). Each block contained four rows divided into
thirds, with 15 vines of a given cultivar in each third.
Merlot, Pinot Noir & Semillon vines were grown in each
block. Blocks A, C & D were well watered, and blocks B,
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E & F were treated with water deficit. Rows in each of
the experimental vineyards were planted in a north to
south orientation, to achieve nearly maximal daily sun-
light exposure. Following fruit set in early July 2011,
leaves were removed near the clusters on the east-facing
side of vines in both vineyards to increase fruit exposure
to light and air circulation. Vines were drip irrigated with
8 1 h™! emitters and grown under well-watered or water
deficit conditions post-fruit set (Additional files 1 & 2).
Mid-day stem water potentials were measured weekly
with a pressure chamber (3005 Plant Water Status
Console, Soil Moisture Corp., Goleta, CA, USA), as in
[31], on fully mature leaves to assess plant water status
throughout the growing season [106, 107]; stem water
potential measurements were averaged across culti-
vars, because no significant differences in stem water
potentials amongst the cultivars could be detected.
Following weekly measurements, water was either ap-
plied or withheld in an effort to maintain a mild water
deficit treatment at ~ —-0.8 MPa and -0.6 MPa for con-
trol vines. Titratable acidity (TA) and °Brix (total sol-
uble solids) were assayed from juice crushed from a
minimum of two whole berry clusters collected from
different vines. The TA (g 1™') measurements were
performed with an automatic titrator (HI 84102,
Hanna Instruments, Woonsocket, RI, USA). The auto-
matic titrator was standardized daily with tartaric acid
(64 ¢g 1Y), with 0.5 N NaOH utilized as a titrant to an
endpoint of a pH of 8.2 for both standard and juice mea-
surements. “Brix was measured with a digital refractom-
eter (HI 96811, Hanna Instruments, Woonsocket, RI,
USA) that was calibrated with deionized water before each
measurement. Daily precipitation, Penman evapotranspir-
ation and temperature measurements (Fig. 1) from the ex-
perimental vineyards were collected from the Desert
Research Institute’s (DRI) Western Regional Climate Cen-
ter [108]. DRI calculates evapotranspiration using the
1982 Kimberly-Penman equation [109]. Berry diameter
measurements were taken weekly with a digital caliper
(General Ultratech No. 147, New York, NY, USA),
beginning after fruit set until the week of cultivar
harvest. Berry diameter measurements consisted of
measuring 15 randomly selected berries per cluster
from the same four labeled clusters (technical repli-
cates) on a single vine (experimental replicate). Three
experimental replicates per cultivar and treatment
were used to compute diameter means. Six experi-
mental replicates, comprised of >2 whole berry clus-
ters were harvested in early to late October 2011 (see
Additional file 1 for details). Sampling dates for berry
skin material varied between cultivars in order to
achieve similar °Brix and TA concentrations in ber-
ries, but WW and WD treatments were gathered on
the same day (Fig. 1; Table 2). To avoid edge effects,
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berry clusters were harvested from vines away from
the ends of the trellised rows. All six sampled experi-
mental replicates come from six different individual vines
at different locations within the vineyard and were utilized
for metabolomic extractions and analysis. From the six ex-
perimental replicates sampled, five experimental replicates
were randomly selected for microarrays. Of the five ex-
perimental replicates used for microarrays, three experi-
mental replicates were randomly selected for proteomic
and RNAseq analysis. Thus, proteomic and RNAseq ana-
lyses utilized the same sampled experimental replicates.
Berry skin tissue for all analyses was separated from the
seeds and pulp prior to being flash frozen with liquid ni-
trogen and finely ground using a RETCH-mill (Retsch
MM301, Newtown, PA, USA) with pre-chilled steel
holders and grinding beads.

Protein extraction and LC-MS/MS analysis

Proteins were extracted from the frozen, finely-ground
skin samples using a modified phenol-based extraction
protocol [34, 35]. Isolated protein pellets were prepared
similarly to Cramer et al. [36] for label-free shotgun prote-
omics by Lys-C- and trypsin-digestion using a modified
method of the Filter-Aided Sample Preparation (FASP)
methods [110, 111], using trifluorethanol (TFE/FASP)
[35]. LC-MS/MS spectra were acquired from three experi-
mental replicates per treatment by a sample-optimized gas
phase fractionation (GPF) method on a LTQ Velos Pro
mass spectrometer (Thermo). Chromatography was per-
formed on an Easy-nLC II (Thermo) at 40 ° C, using a 0.1
X 300 mm Magic 3 um, 200 A C18AQ column (Michrom
Bioresources, Auburn, CA, USA) interfaced with the
mass spectrometer by an Advance captive spray
source (Michrom Bioresources). Samples were ana-
lyzed in three 220 min LC-MS/MS gas phase fractions
run at 0.5 pL min~*. The m/z ranges of each gas phase
was optimized empirically by analyzing a mixture of
pooled samples from m/z 400-2000, then creating
GPF fractions to approximate an even distribution of
peptide observations among the three fractions.

A protein database was compiled from three sources: 1)
all reviewed V. vinifera protein entries in UniProt, “Tax-
onomy:29760 AND reviewed:yes” (164 sequences); 2) V.
vinifera proteins predicted by the International Grape Gen-
ome Program (29803 sequences); 3) mitochondrial proteins
associated in UniProt (81 non-redundant sequences). Pep-
tide to spectrum matching was performed with the X!Tan-
dem algorithm running under the GPM Cyclone XE
interface (www.thegpm.org, version 2011.12.01.1). Default
ion trap parameters were used with the exceptions of MS
error (+3, -1 Da), the inclusion of reversed sequences, and
a protein expect value of —1. Approximately 50,000 spectra
per sample were assigned to peptides. Protein identifica-
tions were filtered and protein and peptide FDRs were
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calculated, respectively, using reverse database searching.
Each protein had to meet two criteria to be considered a
valid identification. First, it must be present in all three bio-
logical replicates with a minimum of one spectral count in
each replicate, of at least one variety at one condition; sec-
ond, the sum of spectral counts was > 6. Protein abundance
was calculated as normalized spectral abundance factors
(NSAF), using the Scrappy program, and a spectral fraction
of 0.5 was added to all spectral counts to compensate for
null values and therefore allow log transformation of data
prior to subsequent statistical analyses [112].

RNA extraction

Total RNA was extracted from ~250 mg of finely
ground skin tissue using a modified CTAB extraction
protocol based on [37-40] followed by an additional
on-column DNase digestion using a Qiagen RNeasy
Mini Kit (Qiagen, Valencia, CA, USA). RNA quality and
quantity were assessed with a Nanodrop ND-1000
spectrophotometer (ThermoFisher Scientific, Waltham,
MA, USA) and an Agilent 2100 Bioanalyzer and RNA
LabChip assays (Agilent Technologies, Santa Clara,
CA, USA).

Microarray hybridization and data extraction

Ten pg of total RNA from each sample was used for
hybridization onto a NimbleGen microarray 090818
Vitis exp HX12 (Roche, NimbleGen Inc., Madison, W1,
USA), which contains probes targeted to 29,549 grapevine
genes predicted from the V1 annotation of the 12x grape-
vine genome (https://urgiversailles.inra.fr/Species/Vitis/
Annotations). cDNA synthesis, labeling, hybridization, and
washing steps were performed by MOgene (St. Louis, MO,
USA) according to the NimbleGen Arrays User’s Guide
(version 3.2). Data were processed, normalized and ana-
lyzed as in [41]. As in Cramer et al. [41], a note of caution
should be held when examining the microarray data sets
due to the likelihood of cross-hybridization of certain Vitis
gene families with high similarity and are denoted in pink
in Additional file 5.

RNAseq library preparation and sequencing

For RNAseq, thirty 50 bp single-end, barcoded libraries
were constructed and sequenced by the Neuroscience
Genomics Core at the University of California Los Angeles
(Los Angeles, CA, USA) using Illumina TruSeq RNA
library prep kits (Illumina Inc., San Diego, CA, USA) ac-
cording to the manufacture’s instructions. The libraries
were pooled, multiplexed and run across eight lanes of four
1x50 flow-cells, using Illumina TruSeq chemistry (version
3.0) and a HiSeq2000 sequencer (Illumina Inc., San Diego,
CA, USA). Due to multiplexing, individual experimental
replicates were thus sequenced on each of the four flow-
cells to reduce technical variation.
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Read quality and mapping pipeline

Quality check and filtering of fastq files was performed
with the NGS QC Toolkit [113], prior to merging multi-
plexed replicate files. The TopHat2 splice alignment soft-
ware (version 2.0.10) [114] in combination with the
PN40024 Vitis vinifera reference genome and annotation
(http://plants.ensembl.org/Vitis_vinifera/Info/Index) were
used to align the quality filtered reads, with the —b2-very-
sensitive option and —transcriptome-index option. Ap-
proximately 93 % of reads from all libraries were mapped.
A count matrix of aligned reads was generated with Sam-
tools [115] and HTSeq [43] from BAM alignment files,
which outputs counts for each gene feature. Using the
“union” mode, HT Seq discarded read counts if they were
ambiguous, not assigned to any gene feature, or if the
alignment was not unique.

Data analysis

The ANOVA and most data analyses were conducted in R
(3.1.2) [116]. RNAseq read count normalization and differ-
ential expression analysis were performed with edgeR
(3.8.6) [44], counts from each aligned sample library
(experimental replicate). An experimental design model
was created accounting for cultivar (5 levels), treatment (2
levels) and the interaction between these two effects be-
fore fitting generalized linear models to estimate log-fold
changes. Contrast coefficients for each factor were se-
lected for significance testing. Moderated log-counts-per-
million (Additional file 6) were computed with the cpm()
function in edgeR for data visualization of RNAseq data.

Gene set enrichment analysis

Functional analysis and enrichment of biological pro-
cesses was determined with the BinGO (version 3.0.2)
[47] application in Cytoscape (version 3.1.1) [48].
Multiple testing correction adjusted p-values using
the Benjamini & Hochberg False Discovery Rate at a
0.05 threshold. Overrepresented GO terms were visualized
with a treemap using REVIGO (http://revigo.irb.hr/) [49]
and the treemap R package.

GC and LC/MS metabolite analysis

Metabolite extraction was performed on aliquots of the
same finely ground tissue samples utilized for protein
extraction above and kept at —80 °C until further analysis.
Briefly, skin samples were freeze dried in a lyophilizer
(Labconco FreeZone 18, Kansas City, MS, USA) and ex-
tracted from 70 mg of frozen tissue with a pre-chilled
methanol:chloroform:water (2.5:1:1 v/v), for parallel metab-
olite profiling (LC and GC/MS) using a protocol described
previously [45]. GC-MS samples were re-dissolved and
derivatized as described previously [117]. An AS 3000 auto-
sampler, a TRACE GC ULTRA gas chromatograph, and a
DSQII quadrupole mass spectrometer (Thermo-Fisher
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Ltd.) comprised the GC-MS system, with system parame-
ters identical to those described in [117, 118]. LC-MS ana-
lysis was performed on an UPLC-QTOF-MS system
equipped with an ESI interface (Waters Q-TOF XEVO,
Waters MS Technologies, Manchester, UK), in negative
and positive ion mode. An Acquity UPLC BEH C18 col-
umn (100 mm x 2.1 mm, 1.7 pm) was used for chromato-
graphic separation. The MS and solvent gradient program
conditions were set as described previously [117].

Metabolite data processing

GC-MS spectral searching against the RI libraries from the
Max-Planck Institute for Plant Physiology in Golm
Germany  (http://csbdb.mpimp-golm.mpg.de/csbdb/gmd/
msri/gmd_msri.html) was performed in the Xcalibur data
software (version 2.0.7), with the National Institute of
Standards and Technology (NIST, Gaithersburg, USA)
algorithm. These metabolites were normalized by the total
metabolites and corrected for the dilution factor as in
[45]. LC-MS data acquisition and UPLC system control
was performed with the MassLynxTM software (Waters;
version 4.1) as described in [117]. The verification of
metabolite identification was done as described in [45].

Availability of supporting data

The mass spectrometry proteomics data have been de-
posited with the ProteomeXchange [119] Consortium
via the PRIDE partner repository with the dataset identi-
fier PXD001661 and 10.6019/PXD001661. The micro-
array data discussed in this publication have been
deposited in NCBI's Gene Expression Omnibus [120]
and are accessible through GEO Series accession num-
ber GSE72421 (http://www.ncbinlm.nih.gov/geo/query/
acc.cgi?acc=GSE72421). RNAseq data were deposited
with the Sequence Read Archive database at NCBI with
BioProject identifier PRINA268857 [121].

Additional files

Additional file 1: The University of Nevada, Reno’s Experimental
Vineyard is located at 39°32'20.14” N by 119°48'22.00” W.
Grapevines were grown in two adjacent vineyards under independent
irrigation controllers. Red lines designate rows of water-deficit treated
vines and blue lines designate well-watered vines. The north vineyard
was divided in half (dotted line), with Chardonnay (CD) grown in the
upper half and Cabernet Sauvignon (CS) grown in the lower half. The
south vineyard was divided into six blocks, each containing four rows,
with three blocks allocated to either water-deficit or well-watered treated
vines. The block and row locations for Merlot (ME), Pinot Noir (PN), and
Semillon (SM) are indicated. The experimental replicate sampling scheme
for each technology is depicted. Six experimental replicates for each
treatment and cultivar were harvested. (PDF 570 kb)

Additional file 2: Stem water potential measurements (MPa) for the
North and South vineyards. Water potential measurements were
averaged across cultivars, Cabernet Sauvignon and Chardonnay in the
North and Merlot, Pinot Noir and Semillon in the South. Symbols
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represent mean + SE; n =6 (North) and 9 (South). WW = well watered,
WD = water deficit. (PDF 165 kb)

Additional file 3: Annotation, protein spectral counts, Normalized
Spectral Abundance Factor (NSAF) values and log2 transformed
NSAF values for each replicate and protein identified, with ‘.count’,
‘NSAF’, and ".NSAF.log2’ suffixes, respectively. Mass weight (Mr) and
amino acid (AA) length are approximated values. Cultivar and treatment
abbreviations for experimental replicates: Cabernet Sauvignon (CS),
Merlot (ME), Pinot Noir (PN), Chardonnay (CD), and Semillon (SM) grown
under well-watered (W) and water deficit (D) conditions, n = 3. Other
column headings refer to a combination of cultivar name, treatment, and
replicate number. For example, CDD2, is Chardonnay, water deficit and
replicate 2. (XLS 4096 kb)

Additional file 4: ANOVA results for the quantifiable (1211)
proteins (log2 NSAF) in five grape cultivars, with p-value (p) and
adjusted p-value (adjp) prefixing each effect. Cultivar and treatment
abbreviations for experimental replicates: Cabernet Sauvignon (CS),
Merlot (ME), Pinot Noir (PN), Chardonnay (CD), and Semillon (SM) grown
under well-watered (W) and water deficit (D) conditions, n = 3. Other
column headings refer to a combination of cultivar name, treatment, and
replicate number. (XLS 1032 kb)

Additional file 5: Annotation, transcript abundance values, and
ANOVA results of all genes on the NimbleGen Whole-Genome
microarray measured in five grape cultivars. Red highlighted rows
identify the possibility of cross-hybridization of probes with other genes
from Cramer et al. [41]. Cultivar and treatment abbreviations for experimental
replicates: Cabernet Sauvignon (CS), Merlot (ME), Pinot Noir (PN), Chardonnay
(CD), and Semillon (SM) grown under well-watered (W) and water deficit (D)
conditions, n = 5. The probe.cross.hybridization column refers to the number
of probes for that transcript that have the potential to cross-hybridize with
other probes. Other column headings refer to a combination of cultivar
name, treatment, and replicate number. (XLS 33741 kb)

Additional file 6: Annotation, read counts, transcript normalized
log2 counts per million (CPM) values, and edgeR statistical results
of all genes with unique counts assigned from lllumina RNAseq, with
‘.count’ and “.log2CPM’ suffixes respectively. Cultivar and treatment
abbreviations for experimental replicates: Cabernet Sauvignon (CS),
Merlot (ME), Pinot Noir (PN), Chardonnay (CD), and Semillon (SM) grown
under well-watered (W) and water deficit (D) conditions, n = 3. Other
column headings refer to a combination of cultivar name, treatment, and
replicate number. (XLS 25195 kb)

Additional file 7: Mean relative abundance values, M/Z, and results
from the ANOVA for all primary and secondary metabolomic details
for all metabolites (67) analyzed by GC-MS and (42) analyzed by LC-
MS in five grape cultivars. Cultivar and treatment abbreviations for
experimental replicates: Cabernet Sauvignon (CS), Merlot (ME), Pinot Noir
(PN), Chardonnay (CD), and Semillon (SM) grown under well-watered (W)
and water deficit (D) conditions, n=6. (XLS 76 kb)

Additional file 8: BinGO results for overrepresented GO biological
process functional categories for all quantifiable proteins (1211).
The proteins are identified by their UniProtkB accession name. (XLS 303 kb)

Additional file 9: Correlations of protein and transcript abundance.
Protein data are log2 NSAF values, n =3, RNAseq data are log2
normalized counts per million (CPM), n =3, and microarray data are log2
RMA values, n = 5. Relationships of proteins with either RNAseq (CPM) or
microarray (RMA) are indicated. (XLS 370 kb)

Additional file 10: The effect of water deficit upon the relative
metabolic content of five anthocyanidins and their glycosylated,
acetylated and coumaroylated moieties within the red cultivars.
All metabolites were significant at the Cultivar level except malvidin
3-O-(6-p-coumaroyl)glucoside and petunidin 3-O-(6-acetyl)glucoside.
Cultivar and treatment abbreviations for experimental replicates:
Cabernet Sauvignon (CS), Merlot (ME) and Pinot Noir (PN), grown under
well-watered (W) and water deficit (D) conditions. Error bars represent
mean + SE, n=6. (PDF 13 kb)
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