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Abstract

Background: The genetic architecture of complex traits in farmed animal populations is of interest from a scientific
and practical perspective. The use of genetic markers to predict the genetic merit (breeding values) of individuals is
commonplace in modern farm animal breeding schemes. Recently, high density SNP arrays have become available
for Atlantic salmon, which facilitates genomic prediction and association studies using genome-wide markers and
economically important traits. The aims of this study were (i) to use a high density SNP array to investigate the
genetic architecture of weight and length in juvenile Atlantic salmon; (i) to assess the utility of genomic prediction
for these traits, including testing different marker densities; (i) to identify potential candidate genes underpinning
variation in early growth.

Results: A pedigreed population of farmed Atlantic salmon (n = 622) were measured for weight and length traits at
one year of age, and genotyped for 111,908 segregating SNP markers using a high density SNP array. The heritability of
both traits was estimated using pedigree and genomic relationship matrices, and was comparable at around 0.5 and
0.6 respectively. The results of the GWA analysis pointed to a polygenic genetic architecture, with no SNPs surpassing
the genome-wide significance threshold, and one SNP associated with length at the chromosome-wide level. SNPs
surpassing an arbitrary threshold of significance (P < 0.005, ~ top 0.5 % of markers) were aligned to an Atlantic salmon
reference transcriptome, identifying 109 SNPs in transcribed regions that were annotated by alignment to human,
mouse and zebrafish protein databases. Prediction of breeding values was more accurate when applying
genomic (GBLUP) than pedigree (PBLUP) relationship matrices (accuracy ~ 0.7 and 0.58 respectively) and 5,000
SNPs were sufficient for obtaining this accuracy increase over PBLUP in this specific population.

Conclusions: The high density SNP array can effectively capture the additive genetic variation in complex traits.
However, the traits of weight and length both appear to be very polygenic with only one SNP surpassing the
chromosome-wide threshold. Genomic prediction using the array is effective, leading to an improvement in accuracy
compared to pedigree methods, and this improvement can be achieved with only a small subset of the markers in this
population. The results have practical relevance for genomic selection in salmon and may also provide insight into
variation in the identified genes underpinning body growth and development in salmonid species.
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Background

Atlantic salmon (Salmo salar), an anadromous species
found primarily in the northern Atlantic Ocean, is
widely known for its importance in both wild fishing
and aquaculture. According to statistics from the Food
and Agriculture Organization (FAO), the estimated global
economic value of this species in 2010 was approximately
$7.8 billion [1]. Atlantic salmon is also a model for gen-
omic studies of salmonid species with extensive genomic
resources and a recent availability of an assembled refer-
ence genome sequence [2]. Atlantic salmon breeding pro-
grams are the most advanced of all aquaculture species
and routinely incorporate genomic information to con-
struct pedigrees, and to improve selection accuracy via
marker-assisted or genomic selection [3].

Genome-wide association studies (GWAS) are employed
to assess the association between DNA sequence variants
(typically SNPs) dispersed throughout the genome and
complex traits of interest. To date, abundant GWAS have
been conducted on human [4] and terrestrial livestock spe-
cies [5, 6], resulting in the discovery of several genes and
underlying mutations affecting traits of medical and eco-
nomic importance. However, despite the contribution of
GWAS to terrestrial livestock and human medical research,
relatively few GWAS have been undertaken in aquaculture
species to date, and have typically utilized relatively sparse
SNP chips [7-9]. Recently, a high density publicly available
SNP chip containing ~132 K verified SNP markers was
developed [10] and gives the opportunity to apply GWAS
at a resolution previously not possible in salmon.

Commercially important traits for salmon farming
such as growth and disease resistance are a major focus
for scientific research, with several QTL mapping studies
performed for growth performance (e.g. [11-13]) and
disease resistance (summarized in [14]). Studies of the
genetic basis of growth related traits using QTL linkage
mapping identified chromosome regions of interest; how-
ever, there is a lack of consistency between the location of
the QTL in different populations [11, 13, 15]. Potentially,
GWAS may be able to address some of the drawbacks of
QTL mapping, such as the possible omission of QTL due
to inadequate marker density [16]. Additionally, since
GWAS detects SNPs in population-wide linkage disequi-
librium with QTL affecting the trait, the potential for
applying these markers directly in selective breeding is
greater. While single marker-assisted selection is of lim-
ited value for polygenic traits, genomic estimated breeding
values (GEBVs) can be calculated for candidate breeding
animals using marker data, even in the absence of trait
and/or pedigree information [17]. Studies using simulated
data have shown the accuracy of prediction of breeding
values using genomic data was significantly higher than
using pedigree records alone [18, 19]. Few studies of gen-
omic prediction using real data have been performed in

Page 2 of 9

aquaculture species, although one recent analysis of a re-
cently admixed farmed Atlantic salmon population sug-
gests that a genomic prediction approach can be effective
at improving the accuracy of selection compared to
pedigree records alone [20].

The objectives of this study were (i) to use the high
density (~132 K) SNP array to estimate genetic parame-
ters for weight and length of juvenile farmed salmon and
compare to those based on pedigree; (ii) to detect indi-
vidual SNPs/chromosomes associated with these traits;
(iii) to estimate breeding values and prediction accuracy
for the two traits by applying the pedigree and the
genomic relationship matrix across different marker
densities; (iv) to identify putative growth candidate genes by
annotating the most significant markers from transcribed
regions of the genome.

Results

Summary statistics and heritability

The final dataset used for the GWAS consisted of ~ 112 K
QC-filtered SNPs successfully genotyped in 622 fish (from
61 full sibling families) with weight and length measure-
ments taken approximately 1 year post-hatching. Sex of
the fish was predicted based on the Y-specific probes on
the SNP array (as described in Houston et al. [10]) and
the population was evenly split between males and females
(1:1.03). The weight and length traits were highly corre-
lated at the phenotypic and genetic level (r ~ 0.96 in both).
The overall heritability for both traits, as estimated by the
genomic relationship matrix was ~ 0.6, compared to ~ 0.5
using the pedigree relationship matrix (Table 1).

Genome-wide association analysis

To determine which individual SNPs were associated
with weight and length, a GWAS was performed on
all markers. No SNPs reached the genome-wide sig-
nificance level (using the stringent Bonferroni correc-
tion), whereas one SNP mapping to chromosome 17
surpassed the chromosome-wide significance level for
length and was estimated to explain ~ 7 % of the additive
genetic variation (Table 2). 684 of the 111,908 SNPs sur-
passed an (arbitrary) relaxed threshold [nominal P < 0.005
from model (1)] and were used for determining putative
candidate genes (Additional file 1: Appendix 1 and

Table 1 The heritability and summary statistics of the weight
and length phenotypes

Weight (g) Length (mm)
Mean (std dev) 112.0 (24.0) 214.1 (16.)
Heritability” (std err ):
G-matrix 0.60 (0.07) 0.61 (0.07)
A-matrix 048 (0.10) 0.51 (0.11)

®Heritability was estimated by the genomic relationship matrix (G-matrix) and
pedigree-based relationship matrix (A-matrix) respectively
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Table 2 The p-value, allele frequency, additive (a) and dominance (8) effect, and proportion of additive genetic variance explained

for the top ten SNP markers associated with weight and length

Weight

Marker P-value Allele frequency Additive effect (s.e.) Dominance effect (s.e.) PVE Chromosome
p q (Unknown: n/a)
“AX87944147 2.8 e-05 0.69 0.31 4.97 (1.88) 8.76 (2.09) 0.003 n/a
?AX87934338 6.4 e-05 061 0.39 7.22 (2.00) 3.22 (2.08) 0.08 16
AX87992121 9.5 e-05 0.54 046 7.55(1.97) 0.18 (2.11) 0.08 n/a
AX87888225 1.0 e-04 0.94 0.06 7.00 (6.28) 23.83 (6.66) 0.06 n/a
AX87943138 1.2 e-04 0.69 0.31 8.34 (2.07) 265 (2.29) 0.10 21
AX88223695 1.2 e-04 0.80 020 332 (2.76) 16.54 (3.02) 0.04 28
AX87959413 1.3 e-04 0.58 042 734 (1.81) 3.61 (1.96) 0.08 28
AX88127533 14 e-04 0.59 041 743 (1.84) 2.71(1.98) 0.07 28
#AX87963258 14 e-04 057 043 5.80 (147) 2.00 (2.04) 0.05 17
AX88282141 1.5 e-04 0.56 044 6.68 (1.77) 0.56 (1.96) 0.07 21
Length
Marker P-value Allele frequency Additive effect (s.e.) Dominance effect (s.e.) PVE Chromosome
p q (Unknown: n/a)
@AX87963258 1.7 e-05 0.57 0.43 4.42 (0.99) 1.27 (1.37) 0.07 17
AX88141678 53 e-05 0.77 0.23 6.84 (1.88) 4 (1.98) 0.07 5
*AX87944147 54 e-05 0.69 0.31 3.19(1.27) 5.77 (1.40) 0.003 n/a
9AX87934338 73 e-05 061 039 491 (1.34) 1 (1.40) 0.08 16
AX87959512 9.1 e-05 0.68 032 546 (1.48) 0.21 (1.55) 0.08 20
AX88083269 1.0 e-04 0.59 041 4.76 (1.16) 1.99 (1.40) 0.08 n/a
AX88089073 1.6 e-04 0.70 030 4.77 (1.62) 1.07 (1.65) 0.05 20
AX88048182 1.6 e-04 0.78 0.22 6.65 (1.88) 1.96 (2.00) 0.12 5
AX88267406 1.6 e-04 0.78 0.22 6.65 (1.88) 1.96 (2.00) 0.12 5
AX88287764 1.7 e-04 0.85 0.15 333 (3.39) 12.33 (347) 0.04 n/a

Bold: chromosome-wide significance (p < 0.05)
2SNP appears in the lists for both traits.

Table 3). The p-value, allele frequency, additive and dom-
inance effect, and proportion of additive genetic variance
due to the SNP for the top ten markers for weight and
length are given in Table 2. Full lists of the SNPs surpass-
ing the relaxed threshold are given in Additional file 2:
Appendix 2. The proportion of genetic variation explained
by the top ten markers ranged between 0.003 to 0.12.
Approximately 40 K SNPs had been assigned to corre-
sponding chromosome using sire-based linkage mapping
performed by Crimap software [21] as described in Hous-
ton et al. [10] and using the reference genome sequence
(AKGD00000000.4). The quantile-quantile (Q-Q) plots
generated using model (1) in the GWA analysis for weight
and length are given in Additional file 3: Appendix 3.

Genomic prediction within population
The use of the SNP markers for genomic prediction
(GBLUP) of the weight and length traits was

assessed and compared to the equivalent model
using the pedigree to define relationships between
the animals (PBLUP) using a five-fold cross valid-
ation design. The accuracy of the GBLUP model was
approximately 20 % higher than PBLUP for both
traits when using all markers in the model, reaching
a value of approximately 0.7 within this population.
Interestingly, while the prediction accuracy was im-
proved by approximately 20 % with increased
marker density from 0.5 K to 5 K SNPs, there was
very little or no improvement in accuracy of predic-
tion with increased marker density beyond this level.
At the lowest marker density analyzed (0.5 K), the
accuracy of GBLUP and PBLUP had the similar per-
formance in both traits (Fig. 1). However, it should
be noted that the training and validation populations
used for this analysis will contain closely related
animals.
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Table 3 Summary of the putative homologous genes associated with SNPs surpassing the relaxed threshold (P < 0.005), the

associated SNP name and predicted chromosome location on the salmon genome. The details of corresponding transcript id and

SNP effect are given in Additional file 2: Appendix 2 and Additional file 1: Appendix 1

Marker ID Gene Chromosome® Reference species
AX88089073 POMT1 20 Human/Mouse/Zebrafish
AX87884170 MYH9 03 Human/Mouse/Zebrafish
AX88052896 GAPDH (GAPDHS) 05 Human/Mouse/Zebrafish
AX87900517 NOTCH3 06 Human/Mouse/Zebrafish
AX88070408 WDR35 01 Human/Mouse/Zebrafish
AX88276725 WDR35 01 Human/Mouse/Zebrafish
AX88067081 AGRN 15 Human/Mouse/Zebrafish
AX87963258° RAI2 17 Human/Mouse
AX87914686 KNDCT 01 Human/Mouse
AX87934385 TXNRD3 12 Human/Mouse
AX87906812 ARHGEF7 16/17 Human/Zebrafish
AX88009559 DLG5 01 Human/Zebrafish
AX87895800 KLHL42 17 Human/Zebrafish
AX87913460 GUCY2F 13 Human

AX87934385 TXNRD1 12 Zebrafish

AX88060914 MYO18AB 20 Zebrafish

AX87883353 SYTLS 21 Zebrafish

AX87913460 GC3 13 Zebrafish

AX88168740 SICH211-181D7.1 03 Zebrafish

AX88009559 DLG5A 01 Zebrafish

AX88254864 PGBD4(5 OF 8) 02 Zebrafish

AX88049616 PGBDA(5 OF 8) 02 Zebrafish

2Corresponding chromosome was based on the Atlantic salmon reference genome (AKGD00000000.4) and the chromosome assignments given in Houston et al.

[10], see methods for additional details
PChromosome-wide significance

AGRN: agrin; ARHGEF7: Rho guanine nucleotide exchange factor (GEF) 7; GAPDH: Glyceraldehyde-3-Phosphate Dehydrogenase; DLG5: Discs, Large Homolog 5
(Drosophila); RAI2: Retinoic acid-induced protein 2; KNDCT: Kinase Non-Catalytic C-Lobe Domain (KIND) Containing 1; GUCY2F: Guanylate Cyclase 2 F, Retinal;
POMTT: Protein-O-Mannosyltransferase 1; GC3: guanylate cyclase 2D, membrane (retina-specific); KLHL42: kelch-like family member 42; TXNRD1: Thioredoxin Reductase 1;
TXNRD3: Thioredoxin Reductase 3; WDR35: WD repeat domain 35; MYH9: myosin, heavy chain 9, non-muscle; NOTCH3: notch 3; MYO18AB: myo18ab;

SYTL5: synaptotagmin-like 5

Putative gene identification were matched with salmon fry transcriptome data using
A large proportion of the SNPs on the 132 K Axiom  blastn alignment. From these 109 transcripts, twelve,
array were derived from an RNA-Seq experiment and, seven, and fifteen corresponding unique peptides were
therefore, are likely to be located within genes. 109 of the  identified from human, mouse, and zebrafish database re-
684 SNPs surpassing a nominal significance threshold  spectively using strict alignment criteria (E ~ 0). Five genes

0701 (a) (b)
0.68 1

> 0.66
3 0.64 1 === GBLUP
g 0.627 —o— pRLUP
< 0.60
0.58 1
0567 ¥

T T T T T T T T T T T T T T
05K 1K 5K 10K 20K 33K 112K 0.5K 1K 5K 10K 20K 33K 112K
Marker Density

Fig. 1 The estimated prediction accuracy of the (a) length and (b) weight traits when applying GBLUP and PBLUP across different marker
densities (from 0.5 K to 112 K SNPs)

~N
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were identified in all reference species, while ten, seven,
and two genes were detected specifically in the zebrafish,
human, and mouse databases respectively. Details includ-
ing the associated gene name, putative chromosome in
Atlantic salmon, gene ontology (GO), transcript id and
gene id are given in Additional file 1: Appendix 1. Sum-
maries of the identified genes are given in Table 3 while
the effects associated with these genetic markers are given
in Additional file 2: Appendix 2.

The single marker that surpassed the chromosome-
wide significance level for length (and also appears to
have similar association with weight; Table 1) was anno-
tated as Retinoic acid-induced protein 2 (RIA2; Table 3).
Retinoic acid is a critical regulator of development,
cellular growth, and differentiation [22] although the
specific role of this RA induced gene is unknown.

Discussion

Genome wide association study

A high density SNP array [10] was applied to estimate gen-
etic parameters and map SNPs associated with early growth
of farmed salmon, as reflected by weight and length mea-
surements at 1 year of age. The estimates of trait heritability
when using the genomic relationship matrix was compar-
able but slightly higher than the equivalent model using the
pedigree relationships (~ 0.6 vs ~ 0.5). While no SNPs sur-
passed the stringent genome-wide significance threshold,
one SNP surpassed the chromosome-wide threshold for
length (p < 0.05). Therefore, the GWAS results suggest that
early growth in salmon is highly heritable but with a poly-
genic architecture and no evidence for major QTL. Based
on previous linkage mapping and the current salmon refer-
ence genome assembly (AKGD00000000.4), the individual
SNPs with the lowest P value for the growth traits were lo-
cated on chr. 5, 16, 17, 20, 21 and 28. QTL associated with
growth traits have been reported on the same chromo-
somes in some (but not all) previous studies in Atlantic
salmon (eg. [11-13, 15]). The proportion of variance ex-
plained (PVE) by each individual marker was relatively
small (up to 12 %) for the growth traits. The data in the
current study support previous studies suggesting that there
is a lack of consistent, cross-population, major QTL affect-
ing growth in Atlantic salmon. Previous studies have
performed GWA analyses to identify genetic variants asso-
ciated with complex traits such as flesh texture, fat content
and sexual maturation by using a~6 K SNP array in
farmed Atlantic salmon [7, 9]. In the current study, we used
a substantially higher density of SNPs (~ 112 K), which
may have facilitated the detection of QTL in regions not
covered by previous lower density SNP platforms.

Assessment of genomic prediction
Due to practical and financial limitations, such as the
previous lack of a high density genotyping platform,
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relatively few studies into genomic prediction have been
undertaken using real data in aquaculture species. A
recent study by Odegard et al. [20] showed prediction
accuracies of 0.34 and 0.36 for the traits of sea lice re-
sistance and fillet colour respectively when using PBLUP,
whereas GBLUP improved the accuracies by 32 % to
51 % for sea lice resistance, and up to 22 % for fillet
colour. Previous studies applying simulated data have
also indicated that GBLUP would have significantly
higher accuracy compared to the equivalent model using
pedigree records in the typical half/full-sibling family
structure of salmon breeding programs (eg. [20, 23]).
Our results also show that the BLUP model applying
genomic data had higher accuracy than using pedigree
information for both the weight and length traits, with
an improvement of approximately 20 % to values close
to 0.7. This is promising for the application of genomic
prediction within salmon breeding programs, where it
may be most effective for traits evaluated in siblings or
other close relations of the selection candidates.

It is also noteworthy that ~ 5000 high quality inform-
ative SNPs are sufficient to achieve this increase in pre-
diction accuracy in this population. Genotyping and field
data collection are costly and the relative advantage of
using SNP data in selection depends on these costs ver-
sus the value of the extra improvement in the traits of
interest. Therefore, while the high density SNP array is
more than adequate for within-population genomic pre-
diction, the use of a cheaper and lower density SNP plat-
form is likely to be most cost-effective. The cost-benefit
is also likely to be most favourable for traits with high
economic value and that cannot be measured directly on
the selection candidates (e.g. disease resistance or fillet
quality traits). However, it is important to note that (i)
this is a relatively small dataset for assessing genomic
prediction and (ii) the training and validation population
will contain closely related animals. As such, genomic
prediction in this dataset will be based on both linkage
and linkage disequilibrium information, which is likely
to result in increased accuracy of prediction and reduced
need for high density markers compared to scenarios
where the training and validation populations are dis-
tantly related to each other. It is plausible that with
more distant relationships between the populations, a
higher marker density and larger sample size would be
required to achieve improvements in selection accuracy
over traditional BLUP. Further, the high levels of linkage
disequilibrium will result in greater power to detect
QTL via GWAS, but lower resolution to estimate QTL
position. Simulation studies are generally consistent with
the results based on real data presented in the current
study: Vela-Avitua et al. [23] reported that the prediction
accuracy using sparse genomic data was equivalent or
lower than using the classical pedigree model with
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sparse markers (10 — 20 SNPs/M) across traits with dif-
ferent heritabilities (h®~ 0.1, 0.3 and 0.8), while Hickey
et al. [24] demonstrated that increasing marker density
above ~ 10 K results in little or no improvement in predic-
tion accuracy in maize populations, while the results of
Gorjanc et al. [25] also show only minor increases in accur-
acy above this level in simulated livestock datasets. Finally,
Odegard et al. [20] detected little increase in accuracy with
increases in marker density above 22 K for fillet colour or
lice resistance in a commercial salmon population.

Putative gene identification

The single SNP exceeding the chromosome-wide signifi-
cance level for length was mapped to chr.17, and its pre-
dicted location is within the retinoic acid-induced protein 2
gene (RAI2). Although the function of RAI2 is not yet clear,
this gene is suggested to be involved in the control of cellu-
lar growth and embryo development [26]. Retinoic acid is
well established as a key regulator of growth and differenti-
ation in early life [22], and is involved in the regulation of
bone formation and mineralization in salmon [27].
Therefore, RAI2 can be considered both a positional
and a biological candidate for an effect on regulation
of growth in juvenile salmon. Genes associated with the
other markers discovered surpassing the arbitrary relaxed
significance threshold (P <0.005) were also identified by
aligning with human, mouse, and zebrafish databases
(Table 3). Amongst these was a SNP in POMT1 (Protein-
O-Mannosyltransferase 1) which produces the POMT en-
zyme complex, dysregulation of which can contribute to
the formation of abnormal basement membranes, which
can lead to muscular dystrophy [28]. Interestingly, the
AGRN (agrin) gene also appears to have a key regulatory
role in basement membranes of neuromuscular junctions,
and is involved in the inhibition, storage, activation of var-
ied growth factors [29], clustering of voltage-gated sodium
channels, and G-protein coupled acetylcholine receptor
signaling pathway [30], all of which are essential for funda-
mental cell development. In addition, NOTCH3 (notch 3)
and the NOTCH3 receptor have critical roles in the devel-
opment and maintenance of vascular smooth muscle cells
[31, 32]. Finally, genes associated with ATP binding and
motor activity, such as MYH9 (myosin, heavy chain 9) and
MYOI8AB were also identified amongst the nominally
significant markers. While a proportion of the nomin-
ally significant SNPs (and therefore the genes identi-
fied) will clearly be false positives, highlighting these
genes provides the opportunity to cross-reference with
future studies to identify with higher confidence the
putative candidates underlying growth in salmon.

Conclusions
The results of the current study show that early growth
traits are highly heritable in farmed Atlantic salmon, and
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that the heritability can be estimated by using either the
genomic or the pedigree relationship matrix. The GWA
analysis showed that there are likely to be small effect
QTL on several chromosomes, but there was no evidence
for major QTL and these traits appear to be highly poly-
genic in nature. A SNP in the retinoic acid-induced protein
2 gene on chromosome 17 reached chromosome-wide
significance, and is a plausible positional and functional
candidate gene. Other genes identified from nominally sig-
nificant SNPs will be useful for cross-referencing with
similar studies in salmon and may form candidates for fol-
low up studies to assess their function in regulation of
growth in salmon. For breeding value prediction using
genomic and pedigree data, GBLUP had better accuracy
than PBLUP in general with accuracy of ~ 0.7 attained for
early growth traits using GBLUP in this population. As few
as 5 K SNPs gives close to maximal accuracy within popu-
lation, suggesting that only moderate marker density is
likely to be suitable for GS breeding programs for similar
highly heritable but polygenic traits where the discovery
populations have close relationships with the selection
candidates. However, it is important to note that increased
marker density is likely to be advantageous, alongside
larger sample size, when attempting to predict genomic
breeding values in more distantly related animals.

Methods

Ethics statement

All animals were reared in accordance with the U.K.
Home Office regulations regarding the use of animals in
experiments. The trial was carried out at the Marine
Environmental Research Laboratory (Machrihanish, UK)
and approved by the ethical review committee in Univer-
sity of Stirling (Stirling, UK). Fish were purchased from
Landcatch which are accredited participants in the RSPCA
Freedom Foods standard, the Scottish Salmon Producers
Organization Code of Good Practice, and the EU Code-
EFABAR Code of Good Practice for Farm Animal Breeding
and Reproduction Organizations.

Animals and phenotype measurement

The population used in the current study was a subset
of those described in Gharbi et al. [33]. Briefly, eggs
from the 2007 cohort of Landcatch Natural Selection
(LNS, Ormsary, UK) broodstock fish were hatched and
reared in separate family tanks in freshwater. At the
post-smolt stage, fish were transferred to sea water en-
vironment (Machrihanish, UK). The one-year-old post-
hatch fish from 62 full sibling families were PIT-tagged
and transferred to a single tank. All fish were measured
for body weight (g) and body length (mm). Parents and
offspring of families represented by a minimum of 6 fish
in the population (712 fish from 61 full sibling families)
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were selected for genotyping. The PIT tags were used to
assign offspring to parents and construct the pedigree.

SNP array genotyping

DNA from the 712 fish was extracted using the DNeasy-
96 tissue DNA extraction kits (Qiagen, Crawley, UK) and
then genotyped for the Affymetrix Axiom SNP array
containing ~132 K validated SNPs [10] (http://www.afty
metrix.com/support/technical/datasheets/axiom_salmon_
genotyping_array_datasheet.pdf). Starting with these
validated SNPs, filtering of SNP data was performed using
the Plink software [34] to remove individuals and SNPs
with excessive (> 1 %) Mendelian errors and SNPs with
minor allele frequency (MAF) < 0.05 in this dataset. A total
of 111,908 remaining SNPs were retained for 622 fish (534
offspring, 28 sires and 60 dams). The phenotypic sex of the
offspring was unknown and, therefore, the Y-specific
probes on the array were used to predict the genetic sex of
the fish based on the putative sex determining gene [35], as
described in Houston et al. [10].

Statistical analysis

Heritability estimation

Genetic parameters for the weight and length traits were
tested fitting animal as a random effect. The estimation
was performed using a REML analysis assuming the
following model:

y=Xb+Zu+e (1)

where vy is the observed trait, b is the fixed effect of sex,
u is the vector of additive genetic effects, e is the re-
sidual error and X and Z the corresponding incidence
matrices for fixed effects and additive effects, respect-
ively. The covariance structure for the genetic effect was
calculated either using pedigree (A) or genomic (G)
information (ie. u~N(0, Ac,%) or N(0, Go,?). Hence,
the narrow sense of heritability was estimated by the
additive genetic variance and total phenotypic variance,
equaling to:

W =% /% (2)

where o7, is the additive genetic variance and 02p is the
total phenotypic variance which is a sum of ¢°, + 0.

The analysis was implemented using the ASReml 3.0
software [36]. The genomic relationship required for the
analysis was calculated using the Genabel ‘R’ package
[37] and method of VanRaden [38], and then inverted
applying the standard ‘R’ function.

Genome-wide association study

The GWAS was performed using the two-step GRAM-
MAR method implemented in Genabel [37]. Firstly, the
trait data were corrected for the fixed effect and
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polygenic effects (fitting the genomic relationship
matrix) using model (1) above. Secondly, the association
between the individual SNPs and the residuals from
model (1) was applied using the ‘mmscore’ method [39].
The genome-wide and chromosome-wide significance
thresholds were determined by Bonferroni correction
(0.05/N), where N represents the number of QC-filtered
SNPs across the entire genome (genome-wide) and on
each chromosome (chromosome-wide).

Subsequently the allelic substitution effects of SNPs
from the GWA analysis surpassing an arbitrary re-
laxed threshold (P < 0.005, ~ top 0.5 % of all markers)
were estimated using ASReml 3.0 [36] fitting the
mixed model (1) as previously described plus the SNP
as the fixed effects.

The SNP additive effect («) was calculated as half the
difference between the predicted phenotypic means of the
two homozygotes, (AA-BB)/2, and the dominance effect
(6) was AB — [(AA + BB)/2], where the AB represents the
predicted phenotypic mean of the heterozygote. The pro-
portion of genetic variance explained (PVE) by the SNP
was estimated using the following equation:

PVE = [2pq(a+8(q-p))’]/ Va (3)

where a and & are the additive and dominance effect
respectively, the p is the frequency of the major allele and q
is the frequency of the minor allele, and V, is the total
additive genetic variance of the trait obtained when no SNP
effects are included in the model. For certain markers con-
taining two genotypes, the dominance effect (§) was not in-
cluded in the equation (Additional file 2: Appendix 2).

Genomic prediction

Estimated breeding values were obtained using the pedi-
gree relationship (PBLUP) or the genomic one (GBLUP).
These predictions were compared in terms of their ac-
curacy to predict an unknown phenotype. In order to do
so, a five-fold cross validation analysis was performed
using the individuals with genotype data and phenotypes
in both traits.

The individuals were randomly divided into five non-
overlapping subsets (i.e. each subset contains one fifth of
the data corresponding to ~ 106 individuals). One subset
of data was then used as a validation set and the re-
minder of the data [four fifths (n ~425)] was used as
the training population. The phenotype recorded in
the validation population was then masked and breed-
ing values were estimated using ASReml 3.0 assuming
model (1). Accuracy was calculated as the correlation
between the predicted EBVs of the validation set and
the actual phenotypes divided by the square root of
the heritability [~ r(y.y2)/h] using all individuals. The
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whole procedure was independently replicated five
times and average accuracy values were calculated.

Comparison of different SNP densities

We compared the use of different SNP marker densities
of 0.5 K, 1 K, 5K, 10 K, 20 K, 33 K, and 112 K (full
dataset) for GEBV calculation. Firstly, as part of a pipe-
line for designing a lower density SNP genotyping plat-
form for routine genomic evaluations, a subset of ~ 33 K
SNPs were selected from the ~ 132 K array as follows: (i)
only polymorphic high resolution SNPs were retained as
defined using Affymetrix software, (ii) only one SNP per
genome contig in the salmon genome assembly was
retained (NCBI Assembly GCA_000233375.1), (iii) re-
moved one of every pair of SNPs with r* > 0.65 based on
the Landcatch Natural Selection samples from the test
plate of samples as described in Houston et al. [10], (iv)
removed any remaining SNPs with a MAF<0.1 and
‘missingness’ > 0.03 in the above samples and (v) added
any SNPs not included above that reached a nominal
significance threshold in a genome-wide association ana-
lysis for disease resistance (data not shown). From this
reduced set of ~ 33 K SNPs, further subsets were taken
at random to create SNP densities of 0.5 K, 1 K, 5 K,
10 K, and 20 K markers.

Putative gene identification

Based on the result of the GWA analysis, the SNPs sur-
passing the relaxed significance threshold (P <0.005 in
model (1), ~ top 0.5 % of markers) were chosen to iden-
tify those located within or proximal to genes. Firstly,
the flanking sequence of all the significant markers were
aligned (using blastn) with an Atlantic salmon fry tran-
scriptome database from RNA-seq of salmon fry in a
separate study in which a large proportion of the SNPs
on the array were discovered (described in Houston et
al. [10]). Only markers whose flanking sequences that
matched exactly with reference transcriptome database
except at the SNP position was selected. These tran-
scripts were used to align (using blastx) with human
(Homo sapiens), mouse (Mus musculus), and zebrafish
(Danio rerio) peptide reference database respectively
(downloaded from http://www.ensembl.org/index.html;
May 2014), from which a stringent criterion of e-value ~ 0
were used as evidence for homology. Secondly, for each
unique peptide in each of the species, the corresponding
gene id, associated gene name, chromosome position, and
gene ontology (GO) were retrieved from ensembl biomart
database (retrieved from http://www.ensembl.org/biomart;
Jun. 2014) respectively. The corresponding chromo-
some of SNP markers were identified by aligning the
marker and its flanking sequence with salmon refer-
ence genome sequence (AKGD00000000.4) and existing
LG mapping [10].
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