
RESEARCH ARTICLE Open Access

Genome-wide analysis of long non-coding
RNAs at early stage of skin pigmentation in
goats (Capra hircus)
Hangxing Ren1,2† , Gaofu Wang1,2†, Lei Chen1, Jing Jiang1,2, Liangjia Liu1,2, Nianfu Li1,3, Jinhong Zhao1,2,
Xiaoyan Sun1,2 and Peng Zhou1,2*

Abstract

Background: Long noncoding RNAs (lncRNAs) play roles in almost all biological processes; however, their function
and profile in skin development and pigmentation is less understood. In addition, because lncRNAs are species-
specific, their function in goats has not been established.

Result: We systematically identified lncRNAs in 100-day-old fetal skin by deep RNA-sequencing using the Youzhou
dark goat (dark skin) and Yudong white goat (white skin) as a model of skin pigmentation. A total of 841,895,634
clean reads were obtained from six libraries (samples). We identified 1336 specific lncRNAs in fetal skin that
belonged to three subtypes, including 999 intergenic lncRNAs (lincRNAs), 218 anti-sense lncRNAs, and 119 intronic
lncRNAs. Our results demonstrated significant differences in gene architecture and expression among the three
lncRNA subtypes, particularly in terms of density and position bias of transpose elements near the transcription start
site. We also investigated the impact of lncRNAs on its target genes in cis and trans, indicating that these lncRNAs
have a strict tissue specificity and functional conservation during skin development and pigmentation.

Conclusion: The present study provides a resource for lncRNA studies in diseases involved in pigmentation and
skin development. It expands our knowledge about lncRNA biology as well as contributes to the annotation of the
goat genome.
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Background
As a species of ubiquitous noncoding RNAs, long non-
coding RNAs (lncRNAs) are unambiguously distin-
guished from mRNAs in terms of sequence structure,
positional characteristics, expression level, and evolu-
tional conservation [1–5]. Moreover, subspecies of
lncRNAs have also been categorized and characterized
in human [1, 4], zebrafish [5], and Caenorhabditis ele-
gans [6]. Recent reports have shown that similar to
mRNA, lncRNA is functional and spatiotemporally
expressed in tissues [7–9]. Researchers have identified
several functional lncRNAs associated with skin biology

such as ANCR, TINCR, U1 RNA, PRINS, BANCR, and
SPRY4-IT1 [10]. In addition, it has also been shown that
a few well-known oncogenes, including H19, HOTTIP,
Nespas, Kcnq1ot1, lincRNA-p21, mHOTAIR, Malat1,
SRA, Foxn2-as, Gtl2-as, and H19-as, are involved in
vitamin D receptor protection against skin cancer for-
mation by maintaining the balance of oncogenic to
tumor-suppressing lncRNAs [11]. In current lncRNA
databases, most of the identified lncRNAs were mainly
derived from human and mouse [12–14]. Several recent
studies in bovine [15–17], chicken [2], and pig [3, 18]
have enriched the animal lncRNA datasets; however, our
understanding of goat lncRNAs is limited. Despite the
abundance of lncRNAs in the genome, only a few have
been fully characterized. Currently, there are only two re-
ports on the identification of the skin lncRNAs in mam-
mals. RNA sequencing (RNA-seq) analysis conducted by
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Weikard et al. (2013) identified 4365 potential intergenic
lncRNAs in cow with a piebald phenotype [17], which dif-
fers from that of Youzhou dark goat (as described in the
next section). Another skin lncRNA catalog was derived
from human skin cancer [11]. To our knowledge, only a
few reports have described the involvement of skin
lncRNAs in prenatal pigmentation and development.
During embryonic development, fetal skin undergoes
growth at a relatively high rate for 100 gestational days in
goat [19]. Therefore, it is significant and necessary to
investigate skin pigmentation during this specific develop-
mental stage.
RNA-seq is a powerful approach that unravels the

differential expression profiles underlying phenotypic
differences, as well as deciphers non-annotated tran-
scriptional activity by identifying various novel tran-
scripts (protein-coding and noncoding) and additional
alternative splice variants of known annotated tran-
scripts [20–22]. In the current study, we elucidated the
lncRNA profiles of two different phenotypes involved in
skin pigmentation in goats using deep RNA-sequencing.
Our study subject featured dark skin in its entire body,
including its visible mucous membranes, and this
phenotypic feature has not been reported in other mam-
mals to date. Our study provides a valuable resource for
studying lncRNAs that are involved in diseases, as well
as contributes to better understanding the biology of
skin pigmentation and development.

Results
Identification of lncRNAs in goat fetal skin
A total of 923,013,870 raw reads were produced from
the Illumina HiSeq 2000 platform. After discarding
adaptor sequences and low-quality sequences, we ob-
tained 841,895,634 clean reads (accounting for 84.2
Gb), and the percentage of clean reads among raw
tags in each library ranged from 88.39–93.02 %
(Additional file 1). Subsequently, we mapped the
clean reads based on the latest goat reference genome
(http://goat.kiz.ac.cn). Considering the characteristics
of lncRNA sequences (≥200 nt, exon count ≥ 2) and
its differences from other classes of RNA (mRNA,
tRNA, rRNA, snRNA, snoRNA, pre-miRNA, and
pseudogenes), we classified the transcripts into differ-
ent subtypes using both Scripture (beta2) and
Cufflinks (v2.1.1). Our results showed that 93.6 % of
the 46,933 identified transcripts were known reference
transcripts, whereas 6.29 % (2952) were the presumed
lncRNAs. To further confirm these 2952 lncRNAs, we
performed coding potential analysis using the software
CNCI, CPC, Pfam-scan, and PhyloCSF. After screen-
ing using rigorous criteria and four analytic tools, a
total of 1336 lncRNAs from the skin of fetal goats
were identified and subjected to further analysis

(Fig. 1). The 1336 lncRNAs consisted of 999 large
intergenic noncoding RNAs (lincRNAs), 218 intro-
nic_lncRNAs, and 119 anti-sense_lncRNAs. A prelim-
inary analysis revealed major differences in gene
architecture and expression levels among the three
subtypes of lncRNAs. For example, the length of in-
tronic lncRNAs was longer than that of lincRNAs
(Kolmogorov-Smirnov test, P = 0.000) and anti-sense
lncRNAs (Kolmogorov-Smirnov test, P = 0.005), with a
median length of 1.831 kb vs. 0.842 kb and 1.194 kb,
respectively. Significant differences in transcript length
between lincRNAs and intronic lncRNAs were also
observed (Kolmogorov-Smirnov test, P = 0.001; Fig. 2a).
On the other hand, clear differences in the number of
exons were also observed among the three lncRNA
subtypes (Fig. 2b). In particular, the anti-sense
lncRNAs showed a higher number of exons and wider
size distribution than that observed in the lincRNAs
(Kolmogorov-Smirnov test, P = 0.222) and intronic
lncRNAs (Kolmogorov-Smirnov test, P = 0.001). We
also detected significant differences in exon distribu-
tion between lincRNAs and intronic lncRNAs
(Kolmogorov-Smirnov test, P = 0.016). In terms of ex-
pression level based on fragments per kb for a million
reads (FPKM) values, the intronic lncRNAs showed a
higher expression level than that of the lincRNAs
(Kolmogorov-Smirnov test, P = 0.000) and anti-sense
lncRNAs (Kolmogorov-Smirnov test, P = 0.037), with a
median of 1.229 vs. 0.8607 and 1.035, respectively
(Fig. 2c). The diversity in gene architecture and ex-
pression levels among various types of lncRNAs may

Fig. 1 Screening of the candidate lncRNAs in skin transcriptome.
Venn diagrams of coding potential analysis by using stringent
criteria. Four tools (CPC, CNCI, PFAM, and PhyloCSF) were employed
to analyze the coding potential of lncRNAs. Those simultaneously
shared by four analytical tools were designated as candidate
lncRNAs and used in subsequent analyses
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have implications in its specific function in the goat
genome.

Transposable elements characterize various subtypes of
lncRNAs
Transposable elements (TEs) are mobile genetic ele-
ments that are capable of movement and proliferation
within the genome, and its remnants account for one to
two thirds of mammalian genomes [23, 24]. TEs are also
considered as one of three evolutionary scenarios

involved in the origin of lncRNAs [25]. We were thus
prompted to identify differences in TE components be-
tween lncRNAs and mRNAs, as well as among the three
lncRNA subtypes. Our analysis revealed TE component
characteristics that distinguished the three lncRNA sub-
types (Fig. 3a). At the global level, significant differences
were observed between mRNAs and the individual sub-
type of lncRNAs (Additional file 2). Among the three
subspecies of lncRNAs, the intronic lncRNAs showed a
lower TE density than that observed in the lincRNAs
and anti-sense lncRNAs (23.75 % vs. 36.44 % and
34.91 %). In particular, the lincRNAs and anti-sense
lncRNAs have a relatively higher proportion of LINEs/
L1s (Fisher’s Exact, Plinc vs. intronic = 0.0034; Panti-sense vs.

intronic = 0.0011) and LINEs/RTE-BovBs (Fisher’s Exact,
Plinc vs. intronic = 5.55E-05; Panti-sense vs. intronic = 0.0024)
than that observed in intronic lncRNAs. In contrast to
the lincRNAs and anti-sense lncRNAs, the intronic
lncRNAs showed a deletion of LTRs/ERVLs (Fisher’s
Exact, Plinc vs. intronic = 5.79E-08; Panti-sense vs. intronic =
2.11E-05) and SINEs/Core-RTEs (Fisher’s Exact, Plinc vs.

intronic = 2.38E-05; Panti-sense vs. intronic = 0.0005). Differ-
ences in the density of other TE subspecies were ob-
served among the three lncRNA subtypes (Additional
file 3). These structural characteristics of TE compo-
nents may underlie the differences in the evolution of
the three lncRNA subtypes. Long terminal repeats
(LTRs) harbor promoter signals that modulate gene ex-
pression in genomes [26, 27], and a recent study has in-
dicated that endogenous retroviruses (ERVs), which is a
class of LTRs, exhibit position and orientation biases,
often preferring the 5′ end of lincRNA transcripts and
sense orientation within the transcript, and avoiding the
mRNA transcription start sites (TSSs) [28]. We were
thus prompted to identify position bias for LTRs relative
to TSSs among the three lncRNA subtypes. The LTR/
ERV1 showed a large coverage peak right at the TSS of
lincRNAs, whereas a deletion of the LTR/ERV1 was ob-
served in the anti-sense lncRNAs and intronic lncRNAs
(Fig. 3b). Furthermore, the anti-sense lncRNAs and in-
tronic lncRNAs also exhibited a relatively higher cover-
age of LINEs/L1s at its TSSs. These findings were
suggestive of differential mechanisms of transcription
regulation among the lincRNAs and the other two
lncRNA subtypes.

Comparison of features of mRNAs and lncRNAs
In the present study, we obtained a total of 27,947
mRNAs and 1336 lncRNAs from goat fetal skin. To
comprehensively examine the differences between the
two transcript species, comparative analysis of gene
structure, expression, and sequence conservation was
performed. Our results showed that 1) most of lncRNAs
contained two or three exons, which differs from that of

Fig. 2 Comparative analysis of the three subtypes of lncRNAs. The
transcript length (a), exon count (b), and expression level (c) of three
subtypes of lncRNAs were compared using the Kolmogorov-Smirnov
test, and a P value of 0.05 indicates significance between two
groups. In three box plots, the circle indicates the outlier, and the
asterisk labels the extreme
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mRNAs (Fig. 4a); 2) there was a distinct divergence in
the distribution of transcript length between mRNAs
and lncRNAs (Fig. 4b); 3) most of the lncRNAs con-
tained a relatively shorter ORF, compared to that of
mRNAs (Fig. 4c); 4) lncRNAs generally showed a lower
level of expression compared to that observed in
mRNAs (Fig. 4d); 5) lncRNAs often generate a lower
number of alternatively spliced transcripts, in contrast to
that in mRNAs (Fig. 4e); and 6) most lncRNAs are
slightly less conserved, although not statistically signifi-
cant (Fig. 4f ).

The cis and trans role of lncRNAs in target genes
To investigate the function of lncRNAs, we predicted the
potential targets of lncRNAs in cis and trans. For the cis
action of lncRNAs, we searched for protein-coding genes

10 and 100 kb upstream and downstream of the lncRNAs,
respectively. Our results included 641 lncRNAs that corre-
sponded to 868 protein-coding genes within a range of
10 kb, as well as 964 lncRNAs that represented 3468
protein-coding genes within a range of 100 kb (Additional
file 4). Interestingly, we detected melanogenic genes such
as ASIP, Mitf, Sox10, Wnt7b, and Wnt3a, which were re-
spectively located near the XLOC_005274, XLOC_013722,
XLOC_020482, XLOC_020548, and XLOC_022579 loci,
thereby suggesting that skin melanogenesis is regulated by
the action of five lncRNAs on neighboring protein-coding
genes. Gene Ontology (GO) analysis of cis lncRNA targets
demonstrated that 25 significantly overrepresented terms
were mainly involved in the regulation of gene expression.
For example, the top five terms were sequence-specific
DNA binding, nucleic acid binding transcription factor

Fig. 3 TE components and position bias in three subtypes of goat lncRNAs. The main TE families were identified using RepeatMasker in the 999
lincRNAs, 218 intronic_lncRNAs, 119 anti-sense_lncRNAs, and 27,947 mRNAs, respectively. Differences in TE components between mRNAs and
individual subtype of lncRNAs were measured by using the Fisher Exact test (a). To ascertain the position bias of TE components in three
subtypes of lncRNAs, we identified TEs approaching TSSs in three classes of lncRNAs in the goat genome (http://goat.kiz.ac.cn) and plotted the
coverage of various TE families (b)
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Fig. 4 Comparison of genomic architecture and expression level between mRNAs and lncRNAs. The mRNAs and lncRNAs identified in the
present study were used for comparison of primary differences in two classes of transcripts. a Distribution of transcript lengths in the mRNAs and
lncRNAs in skin. The horizontal axis of indicates the length of transcripts, and the vertical axis represents density. b Distribution of the number of
exons in the mRNAs and lncRNAs. In the present study, single-exon lncRNAs were filtered out from the goat genome due to the limitations of
the algorithm. c Distribution of the number of open reading frames (Orfs) in the mRNAs and lncRNAs. The Orf was identified using Estscan in the
present study. d Expression level indicated by log10(FPKM + 1) in the mRNAs and lncRNAs. e Proportional distribution of alternative splicing
transcripts in mRNAs and lncRNAs. f Conservation of the sequence in mRNAs and lncRNAs were evaluated using
phastCons (http://compgen.bscb.cornell.edu/phast/)
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activity, sequence-specific DNA binding transcription
factor activity, regulation of transcription, and DNA-
dependent regulation of RNA metabolic processes. These
findings clearly demonstrated one of the roles of lncRNAs
in the genome, namely, regulation of gene expression.
Pathway analysis showed that these cis target genes of
lncRNAs were enriched in 266 KEGG pathways, in which
several pathways were related to pigmentation such as
tyrosine metabolism, cAMP signaling pathway, MAPK
signaling pathway, Wnt signaling pathway, melanogenesis,
and melanoma (Additional file 5). These findings sug-
gested that lncRNAs act on its neighboring protein-
coding genes in cis to regulate skin pigmentation during
dermal development.
On the other hand, the trans role of 1336 lncRNAs in

protein-coding genes was examined based on its
expression correlation coefficient (Pearson correlation ≥
0.95 or ≤ −0.95). A total of 123,969 interaction relation-
ships were detected in trans between 1150 lncRNAs and
the protein-coding genes in the goat genome (Additional
file 6). Functional analysis illustrated that the trans tar-
get genes were enriched in 2643 GO terms, encompass-
ing a variety of biological processes. Importantly, we
observed a few of melanogenic terms, including pigment
biosynthetic process, tyrosine 3-monooxygenase activity,
melanin-concentrating hormone activity, pigment meta-
bolic process, nitrogen compound metabolic process,
and others. Of the 256 KEGG pathways identified, five
were associated with pigmentation such as melanogene-
sis, melanoma, Wnt signaling pathway, cAMP signaling
pathway, and tyrosine metabolism (Additional file 7).
These findings indicated that lncRNAs act on the
protein-coding genes associated with skin pigmentation
in trans.
To further ascertain lncRNA-protein-coding gene

pairs that belong to both co-localization (cis action) and
expression correlation (trans action) relationships, de-
tailed examination was conducted, which identified 26
lncRNA-protein coding gene pairs that fulfilled to these
criteria (Additional file 8). This finding suggested that
lncRNAs act on its neighboring protein-coding genes to
regulate gene expression. We also noticed that one
lncRNA, XLOC_020022, which was significantly differ-
entially expressed between goats with dark skin and
white skin, interacted with an early development-related
gene, HOXC11.

Tissue and functional specificities of lncRNAs
Expression correlation analysis revealed an interesting
phenomenon wherein an lncRNA in trans acted on
two protein-coding genes that were specifically
expressed in a particular type of cell or belonged to a
certain functional cluster. For example, XLOC_013372
targets ASIP and MITF, yet with opposite correlations.

A group of lncRNAs, including XLOC_023806, XL
OC_019686, XLOC_008226, XLOC_013939, XLOC_01
5399, XLOC_017870, XLOC_000404, and XLOC_0
02582 simultaneously act on both TYRP1 and DCT;
XLOC_010430, XLOC_000995, XLOC_019547, XLO
C_009688, XLOC_005961, and XLOC_006605 target
both WNT2 and CREB3L1; and lncRNAs target
WNT2 and FZD4, respectively. On the other hand,
ASIP, MITF, TYRP1, and DCT are members of mela-
nogenic pathways and are expressed specifically in
melanocytes. These findings indicate that the
lncRNAs are tissue- or function-specific. Furthermore,
the three unique differentially expressed lncRNAs
(XLOC_010430, XLOC_004341, and XLOC_015448)
between the normal and dark skin in goats require
further investigation because their targets were also
differentially expressed, except for MITF (the target of
XLOC_015448). We suspect that these lncRNAs most
probably participated in the regulation of melanogen-
esis, although its underlying mechanisms require
additional investigations. Selected lncRNAs and target
genes related to pigmentation were validated by quan-
titative PCR analysis (Fig. 5, Table 1).

Discussion
In the present study, we identified a total of 1336
multiple-exon lncRNAs in 100-day-old fetal goat skin.
In contrast to the number of protein-coding genes
identified in the present study (27,947 mRNAs), the
expression of lncRNAs was tissue-specific [1]. Com-
parative analysis of lncRNAs and mRNAs revealed
characteristics that were similar to those of recent
studies [1–5]. In addition to the preliminary examin-
ation of the three lncRNA subtypes, our extensive
characterization revealed major differences in TE
components (LINEs/L1s, LINEs/RTE-BovBs, LTRs/
ERVLs, and SINEs/Core-RTEs) among lincRNAs,
intronic lncRNAs, and anti-sense lncRNAs (Fig. 3a),
which may in turn be responsible for the observed
differences in their evolution and function. Because
about half of mammalian genomes consist of
lncRNAs [25], our results might provide insights into
the scenario of genome evolution via lncRNA evolu-
tion. LTRs are known to harbor promoter signals that
modulate gene expression in genomes [26, 27]. Our
findings have demonstrated that lincRNAs are highly
enriched with LTRs/ERV1 at TSSs, but absent in anti-
sense lncRNAs and intronic lncRNAs (Fig. 3b), which
suggest that the regulatory mechanism of expression
of lincRNAs differs from that of the other two sub-
types. A recent study showed distinct differences in
TE density and position bias between the lincRNAs
and mRNAs [28], whereas the present study improves
our understanding of lncRNA biology.
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In 2013, the goat genome was sequenced and assem-
bled de novo using whole-genome mapping technology
[29], which endows its high quality of genome assembly
and annotation among farm animals, including horse,
pig, cattle, yak, and sheep [30–34]. Although some
single-exon lncRNAs were filtered out of the goat gen-
ome due to the limitations of the algorithm of the
present study, authentic multiple-exon lncRNAs were
generated, which could then be utilized in future investi-
gations, as well as considerably improve the annotation
of the goat genome. On the other hand, unlike protein-
coding genes where sequence motifs are usually indica-
tive of function, lncRNA sequences are currently
uninformative for predicting function. This particular

limitation hinders the prediction of the function of
lncRNAs. Interestingly, several lncRNAs are transcribed
with their associated protein-coding transcripts [35], and
various examples of recently characterized ncRNAs such
as Evf2 [36], HOTAIR [37], Kcnq1ot1 [38], and Air [39]
support a functional relationship between lncRNAs and
its associated or related-protein coding gene(s). There-
fore, functional predictions for mammalian lncRNAs
have often been based on “guilt-by-association” analyses
[1, 5, 40–42], although this may not be the most appro-
priate model to explain the function of lncRNAs.
We predicted the potential function of lncRNAs in

goat skin and determined that protein-coding genes can
act with lncRNAs in cis or trans. In particular, ASIP,

Table 1 LncRNAs and its potential target genes that are involved in melonagenesis

Protein-coding genes lncRNAs in cis lncRNAs in trans

ASIPa XLOC_005274 XLOC_013372, XLOC_006290, XLOC_013615, XLOC_024549,

XLOC_004858 XLOC_000129, XLOC_006932, XLOC_020962, -XLOC_020019b, -XLOC_018830b

MITF XLOC_013722 -XLOC_013372b, -XLOC_022057b, XLOC_000689, XLOC_018361, XLOC_012968, XLOC_009509,
XLOC_023640, -XLOC_013890b, XLOC_005088, XLOC_015448a

TYRP1a (BROWN) XLOC_023806, XLOC_019686, XLOC_008226, XLOC_013939, XLOC_015399, XLOC_017870, XLOC_000404,
XLOC_002582

DCTa XLOC_023806, XLOC_019686, XLOC_008226, XLOC_013939, XLOC_015399, XLOC_017870, XLOC_000404,
XLOC_002582, -XLOC_005274b

TYR -XLOC_010559b, -XLOC_024478b, XLOC_021855, XLOC_006064

CREB3L1a XLOC_000995, -XLOC_009688b, XLOC_005961, XLOC_006605, XLOC_004319, XLOC_008730, XLOC_010430a,
XLOC_019547, -XLOC_000912b, XLOC_024598, XLOC_004263

FZD4a XLOC_000995, XLOC_018035, XLOC_005957, XLOC_006451, XLOC_004319, XLOC_020603, XLOC_009285, XLOC_
019333, XLOC_004805, XLOC_008730, XLOC_010430a, XLOC_006605, XLOC_003840, XLOC_002867a,
XLOC_023214, XLOC_023692, XLOC_002389a

WNT2a XLOC_000995, XLOC_018035, XLOC_005957, XLOC_006451, XLOC_004319, XLOC_020603, XLOC_009285, XLOC_
019333, XLOC_004805, XLOC_008730, XLOC_010430a, XLOC_006605, XLOC_003840, XLOC_019547, -XLOC_009688b,
XLOC_005961, XLOC_004341a, -XLOC_014182b, XLOC_013150, XLOC_022462, XLOC_013012, XLOC_025297a,
XLOC_008538, -XLOC_007438b, XLOC_005975, XLOC_004597

aDifferentially expressed in dark and normal skins of goats
bNegative correlation between the lncRNAs and their targets in trans. Italic font indicates that one lncRNA acts on at least two different protein-coding genes in
trans. For example, XLOC_013372 regulated ASIP and MITF in trans

Fig. 5 Validation of gene expression in dark and white skin by quantitative PCR. Some identified melanogenic genes and lncRNAs were
examined in dark and white skin of fetal goats using quantitative PCR. Gene expression was quantified relative to the expression level of β-actin
using the comparative cycle threshold (ΔCT) method. Correction for multiple comparisons was performed using the Holm-Sidak method. The data
are expressed as the mean ± 1 SE (n = 3). * P < 0.05, **P < 0.01, *** P < 0.001
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which was most differentially expressed in dark and
white skin as indicated by RNA-seq analysis, was deter-
mined to be regulated by several lncRNAs both in cis
and in trans (Table 1). However, the mechanism by
which the lncRNAs act on ASIP in cis and trans remains
to be elucidated. An intriguing observation is that
XLOC_013372 acts on both ASIP and MITF in trans,
but with reverse correlations (Table 1). This is the first
report of such an interesting observation, which is worth
investigating further, as well as indicates the functional
complexity of lncRNAs. Furthermore, a certain cluster
of lncRNAs in trans often target protein-coding genes
that were specifically expressed in melanocytes (ASIP,
MITF, TYPR1, and DCT) and/or involved in melanogen-
esis (WNT2, WNT16, FZD4, and CREB3L1) (Table 1).
This finding indicates that lncRNAs play a regulatory
role in melanogenesis. Moreover, a cluster of eight
lncRNAs act on both TYRP1 and DCT, which evolved
from a common ancestral tyrosinase gene [43–45]. The
observation of highly identical regulatory lncRNAs sug-
gests that these homologous sequences in the tyrosinase
family genes are involved in its evolution and functional-
ity. A third interesting observation is that FZD4 and
WNT2, which are members of the WNT signaling path-
way, share a few of regulatory lncRNAs, including sig-
nificantly differentially expressed XLOC_010430. This
again indicates that lncRNAs are highly functionally
conserved, similar to their targets, namely, the WNT sig-
naling proteins [46]. Several recent studies also indicate
that lncRNAs are conserved in function [41, 47, 48].
Functional conservation, despite variations in sequence,
is a characteristic of lncRNAs. The differentially
expressed lncRNAs between dark and white skin in
goats such as XLOC_015448, XLOC_002867,
XLOC_002389, XLOC_010430, XLOC_004341, and
XLOC_025297 (Table 1), as well as the 26 lncRNA-
protein coding gene pairs that belong to both co-
localization (cis role) and correlation (trans role)
(Additional file 8) require additional investigations.
As far as we know, only a small portion of the path-

ways involved in pigmentation have been validated to
date, including the protein kinase C pathway [49, 50],
cAMP pathway [51], SCF-KIT pathway [52], cGMP
pathway [53], phosphatidylinositol 3-kinase-Akt pathway
[54], protein kinase A pathway [55], BMP signaling [56],
Notch pathway [57], ERK pathway [58], Wnt signal [59],
KITLG and the KITLG/c-Kit pathway [60], CXCR3-
mediated pathway [61], JAK2-STAT6 signaling pathway
[62], nitric oxide/protein kinase G signaling pathway
[63], FGF/MAPK/Ets signaling [64], p38MAPK [65],
MITF-GPNMB pathway [66], Galphas-SASH1-IQGAP1-
E-cadherin pathway [67], CREB/MITF/tyrosinase path-
way [68], and necrosis factor receptor-associated factor 2
(TRAF2)-caspases pathway [69]. However, reports on

the role of lncRNA in pigmentation are limited. In the
present study, the enriched KEGG pathways associated
with pigmentation (Additional files 5 and 7) in the po-
tential lncRNA targets clearly indicated that these
lncRNAs play roles in skin pigmentation in goats. How-
ever, the predicted targets based on “guilt-by-associ-
ation” analyses should be carefully assessed because of
the low number of sample examined, and experimental
validations are also warranted.

Conclusions
We elucidated the skin lncRNA profiles of fetal goats
using deep RNA-seq analysis. The characterization of
three lncRNA subtypes casts light on the mechanism
underlying the origin and evolution of lncRNAs, as well
as its regulation of expression. LncRNAs are tissue-
specific and functionally conserved during skin develop-
ment and pigmentation in goats. Our findings have
further expanded our knowledge on lncRNA biology, as
well as contributed to the annotation of the goat
genome. The present study also provides valuable
resources for studying lncRNAs.

Methods
Animals
Two goat groups with diverse phenotypes of skin pigmen-
tation were investigated in this study. The Yudong white
goat (Capra hircus) is distributed in Southwest China
(located at 31°14′–32°12′ N and 108°15′–109°58′ E),
which features white color coat and skin. The Youzhou
dark goat (Capra hircus), a indigenous breed uniquely dis-
tributed in Youyang county in Chongqing, China (located
at 26°54′ N and 108°57′ E), is characterized by dark skin,
including the visible mucous membranes, yet is generally
white in coat color. Briefly, three pregnant ewes from each
breed were subjected to caesarean section to collect the
fetuses at 100 days of gestation, and then the dorsal and
ventral skins were collected from each fetus. Three grams
of skin were dissected and rapidly frozen in liquid nitro-
gen for RNA extraction.
All surgical procedures involving goats were performed

according to the Regulations for the Administration of
Affairs Concerning Experimental Animals (Ministry of
Science and Technology, China; revised in June 2004) and
adhered to the Reporting Guidelines for Randomized
Controlled Trials in Livestock and Food Safety
(REFLECT).

RNA isolation, library preparation, and sequencing
Total RNA was isolated using TRIzol reagent (Invitrogen,
Carlsbad, CA, USA), according to the manufacturer’s in-
structions. RNA degradation and contamination was
monitored on 1 % agarose gels. RNA purity was checked
using the NanoPhotometer spectrophotometer (Implen,
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Los Angeles, CA, USA). RNA concentration was mea-
sured using a Qubit RNA Assay Kit in a Qubit 2.0
Fluorometer (Life Technologies, Carlsbad, CA, USA).
RNA integrity was assessed using the RNA Nano 6000
Assay Kit of the Bioanalyzer 2100 system (Agilent Tech-
nologies, Santa Clara, CA, USA). Approximately 3 μg
RNA per sample was used as input material for the RNA
sample preparations. First, ribosomal RNA was removed
by using an Epicentre Ribo-zero rRNA Removal Kit
(Epicentre, Madison, WI, USA), and rRNA-free residue
was removed by ethanol precipitation. Subsequently, the
high strand-specificity of the libraries was generated using
the rRNA-depleted RNA of the NEBNext Ultra Direc-
tional RNA Library Prep Kit for Illumina (NEB, Ipswich,
MA, USA), following manufacturer’s recommendations.
Briefly, fragmentation was conducted using divalent cat-
ions under elevated temperature in NEBNext. First-strand
cDNA was synthesized using random hexamer primers
and M-MuLV Reverse Transcriptase (RNaseH-). Second-
strand cDNA synthesis was subsequently performed using
DNA Polymerase I and RNase H. In the reaction buffer,
dNTPs with dTTP were replaced by dUTP. Remaining
overhangs were converted into blunt ends via exonucle-
ase/polymerase activities. After adenylation of the 3′ ends
of the DNA fragments, NEBNext adaptors with a hairpin
loop structure were ligated to prepare for hybridization.
To preferentially select cDNA fragments of 150–200 bp in
length, the library fragments were purified with an
AMPure XP system (Beckman Coulter, Brea, CA, USA).
Then 3 μL USER Enzyme (NEB, Ipswich, MA, USA) was
used with size-selected, adaptor-ligated cDNA at 37 °C for
15 min followed by 5 min at 95 °C before PCR. Then,
PCR was performed with Phusion High-Fidelity DNA
polymerase, universal PCR primers, and Index (X)
Primers. Finally, the PCR products were purified (AMPure
XP system), and library quality was assessed on an Agilent
Bioanalyzer 2100 system. Clustering of the index-coded
samples was performed on a cBot Cluster Generation
System using TruSeq PE Cluster Kit v3-cBot-HS
(Illumina, San Diego, CA, USA), following the manufac-
turer’s instructions. After cluster generation, the libraries
were sequenced on an Illumina Hiseq 2000 platform and
100-bp paired-end reads were generated.

Quality control
Raw data were first processed using in-house Perl
scripts. In this step, clean data were obtained by remov-
ing reads containing adapter, reads containing over 10 %
of ploy-N, and low-quality reads (>50 % of bases whose
Phred scores were <5 %) from the raw data. The Phred
score (Q20, Q30) and GC content of the clean data were
calculated. All subsequent analyses were based on the
high-quality data.

Transcriptome assembly
Goat reference genome and gene model annotation files
were downloaded from the goat genome website (http://
goat.kiz.ac.cn) directly. Index of the reference genome
was built using Bowtie v2.0.6 [70, 71] and paired-end
clean reads were aligned to the reference genome using
TopHat v2.0.9 [72, 73]. The mapped reads of each sam-
ple were assembled using both Scripture (beta2) [74]
and Cufflinks (v2.1.1) [20] in a reference-based ap-
proach. Scripture was run with default parameters.
Cufflinks was run with ‘min-frags-per-transfrag = 0’ and
‘–library-type fr-firststrand’, and other parameters were
set as default. In the present study, single-exon lncRNAs
were filtered out from the goat genome due to limita-
tions of the algorithm. This operation that at least two
exons are preferred is a purely technical one. To avoid
false-positive results as much as possible, the transcripts
with a single exon were usually considered as back-
ground transcripts and were discarded, whereas
multiple-exon lncRNAs were retained [75].

Quantification of gene expression level
Cuffdiff (v2.1.1) was used to calculate fragments per kb
for a million reads (FPKM) of both lncRNAs and coding
genes in each sample [20]. For biological replicates, tran-
scripts or genes with a P-adjust of <0.05 were described
as differentially expressed between two groups of goats
with the dark and white skin.

Coding potential and conserved analysis of lncRNAs
To achieve high-quality data, we used four analytic tools,
including CNCI (v2) [76], CPC (0.9-r2) [77], Pfam-scan
(v1.3) [78], and PhyloCSF (v20121028) [79] to identify
the candidate lncRNAs. Transcripts predicted with cod-
ing potential by any of the four tools earlier described
were filtered out, and those without coding potential
were retained. Then, we selected those shared by four
tools as the final candidate lncRNAs and use for further
analysis. Quantification of gene expression level was esti-
mated by calculating the FPKMs of the transcripts. The
pipeline used to identify putative lncRNAs from the
deep sequencing data is presented in Supplementary
Figure S1.
To investigate the sequence conservation of tran-

scripts, we used the phyloFit program in the Phast (v1.3)
package [80] to compute phylogenetic models for con-
served and non-conserved regions among species. Then,
we used phastCons to compute a set of conservation
scores of lncRNAs and coding genes.

LncRNA target gene prediction and functional enrichment
analysis
To explore the function of lncRNAs, we first predicted
the target genes of lncRNAs in cis and trans. The cis role
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refers to lncRNAs’ action on neighboring target genes.
In the present study, we searched coding genes 10/100 k
upstream and downstream of an lncRNA. The trans role
refers to the influence of lncRNAs on other genes at the
expression level. Here, we calculated for Pearson’s
correlation coefficients between expression levels of
1336 lncRNAs and 27,947 mRNAs with custom scripts
(r > 0.95 or r < −0.95). Then, we performed functional
enrichment analysis of the target genes for lncRNAs by
using the DAVID platform [81, 82]. Significance was
expressed as a p-value, which was calculated using the
EASE score (P value < 0.05 was considered significant).

Enrichment analysis of TE in goat lncRNAs
RepeatMasker (http://www.repeatmasker.org) was used
with default parameters to identify various TE compo-
nents in goat. To detect position bias of TEs in each
class of lncRNAs, we searched for TEs at the 2000-bp
upstream region of the TSS of each lncRNA identified
in the goat genome (http://goat.kiz.ac.cn) and plotted
its read coverage with the ggplot2 package in R [83].

Validation of gene expression in RNA-seq by quantitative
PCR analysis
Total RNAs from fetal skin in two groups of goats were
used for quantitative PCR analysis. Briefly, the first
cDNA strains were obtained using a One Step cDNA
Synthesis Kit (Bio-Rad, USA), and were then subjected
to quantification of mRNAs or lncRNAs with β-actin as
an endogenous control using a standard SYBR Green
PCR kit (Bio-Rad) on the Bio-Rad CFX96 Touch™ Real-
Time PCR Detection System. The quantitative PCR was
performed using the following conditions: 95 °C for 30 s,
40 cycles of 95 °C for 5 s, and the optimized annealing
temperature for 30 s. The primers and annealing tem-
peratures for 14 genes are listed in Additional file 9. All
reactions were performed in triplicate for each sample.
Gene expression was quantified relative to β-actin ex-
pression using the comparative cycle threshold (ΔCT)
method. Differences in gene expression between the
dark and white skin were detected by using the t-test.
Corrections for multiple comparisons were performed
using the Holm-Sidak method.

Statistical analysis
Data analyses were performed using the statistical R
package.

Data availability
The sequencing data were submitted to the Genome Ex-
pression Omnibus (Accession Numbers GSE69812) in
NCBI.
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