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Abstract

Background: The liver plays important roles in nutrient metabolism, detoxification and immunity. Enterococcus
faecium (E. faecium) is a probiotic that has been shown to have positive effects on broiler production. However, its
molecular effects on liver metabolism have not been characterized. This study aims to further identify the biological
roles of E. faecium by characterizing the hepatic proteomic changes of broilers (Gallus gallus) fed E. faecium using
two-dimensional fluorescence difference gel electrophoresis (2-D DIGE) and mass spectrometry (MS).

Results: Thirty-three proteins (50 protein spots) involved in nutrient metabolism, immunity and the antioxidant
system were shown to be differentially expressed in the liver of broilers fed E. faecium than from birds not fed the
probiotic. The biological processes of sulphur amino acids, vitamin and cellular hormone metabolism, sulphur
compound biosynthesis and protein tetramerization were enhanced in the liver of broilers fed E. faecium. However,
proteins involved in calcium ion flux, cell redox homeostasis and platelet activation related to hepatic immune
responses were down-regulated in broilers fed E. faecium. These results indicate that the supplementation of
poultry feed with E. faecium may alter the partitioning of nutrients and promote optimal nutrient utilization.

Conclusions: This study assists in unraveling the molecular effects of the dietary probiotic, E. faecium, in the liver of
broiler chickens. It shows that the probiotic improves the metabolism of nutrients and decreases inflammatory
responses. Our findings extend previous knowledge of the mechanism of dietary probiotic action and provide new

findings for research and future probiotic development.
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Background

Probiotics are live, non-pathogenic microorganisms that
can regulate immune responses and suppress inflamma-
tion of intestinal cells [1]. In so doing, probiotics have
positive effects on the gut microbiota [2]. Probiotics,
along with plant extracts [3] and organic acids [4] are
being increasingly used in chicken (broiler) meat pro-
duction as alternatives to antibiotic growth promoters to
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improve broiler performance and enhance the sustain-
ability of production. The application of antibiotics as
growth promoters has been prohibited in the European
Union because of increased antibiotic resistance [5] and
in response to consumers demands for safe, and quality
broiler meat products.

Enterococcus faecium is a facultative anaerobic lactic
acid bacterium found in the intestinal microbiota of
humans and animals [6]. As one of the direct-fed micro-
organism strains recognized by the Association of
American Feed Control Officials, E. faecium is permitted
as a probiotic supplement for broiler chicken diets [7, 8].
Its impact on broiler chickens include promotion of
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immune organ development [9], increased diversity of
the gut microbial population [10], resistance to infection
[11], changes of antioxidant status [7, 10], and increased
intestinal absorptive surface area [10, 12, 13]. The latter
two effects have also been demonstrated in our previous
studies of the proteome responses of the intestinal mu-
cosa of broilers fed E. faecium [9]. We have also shown
that this probiotic induced proteome changes that im-
proved broiler meat quality and yield [14].

The liver plays a central role in nutrient metabolism,
including glycogen storage, protein and lipid synthesis,
detoxification, and production of chemicals necessary
for digestion [15, 16]. There are many reports that the
intestinal microbiota and its products indirectly affect
the liver [6, 7, 9-11, 13]. As a ‘first pass’ organ exposed
to the highest concentration of nutrients and other sub-
stances in the portal system, the liver is most vulnerable
to their effects and represents a target organ to assess
the effects of probiotics. Undoubtedly, studying varia-
tions of the hepatic proteome following dietary probiotic
supplementation will provide further insights into the
mechanisms of probiotic action. Thus, the aim of this
study was to undertake a molecular characterization of
hepatic metabolism of broiler chickens fed the probiotic
E. faecium

Methods

The study described in this paper was conducted in the
Feed Research Institute, Chinese Academy of Agricul-
tural Sciences (CAAS), Beijing, China. The care and use
of all birds in this experiment was approved by the Ani-
mal Care and Use Committee of the Feed Research In-
stitute of CAAS.

Materials and chemical reagents

Microcapsules of E. faecium CGMCC 2516 [17, 18] (vi-
able count >1 x 10" cfu/g; Challenge Biotechnology Ltd.
Co., Beijing, China) were used in the present experiment.
All reagents for two-dimensional fluorescence difference
gel electrophoresis (2-D DIGE) were purchased from Bio-
Rad (Hercules, CA), Roche (Mannheim, Germany), GE
Healthcare (Uppsala, Sweden) and Sigma-Aldrich (St.
Louis, MO). The reagents for LC-Chip-ESI-QTOF-MS
were purchased from Bruker Daltonics (Billerica, MA),
Roche and J. T. Baker (Phillipsburg, NJ). 2-D Quant Kit
was purchased from GE Healthcare.

Bird management and dietary treatments

Arbor Acres (AA) broilers were purchased from the
Huadu Chicken Co. (Beijing, China). A total of 216, 1-
day-old, male AA broiler chicks were randomly divided
into two groups, control and treatment. Each group had
9 replicates (cage) and each replicate contained 12 birds.
The distribution of cages was arranged to avoid any
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location effects on the poultry house. The chickens were
reared in two stages, starter (0-21 days) and grower
(22-42 days), and fed appropriate corn-soybean meal di-
ets (Additional file 1: Table S1) containing 1.0 x 10° cfu/
g (starter diet) and 1.2 x 10° cfu/g (grower diet) of E. fae-
cium (treatment) or not (control) for 42 days. In accord-
ance with the AA Broiler Management Guide (Aviagen
Group 2009), all chicks were inoculated and subjected to
a photoperiod of 23 h light on days 0-7 and 20 h there-
after. The room temperature was 33-35 °C for days 0-3
and gradually reduced to 20 °C by day 28. Relative hu-
midity was maintained at 60-70 % during the first week
and then at 50-60 % for the remainder of the study.

Sample preparation

On day 42, chickens from each group were randomly se-
lected, electrically stunned, and manually slaughtered
within 5 min [19]. The livers were removed and washed
with PBS (NaCl 8 g/L, Na,HPO, 1.44 g/L, KH,PO,
240 mg/L, and KCl 200 mg/L, pH 7.2) to remove any
blood and contaminants on the surface and immediately
stored in liquid nitrogen [20]. Hepatic protein extraction
was performed as described previously with some modi-
fications [14]. Liver samples (100 mg) were homogenized
with liquid nitrogen and dissolved in 1 mL of PBS
(pH 7.0) containing EDTA-free protease inhibitor cock-
tail tablets (Roche). The proteins insoluble in PBS were
extracted by lysis buffer (9 M urea, 2 M thiourea, 4 %
CHAPS, 2 EDTA-free protease inhibitor cocktail tablets,
pH 8.5) and combined with the PBS soluble proteins.
Trichloroacetic acid was added at a ratio of 1:9, followed
by 10-min incubation at —20 °C. After centrifugation at
15,000 x g at 4 °C for 10 min, the pellet was washed with
cold acetone, incubated and re-centrifuged as described
above. The pellet was then air dried, suspended in lysis
buffer at the ratio of 1 mg: 10 pL. The protein concen-
tration of the supernatant was determined by the 2-D
Quant Kit.

2-D DIGE and image analysis

The pH of the proteins was adjusted to 8.5 with 50 mM
NaOH, and the concentration was adjusted to 5 mg/mL
with lysis buffer. Equal amounts of proteins from the 6
samples of each control and treatment group were
pooled together as the internal standard. The proteins
(50 pg) were then labeled individually with 400 pmol of
Cy3, Cy5 or Cy2 (specific for internal standard) on ice
for 30 min in the dark and then quenched with 1 pL of
10 mM lysine on ice for another 10 min. 2-D DIGE was
performed as described with some modifications [21].
To avoid erroneous conclusions due to individual varia-
tions, the same quantity of proteins from the liver of
three chickens were pooled as a biological replicate, and
three biological replicates were acquired for each group.
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Three 2-D DIGE gels were independently carried out
with the same internal standard sample. The Cy3- and
Cy5-labeled proteins (50 pg) were combined, and then
mixed with 50 pg of Cy2-labeled internal standard. An
equal volume of 2 x sample buffer (9 M urea, 2 M thio-
urea, 4 % CHAPS, 130 mM DTT, and 1 % IPG buffer,
pH 3.0-10.0; GE Healthcare) was then added to the
sample, followed by the addition of rehydration buffer
(8 M urea, 2 % CHAPS, 45 mM DTT, 0.5 % IPG buffer,
and a trace amount of bromophenol blue, pH 3.0-10.0)
to a total volume of 450 pL. Samples were applied to 24-
cm pH 3.0-10.0 IPG strips (Bio-Rad), and isoelectric fo-
cusing was performed using the IPGphor IEF system
(GE Healthcare). The isoelectric focusing program was
set as follows: 50 V for 14 h, Grd 500 V for 30 min, Step
500 V for 1 h, Grd 1000 V for 30 min, Step 1000 V for
1 h, Grd 8000 V for 3 h, and step 8000 V for 30000 Vh.
The IPG strips on the concentrator were equilibrated in
buffer A (375 mM Tris-HCI [pH 8.8], 6 M urea, 29.3 %
glycerol, 2 % SDS, 1 % DTT and a trace amount of bro-
mophenol blue) for 15 min at room temperature and
followed by equilibration with buffer B (375 mM Tris-
HCI [pH 8.8], 6 M urea, 29.3 % glycerol, 2 % SDS, 2.5 %
iodoacetamid and a trace amount of bromophenol blue)
for another 15-min incubation at room temperature.

Homogeneous polyacrylamide gels (12 %) were precast
with low fluorescence glass plates using an Ettan DALT
six-gel caster, and IPG strips were placed on top of it.
Strips were overlaid with 0.5 % Agarose-LE (Affymatrix,
Santa Clara, CA) in 1 x running buffer containing brom-
phenol blue and were run for 14-16 h (2 W per gel,
overnight) at 16 °C in an Ettan DALT six electrophoresis
system (GE Healthcare). All electrophoresis procedures
were performed in dim light or in the dark. After the
run was completed, the 2-D DIGE gels were scanned in
situ using a Typhoon 9410 Variable Mode Imager (GE
Healthcare) and analyzed by the DeCyder Differential
Analysis Software (version 7.0, GE Healthcare) according
to the manufacturer’s instructions.

Identification of protein spots of differential abundance
by LC-Chip ESI-QTOF-MS

The identification of protein spots was carried out as de-
scribed by Begna et al. with some modifications [22]. In-
teresting protein spots from the preparative gels were
in-gel digested and identified by LC-Chip ESI-QTOE-
MS (Q-TOF 6520, Agilent, Santa Clara, CA). The tan-
dem mass spectra were retrieved using the Mass Hunter
software (Version B.02.01, Agilent). Before the MS/MS
data search, a peak-list was generated by the Mascot Distil-
ler software (Version 3.2.1.0, Matrix Science, Boston, MA).
The MS/MS data were searched against Mascot 2.2
(Matrix Science) applied to NCBInr (released March 2015)
with the following parameters: carbamidomethylation (C)
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and oxidation (M) were the fixed and variable modifica-
tions, respectively; taxonomy, all entries; enzyme, trypsin/
P; missed cleavages, 1; peptide tolerance, + 20 ppm; and
MS/MS tolerance, + 0.02 Da. When the identified peptides
were matched to multiple members of a protein family, or
a protein appeared under the same name and accession
number, the match was made in terms of the higher Mas-
cot score, the putative function, and the differential pat-
terns of the protein spots on the 2-D DIGE gels. Protein
identifications were accepted if they established a probabil-
ity greater than 95 % and contained at least two identified
peptides having maximal peptide coverage. The relative
abundances of differentially expressed proteins were nor-
malized by the internal standard of pooled Cy2-labeled
proteins.

Bioinformatics analysis of differentially abundant proteins
The ClueGo software http://apps.cytoscape.org/apps/
cluego with the Gene Ontology (GO) database (released
March 2015) and Kyoto encyclopedia of genes and ge-
nomes (KEGQ) database (released March, 2015) was used
to classify identified proteins into specific functional terms
and a pathway enrichment analysis. The gene ontology
analysis based on biological process and enrichment ana-
lysis was performed by the right-side hyper-geometric
statistic test and its probability value was corrected by the
Bonferroni’s method [23]. While pathway enrichment ana-
lysis was performed by using the ClueGo software and the
Gallus gallus database from KEGG database.

A protein interaction network of differential proteins
was analyzed using the online database resource Search
Tool (http://string-db.org/) for the Retrieval of Interact-
ing Genes (STRING 9.05) [24]. The protein regulation
networks and protein interaction maps are in the Gallus
gallus molecular networks database. The network nodes
are the proteins, and the edges represent the predicted
functional associations. An edge may be drawn with up
to seven differently colored lines—these lines represent-
ing the existence of seven types of evidence used in
interaction prediction. The interactions between the
imported proteins and all proteins stored in the database
were then identified.

Validation of proteins of differential abundance by qPCR

To further understand the relationship between proteins
and their encoding genes, qPCR was run for proteins of
differential hepatic abundance at the mRNA level. Spe-
cific primers for target genes of the identified proteins
were designed using the primer BLAST of NCBI and
nucleotide information in GenBank (Additional file 2:
Table S2). Total RNA was prepared from the liver of
control and treated groups using TRNzol-A+ (TIAN-
GEN, Beijing, China). RNA quality and concentration
were detected using spectrophotometer (Ultrospec 2100
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pro, GE Healthcare) and agarose gel electrophoresis.
c¢DNA synthesis with 5 pg of RNA was performed using
the Fast Quant RT Kit (with gDNase) (TIANGEN).
qPCR was conducted using the iCycler iQ5 system. The
PCR was performed in a 20-pL reaction system containing
1 pL of ¢cDNA, 0.5 pL of each primer (10 pM), 10 pL of
Super Real PreMix (SYBR Green) (TIANGEN) and 8.2 pL
of water. The fold-change was calculated using the
IQTMS5 software (Bio-Rad) with the 2 ~*2“* method [25].
All operation for qPCR was followed by the MIQE [26].

Results

The broiler chickens were clinically normal throughout
the experiment. As reported previously, dietary supple-
mentation with E. faecium did not significantly increase
growth rate or feed intake of the broilers. However, feed
conversion efficiency was improved [9], along with meat
quality and yield [14].

Identification of proteins of differential abundance

A total of 213 protein spots were detected on 2-D DIGE
gels of liver, with molecular weights and pl ranging from
10 to 100 kDa and 3.0 to 10.0, respectively (Fig. 1).
There were 58 protein spots that displayed significantly
different expression (1.4-fold, p <0.05) between control
and treatment groups. Fifty protein spots (86 %) were
identified by MS (Table 1), with remainder unidentified,
due to weak spectra.

GO and KEGG function enrichment analysis

The GO annotation was used to determine the biological
events behind the data and to provide a primary over-
view of the hepatic proteome. Use of the ClueGo soft-
ware allowed the functional enrichment analysis based
on biological processes (Fig. 2). Five major functional
groups were significantly enriched, i.e., amino acid me-
tabolism, lipid metabolism, vitamin metabolism, nucleo-
tide metabolism, and immunity and antioxidant system.
With the sulphur amino acid biosynthetic process as the
leading term (a term highly statistically significant or
with the lowest p-value), proteins involved in amino acid
metabolism contained BHMT (betaine-homocysteine S-
methyltransferase 1, spots 24 and 41), CTH (cystathio-
nase, spot 33), and GOT1 (aspartate aminotransferase,
spot 32). Similarly, with cell redox homeostasis as the
leading term, the immunity and antioxidant system func-
tional group contained CAT (catalase, spots 12 and 13),
FEGB (fibrinogen P chain, spot 14) and FGG (fibrinogen
gamma chain, spots 16 and 18). With the cholesterol
metabolic process as the leading term, the lipid metabol-
ism functional group contained AKR1D1 (3-oxo-5-p-ster-
oid 4-dehydrogenase isoform 2, spot 35) and APOA1
(apolipoprotein A-1, spot 48). With the vitamin metabolic
process as the leading term, the vitamin metabolism
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Liver of treatment group

Fig. 1 2D-DIGE hepatic protein profiles of broilers fed the probiotic E.
faecium or not. Protein spots showing significant differences (1.4-fold,
p < 0.05) were cut out and identified by LC-Chip-ESI-QTOF-MS. Proteins
of differential abundance with known identities are number-labeled
and marked red and green for up-regulation and

down-regulation, respectively

functional group contained ALDH1A1 (Retinal dehydro-
genase 1, spot 28) and RGN (regucalcin, spot 38). The nu-
cleotide metabolism functional group contained ATIC
(bifunctional purine biosynthesis protein PURH, spot 8)
and DPYS (dihydropyrimidinase, spot 53). The supple-
mentation with E. faecium significantly up-regulated the
sulphur amino acid biosynthetic and metabolic process,
vitamin and cellular hormone metabolic process and pro-
tein tetramerization in the liver of broiler chickens. How-
ever, the biological process of glycerol ether and organic
ether metabolism, cell redox homeostasis, platelet activa-
tion and response to calcium ion were down-regulated by
dietary supplementation with E. faecium.

The KEGG pathway analysis showed that eight differ-
entially expressed proteins were significantly enriched in
the five pathways, which participate in multiple bio-
logical processes (Table 2). These pathways were mainly



Table 1 Differentially expressed proteins detected in the liver of AA broiler chickens fed the dietary probiotic £. facecium ®

Spot no.  Protein name Accession no.  Symbol ID  Mr (kDa)/pl Sequence coverage (%)  Matched/searched Mascot score  Av. ratio (treatment/control)  p value
Immune and antioxidant system
1 Transferrin gi|83754919 LTF 77.49/6.70 50 75/326 1282 -1.59 7.6E-03
2 Transferrin i|83754919 LTF 7749/6.70 50 75/326 1282 -160 T4E-02
3 PIT 54 protein gil46395491 PIT54 5267/461 23 16/252 272 -161 85E—04
4 Serum albumin precursor gil45383974 ALB 71.87/5.51 76 96/411 2211 2.10 1.2E-02
5 Serum albumin precursor gij45383974 ALB 71.87/551 80 118/411 2390 1.73 20E-02
6 Serum albumin precursor qil45383974 ALB 71.87/551 80 1007411 2671 239 34E-03
7 PIT54 protein gi|46395491 PIT 54 52.67/4.61 23 16/252 272 -167 6.7E — 05
14 Fibrinogen f chain gi|399491 FGB 53.27/7.18 46 29/222 619 -1.56 32E-03
15 Serum albumin precursor qil45383974 ALB 71.87/551 31 23/263 379 147 1.8E-02
16 Fibrinogen gamma chain gi|8569623 FGG 47.49/5.40 28 19/246 296 =157 1.5E-02
18 Fibrinogen gamma chain 0i|8569623 FGG 47.49/540 26 12/191 232 -1.70 58E—-04
12 Catalase gi|53127216 CAT 60.28/8.09 39 39/290 685 2.14 8.0E - 03
13 Catalase gi|53127216 CAT 60.28/8.09 67 68/334 1104 239 14E-03
34 Epoxide hydrolase 2 gi|75832164 EPHX2 63.72/5.89 19 18/201 308 143 42E-02
40 HSP108 gil63509 HSP90B1 91.45/4.81 4 8/241 86 -169 1.1E-02
46 HSP108 gil63509 HSP90B1 91.45/4.81 3 2/241 56 -148 1.8E—-02
49 Annexin A6 gi|50982399 ANXAG 75.58/5.57 8 4/244 71 —1.64 23E-03
50 GlutathioneS-transferase 2 i|2981970 GSTM2 25.92/7.00 63 18/217 546 148 39E-03
51 HSP108 gil63509 HSP90B1 91.45/4.81 13 16/209 402 =176 24E-02
Carbohydrate metabolism and energy
production
20 a-Enolase gi|46048768 ENO1 47.62/6.17 48 43/296 882 1.94 32E-03
21 a-Enolase gi|46048768 ENO1 47.62/6.17 38 17/227 378 178 48E-03
23 o-Enolase gi|46048768 ENO1 47.62/6.17 52 28/279 821 1.76 52E-03
25 a-Enolase gij46048768 ENO1 47.62/6.17 4 39/291 880 1.77 13E-02
26 a-Enolase gil46048768 ENO1 47.62/6.17 53 52/324 1088 1.80 6.6E — 03
27 Mitochondrial inner membrane  gi|57530041 IMMT 79.54/5.72 6 4/266 50 =174 54E-03
protein
36 a-Enolase gil46048768 ENO1 47.62/6.17 1 5/290 93 144 43E-04
37 Phosphoglycolate phosphatase gi|71894743 PGP 33.55/5.53 33 15/271 364 1.50 94E-03
44 a-Enolase gij46048768 ENO1 47.62/6.17 8 4/296 62 -141 39E-02
47 a-Enolase gil46048768 ENO1 47.62/6.17 23 11/240 313 -165 21E-02
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Table 1 Differentially expressed proteins detected in the liver of AA broiler chickens fed the dietary probiotic E. facecium @ (Continued)

55 Alcohol dehydrogenase 6 gil45384164 ADH6 40.89/7.85 16 8/231 130 338 22E-03

56 Phosphoenolpyruvate ij45382653 PCK2 71.72/8.16 11 9/196 134 1.65 78E-03
carboxykinase [GTP],
mitochondrial

58 Phosphoglycerate kinase gi|45384486 PGK1 45.09/8.31 15 14/256 333 —145 1.5E-02

Amino acid and protein metabolism

17 Alanyl-tRNA synthetase, gi|57524852 AARS 102.00/568 11 14/189 272 —147 45E-03
cytoplasmic

22 Homogentisate 1,2-dioxygenase  gi|50729534 HGD 50.12/6.35 34 17/279 397 1.79 36E-03

24 Betaine-homocysteine gi|50755288 BHMT 45.55/7.56 52 27/265 507 1.78 38E-04
S-methyltransferase 1

29 Protein disulfide-isomerase A4 gi|57530768 PDIA4 71.29/4.96 M 7/228 115 -162 28E-03

32 Aspartate aminotransferase, gi|809192 GOT1 46.00/8.26 54 32/245 943 144 44E—-02
cytoplasmic

33 Cystathionase gi|118094764  CTH 44.56/6.86 38 17/233 335 147 48E-02

41 Betaine-homocysteine gi|50755288 BHMT 45.55/7.56 32 18/259 316 149 14E-02
S-methyltransferase

42 Prolyl-4-hydroxylase gil63739 P4HB 55.17/4.66 13 7/250 146 -1.89 1.1E-03

43 Protein disulfide-isomerase gi|45383890 PDIA3 56.55/5.76 28 24/238 589 -142 44E-03
A3 precursor

45 Elongation factor 2 gi|45382453 EEF2 96.34/6.40 6 7/255 94 -140 2.1E-03

Lipid and vitamin metabolism

28 Retinal dehydrogenase 1 gij45383031 ALDH1A1 56.40/7.49 16 14/229 m 141 37E-02

35 3-ox0-5-3-steroid gi|118082901 AKR1D1 50.02/9.32 52 26/256 655 144 44E-02
4-dehydrogenase isoform 2

38 Regucalcin gil45382019 RGN 33.67/5.77 75 39/286 1279 141 27E-03

48 Apolipoprotein A-l gil211159 APOA1 30.67/5.58 10 3/250 59 -142 36E-02

57 Fatty acid-binding protein, liver gi}45383728 FABP1 14.30/7.74 66 17/286 461 -1.90 26E-03

Nucleotide metabolism

8 Bifunctional purine biosynthesis  gi[28373618 ATIC 67.05/8.54 31 30/230 364 246 1.7E-03
protein PURH

53 Dihydropyrimidinase gi|118087274 DPYS 69.50/6.42 4 2/265 70 1.51 45E-02

54 Nucleoside diphosphate kinase gi|2827446 NME4 17.54/7.11 65 27/277 492 143 6.8E—03

? Spot no. corresponds to the number of protein spots in Fig. 1. Protein name is given when proteins were identified by LC-Chip ESI-QTOF MS. Accession no. is the unique number given to mark the entry of a protein
in the database NCBInr. Theoretical molecular weight (Mr) and isoelectric point (pl) of the identified proteins are retrieved from the protein database of NCBInr. Sequence coverage is the ratio of the number of amino
acids in every peptide that matches with the mass spectrum divided by the total number of amino acids in the protein sequence. Matched peptide is the number of paring an experimental fragmentation spectrum to
a theoretical segment of protein and searched peptide is the total searched peptide. Peptides were identified from the liver of AA broiler chickens based on Mascot scores (Additional file 3: Table S3) . Mascot scores
are derived from ion scores as a non-probabilistic basis for ranking protein hits. Av. ratio and p value are calculated using DeCyder software version 7.0
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software. * and ** mean p < 0.05 and p < 0.01 levels of significance
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Fig. 2 Functional enrichment analysis of the proteins of differential abundance in the livers of broilers fed the probiotic E. faecium. using ClueGO
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related to glycolysis/gluconeogenesis, retinol metabol-
ism, and amino acid metabolism. Of them, the metabol-
ism of glycine, serine, threonine, cysteine, methionine
and tyrosine and the retinol metabolism pathway were
enhanced according to the up-regulated proteins that
were enriched (Tables 1 and 2).

Protein and protein interaction analysis

Of the 58 differentially expressed protein spots, twenty-
six proteins were recognized as nodes with various rela-
tionships in the biological interaction networks (BIN)
using the online tools of STRING 10.0 (Fig. 3). The node
proteins were separated into six clusters, connected by
twelve key node proteins (ENOI1, EEF2, HSP90BI,
PDIA3, PDIA4, P4AHB, CAT, ALB, APOA1, ATIC, GOT1
and BHMT). The up-regulation of CTH, GOT1 and
BHMT may be related to cysteine and methionine me-
tabolism, while the down-regulation of HSP90B1 to-
gether with PDIA3, PDIA4, PAHB and EEF2 involves
protein processing in the endoplasmic reticulum. The
down-regulation of APOA1 and FABP1 may influence
the uptake, transportation and deposition of fatty acids.
The interaction of up-regulation of ALB and down-
regulation of FGB, FGG and LTF probably plays a vital
role in immunity and antioxidation. Other BIN proteins
(PGK1, ENO1, PCK2 and ATIC) may function in carbo-
hydrate metabolism. Of these, HSP90B1, ENO1, EEF2,

and ALB are the most important hub proteins in the
BIN system.

Validation of proteins of differential abundance by qPCR

Of the liver proteins with differential abundance, ten
proteins that played an important role in nutrient me-
tabolism (amino acid and lipid metabolism) and the im-
mune system were selected to validate their expression
at the level of mRNA (Fig. 4). The results showed that
six of ten, CAT (spots 12 and 13), BHMT (spots 24 and
41), PDIA4 (spot 29), GOT1 (spot 32), CTH (spot 33),
and PDIA3 (spot 43), were consistent with their mRNA
expression levels. The similar expression pattern at the
transcript level indicates a prospective opportunity for
reverse genetic research through gene manipulation at
different developmental stages of chickens. The other
four genes, FGB (spot 14), FGG (spots 16 and 18), P4HB
(spot 42) and APOAL (spot 48), showed an inconsistent
pattern between the mRNA and protein expression level.

Discussion

The liver is the major metabolic organ in the body and
it modulates the complexity of the processes of metabol-
ism. Understanding the alterations that occur in hepatic
metabolism following the administration of a probiotic
to poultry, is an important aspect of delineating the
mechanism of probiotic action and determining use

Table 2 Enriched KEGG pathway-based sets of proteins of differential abundance in the liver of AA broiler chickens fed the probiotic

E. faecium @

Pathway name Count Protein p value q value
Glycolysis/Gluconeogenesis 3 ADH®6, PGK1, ENO1 1.67E-03 833E—-03
Glycine, serine and threonine metabolism 2 BHMT, CTH 1.29E - 02 6.46E — 02
Cysteine and methionine metabolism 3 BHMT, CTH, GOT1 3.58E - 04 1.79E - 03
Tyrosine metabolism 3 ADH6, GOT1, HGD 5.35E-04 2.68E—-03
Retinol metabolism 2 ADH6, ALDHTA1 9.49E — 03 4.74E-02

@ The number of count refers to the amount of proteins which are part of the extended network and appear as part of the pathway. p values are calculated
according to a hypergeometric test, g values represent p values corrected for multiple testing using the false discovery rate method. Protein refers to the proteins

involved in the corresponding pathway
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Fig. 3 Biological interaction network of the proteins of differential
abundance in the livers of broilers fed the probiotic E. faecium. Red
lines indicate fusion evidence, green lines indicate neighborhood
evidence, blue lines indicate co-occurrence evidence, purple lines indi-
cate experimental evidence, yellow lines indicate text mining evidence
light blue lines indicate database evidence, and black lines indicate co-
expression evidence. 1 and | indicate up-regulated and down-
regulated proteins in the livers of broilers fed the probiotic E.

faecium, respectively

strategies. The birds sampled in this study, used their
feed more efficiently [9] and had improved carcass yield
and quality [14].

The broiler chickens fed E. faecium had a significantly
different hepatic protein expression profile than birds
not exposed to the probiotic. Dietary supplementation
with E. faecium significantly changed the immune and
antioxidant system and the metabolism of carbohydrates,
amino acids, nucleotides, vitamins, and lipids in the
liver. In this regard, sulphur amino acids, vitamin and
cellular hormone metabolism, sulphur compound bio-
synthesis and protein tetramerization were enhanced fol-
lowing feeding with E. faecium. In contrast, proteins
involved in calcium ion flux, cell redox homeostasis and
platelet activation were down-regulated. These results
indicate that dietary supplementation with E. faecium
may alter the partitioning of nutrients, thus facilitating
optimal nutrient utilization.

The liver plays an important immunological role [27].
When inflammation occurs, the acute phase response
often appears in the liver [28]. This response is a natural
systemic defense to help protect the body against infec-
tions, neoplasm, stress, immune disorders, trauma or par-
asites [29]. Acute phase proteins (APPs), synthesized in
the liver during the acute phase response [30], can be di-
vided as positive or negative based on increase or decline
of their concentrations during inflammatory responses
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[31, 32]. Positive APPs in avian species include ceruloplas-
min, al-acid glycoprotein, amyloid A, transferrin (LTF),
mannan-binding protein, haptoglobin, hemopexin, fi-
brinogen and fibronectin [33], while albumin (ALB) was
reported to a negative APP in poultry [34]. In this study,
down-regulation of positive APPs including LTF, FGB and
FGG and up-regulation of negative APP, such as ALB,
suggest a possible relationship between supplementation
with E. faecium and decreased inflammation. This result is
consistent with that observed in the intestinal mucosa and
immune organ indexes of these broilers [9]. Moreover,
HSP90B1 is an essential immune chaperone, regulating in-
nate and adaptive immunity [35]. Therefore, down-
regulation of HSP90B1 (spots 40, 46, and 51) and differen-
tial expression of APPs in the liver of treated broilers sug-
gests that supplementation with E. faecium may improve
broiler health as the concentration of APPs may be useful
for monitoring domestic fowl health [36]. Under normal
physiological conditions, reduced inflammation will result
in more efficience in animal production [37]. Chickens
with high concentrations of positive APPs had growth de-
pression and decreased meat quality because of reparti-
tioning of nutrients away from muscle protein deposition
and growth to APPs synthesis, in response to inflamma-
tion [38, 39]. In our study, the higher efficiency of produc-
tion in the broilers fed with E. faecium may be due to the
redistribution of nutrients away from the immune re-
sponse resulting in increased availability of nutrients for
growth and development.

Oxidative stress can induce cellular damage and cause
disruption of normal cell signaling by over reactive oxy-
gen species [40]. Antioxidant enzymes can protect cells
from oxidative stress damage [41, 42]. High-level expres-
sion of antioxidant enzymes, i.e. CAT (spots 12 and 13),
epoxide hydrolase 2 (EPHX2, spot 34), and glutathione
S-transferase 2 (GSTM2, spot 50), suggests that the
broilers fed E. faecium have synthesized more antioxi-
dants to protect their livers from oxidative damage.

Dietary carbohydrates provide more than half the en-
ergy requirement, demonstrating the importance of hep-
atic carbohydrate metabolism to broiler chicken health
and production. Proteins related to carbohydrate metab-
olism that were up-regulated in the liver of chickens fed
E. faecium, included ENOL1 (spots 20, 21, 23, 25, 26, and
36), phosphoglycolate phosphatase (PGP, spot 37),
ADH6 (spot 55), and phosphoenolpyruvate carboxyki-
nase (PCK2, spot 56). These proteins are involved in glu-
coneogenesis and glycolysis. However, phosphoglycerate
kinase which is also involved in glycolysis (PGK1, spot
56) was down-regulated. The results suggest that supple-
mentation of E. faecium significantly changed the carbo-
hydrate metabolic pathways. ENO1 is a multifunctional
protein that plays roles in glycolysis and carbohydrate
degradation. Human ENO1 has 32 post-translational
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modification sites for phosphorylation, acetylation and
ubiquitination (http://www.uniprot.org/uniprot/P06733#
publications), and its functional roles depend on subcel-
lular localization, post-translational modifications and
the concentrations of modified protein [43]. In this
study, eight differential protein spots of ENO1 were
identified in the liver of broilers as reported in Plasmo-
dium yoelii [44], including six up-regulated and two
down-regulated. It suggests that supplementation of E.
faecium may change the abundance and diversity of
modified ENO1, and its physiological functions as a con-
sequence. However, how and which ENO1 isoforms play
the physiological roles requires further study.

Proteins, accounting for about 18 percent of the body
weight of animals, are vital constituents of all cells and play
important roles in many biological activities. In this study,
the proteins related to amino acid and protein metabolism
were identified to differentially express, such as alanyl-
tRNA synthetase (AARS, spot 17); PDIA4 (spot 29), PAHB
(spot 42), PDIA3 (spot 43) and EEF2 (spot 45). These pro-
teins are principally involved in the synthesis of proteins
[45], rearrangement of intrachain and interchain disul-
phide bonds [46], and polypeptide chain elongation [47].

Lipids play physiologically important roles in regula-
tory metabolism, metabolic energy production and as
constituents of cell membranes [48]. APOA1 (spot 48)
constitutes the high density lipoprotein complex with
lipids in the plasma, and transports lipids from tissue to
liver for excretion. FABP1 (spot 57) primarily binds
long-chain fatty acids and hydrophobic ligands [49] and
is associated with fatty acid uptake [50]. The down-
regulation of APOA1 and FABP1 in the liver may be re-
lated to a decline in abdominal fat percentage which was
observed in these birds [14]. Vitamins play a role as
metabolic catalysts in the form of coenzymes. The differ-
ential proteins involved in metabolism of vitamins and
nucleotides were identified in the liver of broilers fed E.
faecium. RGN plays major roles in L-ascorbic acid bio-
synthesis and regulates hepatic cell functions [51]. Up-
regulated RGN in the liver of broilers fed E. faecium
may be linked to enhanced vitamin C synthesis and in-
creased broiler immunity.

Proteins serve as fundamental elements in the living
cell but do not exist independently [52]. KEGG pathway
enrichment analysis and BIN analysis of differentially
expressed proteins is the best way to perform functional
analysis [53, 54]. Significantly enriched biological pathways
of glycolysis/gluconeogenesis, retinol metabolism, and
amino acid metabolism were observed in this study, indi-
cating their central roles in hepatic metabolic enhance-
ment. The proteins included in the BIN were mainly
involved in the immune and antioxidant system and me-
tabolism of carbohydrates, amino acids, proteins, nucleo-
tides, lipids and vitamins. The complex network would
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appear to indicate that supplementation of broilers with E.
faecium is related to the improved cysteine and methio-
nine metabolism, reduced lipid deposition, immuno-
inflammatory responsiveness, and enhanced protein
processing in hepatic endoplasmic reticulum. Thus, the
important hub proteins in the interaction network,
HSP90B1, FGG, FGB and APOAL1 play the vital role in im-
proving immune function and metabolism of the liver in
broilers fed with E. faecium. Some of the key node proteins
that were highly linked in the BIN were validated at a gene
level. Proteins BHMT, CAT, CTH, GOT1, PDIA3 and
PDIA4 with abundances corresponding to mRNA levels
may represent potential targets for genetic manipulation.
However, possible reasons for these inconsistent results
might include: 1) delayed outcomes of some biological pro-
cesses, such as transcription or translation initiation, elong-
ation efficiency, mRNA stability, or splicing [55-57]; 2)
post-translational modifications, e.g. phosphorylation, or
proteolysis of core components of the translation machin-
ery [58-60]; 3) time delays between responses at the
mRNA and protein levels; and 4) different degradation
rates of proteins and mRNAs [61, 62]. Manipulation of
these genes may require further experimental information.

Conclusion

This study assists in the unraveling of the molecular ef-
fects of dietary probiotics in the livers of broiler chickens
by using proteomics technology. Fifty differentially
expressed proteins were identified in the treated broilers,
and most of them are related to the metabolism of gly-
cine, serine, threonine, cysteine, methionine and tyrosine
and inflammatory responses. These results suggest that
dietary supplementation of E. faecium may alter the par-
titioning of nutrients in the body and facilitate optimal
utilization of nutrients by broilers. This study extends
our previous knowledge of the mechanism of dietary
probiotic action and provides new findings for research
and future probiotic development.
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