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Abstract

Background: Clostridium botulinum is a diverse group of bacteria characterized by the production of botulinum
neurotoxin. Botulinum neurotoxins are classified into serotypes (BoNT/A-G), which are produced by six species/
Groups of Clostridia, but the genetic background of the bacteria remains poorly understood. The purpose of this
study was to use comparative genomics to provide insights into the genetic diversity and evolutionary history of

bacteria that produce the potent botulinum neurotoxin.

Results: Comparative genomic analyses of over 170 Clostridia genomes, including our draft genome assemblies for
59 newly sequenced Clostridia strains from six continents and publicly available genomic data, provided in-depth
insights into the diversity and distribution of BoNT-producing bacteria. These newly sequenced strains included
Group | and Il strains that express BoNT/A,/B,/E, or/F as well as bivalent strains. BoNT-producing Clostridia and
closely related Clostridia species were delineated with a variety of methods including 16S rRNA gene, concatenated
marker genes, core genome and concatenated multi-locus sequencing typing (MLST) gene phylogenies that related
whole genome sequenced strains to publicly available strains and sequence types. These analyses illustrated the
phylogenetic diversity in each Group and the diversity of genomic backgrounds that express the same toxin type
or subtype. Comparisons of the botulinum neurotoxin genes did not identify novel toxin types or variants.

Conclusions: This study represents one of the most comprehensive analyses of whole genome sequence data for
Group I and Il BoNT-producing strains. Read data and draft genome assemblies generated for 59 isolates will be a
resource to the research community. Core genome phylogenies proved to be a powerful tool for differentiating
BoNT-producing strains and can provide a framework for the study of these bacteria. Comparative genomic
analyses of Clostridia species illustrate the diversity of botulinum-neurotoxin-producing strains and the plasticity of

the genomic backgrounds in which bont genes are found.
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Background

Clostridium botulinum encompasses diverse anaerobic,
spore-forming bacteria that are defined by the production
of one, two or three botulinum neurotoxins (BoNTs) [1].
The botulinum neurotoxin produces a flaccid paralysis
known as botulism that affects humans, other mammals,
birds and fish [2]. There are seven serotypes of botulinum
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neurotoxins, BONT/A-G, produced by six known Groups
of Clostridia [3]. Recently, sequencing of an infant botulism
isolate has also identified an unusual toxin type (BoNT/H
or F/A) that is produced in combination with BoNT/B [4,
5]. Group I includes BoNT/A,/B and/F-producing strains;
Group II includes BoNT/B,/E and/F-producing strains;
Group III includes BoNT/C and/D-producing strains;
Group IV includes the BoNT/G-producing C. argentinense
strains; Group V includes the BoNT/F-producing C.
baratii strains; and Group VI includes the BoNT/E-
producing C. butyricum strains [6]. BONT/A-G are
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~35-70 % different (amino acid identity) from each
other and can vary within a toxin type [3]. The vari-
ants within a serotype are described by a numerical
designation following the toxin such as Al, A2, A3,
etc. Thus, BoNT-producing bacteria are members of
at least four different bacterial species, as well as sev-
eral well-defined subclades, that contain a large diver-
sity of toxin types.

Numerous recombination events between toxins have
been documented [1, 7, 8], and bivalent toxin combina-
tions within the same strain have been identified [3].
Strains in different Groups can produce the same toxin
(e.g. Group L, IT and V strains produce BoNT/F). Hori-
zontal gene transfer of the toxin gene between strains in
the six Groups via toxin gene associations with transpo-
sases such as insertion sequence (IS) elements, recombi-
nases, the acquisition of plasmids or infection by phage
[9-11] is supported by incongruent topologies between
the bont gene and 16S rRNA gene phylogenies as well as
the presence of the same toxin subtype on the chromo-
some in some strains and on plasmids in other strains
[3, 6]. Recombination among toxins and horizontal gene
transfer between different species and/or Groups there-
fore allow for substantial variation in botulinum neuro-
toxins and in the genomic backgrounds in which the
same toxin type or subtype are found. Thus, capturing
data for both the genomic background as well as the
toxin type provides valuable information about the di-
versity within BoONT-producing species/Groups and how
this genetic and phenotypic variation is generated.

Group designations were initially established based
upon biochemical and microbiological attributes of the
bacteria, though the Group designations and the genetic
variation of the bacteria and the toxin have been increas-
ingly investigated using different molecular techniques
[12]. The first genomic sequence of a BoNT-producing
strain, C. botulinum ATCC 3502, was used to develop
microarrays to query Group I strains [13, 14]. Later the
whole genomic sequence of Eklund 17B was used to
construct a DNA microarray and query Group II strains
[15]. These microarray studies identified diversity in the
bacteria that express the botulinum toxin and identified
clades of bacteria within their collections that shared
common genes. Amplified fragment-length polymorph-
ism (AFLP) analysis has been used to examine the diver-
sity of Group I [7] and II strains [16] and to identify the
complexity of 1090 strains of neurotoxin-producing
Clostridia primarily from California infant botulism
cases [17]. Pulsed-field gel electrophoresis (PFGE) has
been used to examine BoNT-producing strains [18, 19],
including the determination of toxin gene cluster vari-
ation and location (plasmid or chromosome) of bont/B
variants [20]. Multi-locus sequence typing (MLST) has
been used to differentiate Group I serotype A strains
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[21] and Group II serotype E strains [22]. These various
genetic methods provide a baseline of understanding of
phylogenetic relationships among Clostridia species. Im-
proved DNA sequencing technologies and bioinformatic
techniques now available allow researchers to compare
strains at a higher level of resolution.

Botulinum neurotoxin-producing Clostridia have been
identified from all continents except Antarctica. These
microbes are often isolated from samples associated with
human botulism cases (food poisonings or intestinal or
wound infections), and researchers have also isolated
BoNT-producing Clostridia from environmental samples
including soils, honey, aquatic sediments and plants [17,
23-34]. The distribution of serotypes A—G can be ob-
tained from publications based upon characterization of
strains within different culture collections, environmen-
tal sampling and reported botulism cases. Identifying
BoNT-producing strains from sources around the globe
aids in understanding the frequency and geographic dis-
tribution of strains containing various toxin types.

The study represents a collaborative effort among re-
searchers at many institutions to understand the diversity
within BoNT-producing Clostridia. The study provides
genomic sequence data and draft genome assemblies for
strains (predominantly belonging to C. botulinum Groups
I and II) representing diverse serotypes and geographic re-
gions including isolates from botulism cases and environ-
mental sources from Argentina, Australia, Canada,
Finland, France, Greenland, Japan, Mauritius, Sweden and
the US. These data are useful for determining neurotoxin
gene cluster characteristics of BoNT-produding strains,
the genomic backgrounds containing botulinum toxin
genes, and the global distribution of strains expressing dif-
ferent toxin types. The study demonstrates that compara-
tive genomic techniques differentiate BoNT-producing
strains (including strains expressing the same toxin type
or subtype) and illustrates the diversity of BoNT-
producing strains (including the diversity of strains within
Groups I and II). Knowledge of the diversity and phylo-
genetic relationships of BoNT-producing strains provides
a framework for the study of these bacteria and can in-
form future research regarding topics such as the develop-
ment of diagnostic tools and therapeutics.

Methods

Genome sequencing, assembly and annotation

Strains or purified DNA were kindly provided by numerous
collaborators. Whole genome sequence data were gener-
ated with the Illumina sequencing technology (GAIIx). Ge-
nomes were assembled de novo via an in-house pipeline
[35] that included adapter trimming with Trimmomatic
[36], read error correction with BayesHammer [37] and
contig assembly with SPAdes v3.0.0 [38]. Redundant con-
tigs were removed with PSI-cd-hit [39], and short contigs
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(<200 nt) were filtered out of assemblies. Illumina reads
were mapped back to assemblies with BWA [40, 41], and
single nucleotide polymorphisms were identified with
GATK [42] and corrected if they passed a minimum depth
and allele proportion. Assemblies were then improved with
PILON [43] and IMAGE [44]. Assemblies were screened
for obvious contamination by BLAST [45] searches against
the NCBI non-redundant nucleotide database (con-
tamination was removed from data for strain U21312).
Relevant, published Clostridia species genomes were
identified with the aid of the PATRIC database phylogeny
viewer [46] and literature searches. Genome assemblies
were downloaded from PATRIC [46] or GenBank [47] in
fasta format (January 2015). The genome assembly of
Acetobacter woodii DSM 1030 [GenBank:NC_016894] was
downloaded for use as an outgroup. For inclusion in
analyses, published genome assemblies needed to meet the
following requirements: <800 contigs, presence of a near
full-length 16S rRNA gene (>1300 nt) and presence of an
rpoB gene. All genome assemblies (newly sequenced and
published strains) were annotated with Prokka [48] and
evaluated with QUAST [49]. In addition to published gen-
ome assemblies, read files for ten Group I C. botulinum
[50] genomes were included for the core genome sequence
phylogenies of Group I strains.

16S rRNA gene phylogeny

16S rRNA genes were parsed from Prokka output files.
If multiple 16S rRNA gene sequences were present in an
assembly, the sequences from that assembly were clus-
tered (99 % identity) with USEARCH [51] and a repre-
sentative sequence was chosen for that assembly.
Representative sequences were aligned and masked with
SSU-ALIGN [52]. Aligned and masked sequences were
trimmed with mothur (filter.seqs command) [53] so the
first and last position of each sequence included a base
(not a gap character). A phylogeny was inferred with
FastTree2 [54], an approximately-maximum-likelihood
method, using the general time reversible model of nu-
cleotide substitution and 1000 bootstrap replicates. The
tree was viewed and rooted with the A. woodii DSM
1030 16S rRNA gene sequence in FigTree v1.4.2 [55].

Phylogeny of concatenated marker genes

Forty marker genes identified by specl (species identifi-
cation tool) [56], a software package developed to delin-
eate microbial species, were extracted from Prokka
output files. Gene sequences of sufficient length (80 % of
the length of 97.5 % of the extracted sequences for each
gene) were aligned with MUSCLE [57] and
concatenated. The final alignment included gap charac-
ters for marker genes that could not be extracted from
some genome assemblies. Alignment columns contain-
ing greater than 95 % gap characters were filtered from
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the alignment with QIIME v1.6.0 [58]. Phylogenies were
inferred on the concatenated alignments with FastTree2
as described above. The tree was viewed and rooted with
A. woodii DSM 1030 in FigTree.

Single nucleotide polymorphism (SNP) detection and
phylogeny

All genome assemblies were compared with the
reference-independent single nucleotide polymorphism
(SNP) approach, kSNP v2 [59]. kSNP was run with a
kmer value of 21. SNPs identified in at least 50 % of the
analyzed genomes were used to infer a phylogeny. A
phylogeny was inferred on the 40,582-character matrix
with FastTree2 as described above. Reference-
independent SNP phylogenies were also generated for
Group I and II strains. The Group I and II phylogenies
were inferred upon core SNP matrices (Group I — 1,780-
character matrix, Group II — 35,382-character matrix)
generated by kSNP, as described above.

SNP discovery was also performed by aligning assem-
bled genomes to a reference assembly with NUCmer
[60] and identifying SNPs from these alignments with
NASP [61]. Illumina reads for ten Group I strains were
aligned against the reference with BWA-MEM [41] and
SNPs were called with the UnifiedGenotyper method in
GATK [62]. SNP calls were filtered from the final matrix
if the coverage at a position was less than 10x or if the
proportion of reads matching the called SNP was less
than 0.9. SNPs called from duplicated regions in the ref-
erence genome (identified by self alignments with NUC-
mer) were filtered from the SNP matrix. Phylogenies
were inferred with RAXML v8.1.1 [63] using the general
time reversible model of nucleotide substitution and the
gamma distribution of rate heterogeneity. Ascertainment
bias correction was applied to likelihood calculations
[64] within RAxML. Bootstrap replicates were con-
ducted using the rapid bootstrapping method in RAxML
[65], and the number of bootstrap replicates was deter-
mined by using the RAXML extended majority-rule con-
sensus tree criterion [66]. The tree was viewed and
rooted in FigTree. C. botulinum strain Kyoto-F [Gen-
Bank:CP001581] was used as the reference genome for
SNP detection for Group I C. botulinum/C. sporogenes
resulting in a 200,641-character core genome SNP
matrix called from a 1,708,420-character core genome
alignment (positions that passed quality filtering). The
core genome phylogeny for Group I was rooted with the
clade including C. sporogenes and C. botulinum serotype
B strains based upon the concatenated marker genes
and kSNP phylogenies of all genomes included in this
study as well as reference-based SNP phylogenies includ-
ing C. tetani strains as an outgroup (data not shown). C.
botulinum strain Eklund 17B [GenBank:CP001056,
CP001057] was used as the reference genome for SNP
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detection for Group II C. botulinum resulting in a
197,688-character SNP matrix called from a 2,609,405-
character core genome alignment. The core genome phyl-
ogeny for Group II was rooted with the clade containing
strains Eklund 202F, KAPB-3, Eklund 17B and CDC 66177
based upon the concatenated marker genes and kSNP phy-
logenies of all the genomes included in this study as well as
reference-based SNP phylogenies including C. saccharobu-
tylicurm DSM 13864 [GenBank:CP006721] as an outgroup
(data not shown). Reference-based SNP detection and core
genome phylogenies with alternate reference genomes were
also generated: Group I — C. sporogenes ATCC 15579
[GenBank:ABKW00000000], Group II — C. botulinum
strain Alaska E43 [GenBank:CP001078].

Analysis of phylogenies

The consistency index and retention index for core gen-
ome phylogenies was computed with the R [67] package
phangorn [68]. Compare2Trees [69] was used to com-
pare tree topologies for Groups I and II core genome
phylogenies and for 16S rRNA gene, concatenated
marker genes and kSNP phylogenies. The overall topo-
logical score is reported as a measure of tree topology
similarity.

SNP and homoplasy density in C. botulinum Groups | and Il
SNP density and homoplasy density ratio were com-
puted using the SNP matrices and core genome phyloge-
nies produced by NASP and RAXxML (see above) to
provide insight into recombination within Groups I and
II. SNP density was determined by counting the number
of parsimony informative SNPs present in 1 kb non-
overlapping segments of the core genome for each
Group. The homoplasy density ratio was computed by
dividing the number of parsimony informative SNPs
with a retention index below 0.5 (calculated with PAUP*
4.0 beta [70]) by the total number of parsimony inform-
ative SNPs in 1 kb segments of the core genome for each
Group. The SNP density and homoplasy density ratio
values across the reference genomes were plotted with
Circos [71]. Histograms of the homoplasy density ratio
values of 1 kb segments of the core genome (only 1 kb
segments with at least ten parsimony informative SNPs
are included in the histogram) are presented for Groups
I and IL.

Pairwise genomic comparisons - average nucleotide
identity

The average nucleotide identity between pairs of genome
assemblies (analysis included chromosomal and extra-
chromosomal sequences) was computed with JSpecies
[72] using the MUMmer calculation (ANIm) and default
settings. A histogram of ANIm values of inter- and
intra-Group comparisons of C. botulinum Groups 1, 1II,
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III and VI as well as C. perfringens and C. tetani was
created with matplotlib [73]. These Groups were
chosen for comparison because they contain strains
that produce botulinum neurotoxins or the tetanus
toxin and/or have multiple sequenced genomes within
the Group/species.

Gene content analyses with LS-BSR

Genome assemblies were processed with the large-
scale BLAST score ratio pipeline (LS-BSR) [74] using
the BLAT [75] alignment option and default parame-
ters to assess the gene content of Group I and II
strains. Group I and II genomes were clustered based
on BSR values using an average linkage algorithm im-
plemented in the MultiExperiment Viewer (MeV) [76].
Dendrograms produced by MeV were viewed and
rooted in Figtree. Additionally, cold shock protein en-
coding genes were screened against Group II genomes
using the LS-BSR approach. Cold shock protein encoding
genes were downloaded from PATRIC [46] for C.
botulinum strains ATCC 3502 (PATRIC IDs
fig|413999.7.peg.282, fig|413999.7.peg.1366, fig|413999.7.-
peg.1745), Eklund 17B (fig|508765.6.peg.1446) and Eklund
(fig|445337.5.peg.496, fig|445337.5.peg.1216) as well as C.
beijerinckii strain NCIMB 8052 (fig|290402.41.peg.2890,
fig|290402.41.peg.3037), and C. butyricum strains 5521
(fig|447214.4.peg.3792) and BL5262 (fig|632245.3.peg.2731).

Phylogeny of concatenated multi-locus sequence typing
(MLST) genes

Genes for multilocus-sequence typing (MLST) were
selected from previous MSLT studies. The MLST pro-
file for Group 1 strains (aceK, aroE, hsp, mdh, oppB,
recA and rpoB) was selected from Jacobson and col-
leagues [21]. The MLST profile for Group II strains
(16S rRNA gene, atpD, guaA, gyrB, ilvD, lepA, oppB,
pta, pyc, recA, rpoB, trpB and tuf) was adapted from
MacDonald and colleagues [22], though 23S rRNA
gene sequences were not included in the analysis.
These gene sequences were downloaded from
PubMLST C. botulinum database [77, 78] or GenBank.
MLST genes were extracted from genome assemblies
with BLAST searches. Gene sequences were aligned
with MUSCLE and concatenated for phylogenetic re-
construction. Phylogenies were inferred with Fas-
tTree2 as described above (see 16S rRNA gene
phylogeny methods). Two genome assemblies included
in the Group I analyses were missing one gene from
the MLST profile — C. botulinum CDC 54091 had no
recA gene and C. botulinum Af84 had no mdh gene.
Gap characters were inserted into the gene alignments
for these two genomes.
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bont gene cluster analyses

Botulinum neurotoxin gene sequences were extracted
from Prokka output files. Previously published bont gene
and tetanus toxin gene sequences downloaded from
GenBank were also included in the analyses. Sequences
longer than 3500 nucleotides were aligned with
MUSCLE and trimmed with Mothur (filter.seqs com-
mand) so the first and last position of each sequence in-
cluded a base (not a gap character). A phylogeny was
constructed with Fasttree2 as described above (see 16S
rRNA gene phylogeny methods). The tree was viewed
and rooted with the tetanus toxin gene clade in FigTree.
Annotated genome assemblies were investigated to deter-
mine the putative bont gene cluster type (ha+ or orfX+)
and location within the genome. Newly sequenced ge-
nomes were aligned to previously published genome
assemblies with progressiveMauve [79] to aid in under-
standing putative bont gene cluster locations. The pres-
ence of a plasmid-specific marker gene (PL-6) in all
genome assemblies was determined with BLAST searches
(hits above 80 % identity) of assembled genomes against a
putative DNA primase gene [GenBank:CP000940.1, locus
CLD_A0039] [80].

Results

A total of 59 new draft genome assemblies were gener-
ated for strains isolated from six different continents
(Table 1 and (Additional file 1: Table S1)). The strains
were previously isolated from botulism cases and envir-
onmental samples and include 32 bont/A, six bont/B,
nine bont/E, one bont/F, five bont/A1(B), two bivalent
bont/A2f4, one bivalent bont/Bf and three strains that
did not contain botulinum neurotoxin genes in the draft
genome assemblies (two strains within Group I and one
strain not within the six BoNT-producing Groups). Infor-
mation regarding previously published genomes included
in this study is presented (Additional file 2: Table S2). Fig. 1
illustrates the countries of origin of BoNT-producing
strains sequenced and/or analyzed in this study and dem-
onstrates the small number of whole genome sequences
available for strains originating from Asia and Africa. This
study is one of the most comprehensive comparative gen-
omic analyses of C. botulinum and closely-related strains
performed to date.

Delineation of Clostridia species/Groups

The phylogenetic relationships and diversity of BoNT-
producing strains were evaluated with phylogenies of the
16S rRNA gene, concatenated marker genes, and SNPs
and with average nucleotide identity. A phylogeny of 16S
rRNA gene sequences extracted from each genome as-
sembly indicates that the newly sequenced strains (ex-
cept for non-BoNT-producing strain U20725 that
groups near the Group IV strain in Fig. 2) are closely
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related to strains within C. botulinum Groups I and II
(Fig. 2). Group I includes serotypes A, B and F as well as
bivalent and non-toxic strains. Group II includes sero-
types B, E and F. BoNT-producing strains are color-
coded by serotype in Fig. 2, which illustrates evidence of
horizontal gene transfer and that non-BoNT-producing
strains are closely related to BoNT-producing strains
(e.g. C. sporogenes in Group I and C. novyi in Group III).
The deeper relationships of BoNT-producing Clos-
tridia strains were also evaluated with phylogenies in-
ferred on a concatenation of 40 marker genes identified
by Mende and colleagues [56] for delineation of species
(i.e. universal MLST-like approach for identifying micro-
bial species) and a SNP-matrix produced by LkSNP
(Fig. 3). The 16S rRNA gene, concatenated marker genes
and kSNP phylogenies show similar overall topologies
(overall topological scores computed by Compare2Trees
range from 66 to 78 %). All phylogenies indicate that
Group III C. botulinum strains are an outgroup to all
other BoNT-producing strains and that a close relation-
ship exists between C. tetani strains and C. botulinum
Group [ strains. The concatenated marker genes and
KkSNP phylogenies provide greater resolution than the
16S rRNA gene phylogeny and indicate that multiple
clades are present in C. botulinum Groups I, II and III,
which is consistent with previous findings [11, 21, 22,
50, 81-84]. Among the biggest differences between the
trees is the inclusion of the Group IV C. argentinense
strain in a clade with the Group I strains in the 16S
rRNA gene and kSNP trees, while the same Group IV C.
argentinense strain falls into a clade with Groups IL, V,
VI in the concatenated marker genes phylogeny.
Average nucleotide identity (MUMmer method -
ANIm), a method that can be applied to delineate spe-
cies [72], was calculated to determine diversity at the
genomic level within and between BoNT-producing
Groups (Fig. 4 and (Additional file 3: Table S3)). Richter
and Rossello-Mora [72] suggested that ANIm values
above 95-96 % may be applied to define species, though
the authors noted some exceptions, and ANIm values
between 93 and 96 % may fall into an intermediate zone
of species classification [85]. Minimum ANIm values in
Groups I, II and III fall below the threshold of 95-96 %,
and minimum ANIm values for Group I and Group III
fall below 93 %, which is indicative of the relatively high
diversity within these Groups [11, 83, 84]. For compari-
son, the minimum ANIm values for strains within C.
perfingens and C. tetani (97.02 and 99.13, respectively)
are well above the suggested species cutoff value, and
looking outside of the Clostridia, Escherichia coli
0157:H7 str. EC869 and E. fergusonii ATCC 35469 share
92.56 ANIm (data not shown). Multiple clades are
present in C. botulinum Groups I and II in the
concatenated marker genes and LSNP phylogenies



Table 1 Information regarding newly sequenced strains

Genome Accession # Group BoNT = Strain/alternate ID  BoNT cluster BONT cluster  Genomic site® Year  Origin Location
type® location?

C. botulinum 20386 LFRD0O0000000 | Al VPI 7124 ha+ chr oppA/BrnQ soil USAWVirginia

C. botulinum 20389 LFOO00000000 | Al ATCC 449 ha+ chr oppA/BrnQ

C. botulinum 20412 LFOT00000000 | Al KF Meyer 126 ha+ chr oppA/BrnQ 1921 spinach (FB) USAindiana

C. botulinum 20414 LFOU00000000 | Al Prevot 910 ha+ chr oppA/BrnQ 1953 bovine botulism France

C. botulinum 20424 LFOV00000000 | Al Prevot Dewping  ha+ chr oppA/BrnQ

C. botulinum 20427 LFOW00000000 | Al Prevot 6978 ha+ chr oppA/BrnQ 1952 cat gut Sweden

C. botulinum 20503 LFOY00000000 | Al McClung 844 ha+ chr oppA/BrnQ <1930

C. botulinum 20504 LFOZ00000000 | Al KF Meyer 33 ha+ chr oppA/BrnQ 1920 ripe olives USATennessee

C. botulinum AM1295  LFPIO0000000 | Al ha+ chr oppA/BrnQ suspected reference strain

C. botulinum U21312  LFQF00000000 | Al SU0729 orfX+ chr arsC 1987  soil Argentina

C. botulinum 10148 LFOK00000000 | A1(B) CDC 1744 Al-orfX+, (B)-ha+  chr 1-arsC, (B)-oppB/BrnQ 1977 B USAPennsylvania

C. botulinum 20391 LFOP0O0000000 | A1(B) Hall 183 Al-orfX+, (B)-ha+  chr Al-arsC, (B)-oppB/BrnQ 1922 corn (FB) USA.Colorado

C. botulinum 20396 LFOQ00000000 | A1(B) Hall 4834 Al-orfX+, (B)-ha+  chr Al-arsC, (B)-oppB/BrnQ 1931 spinach (FB) USA:Nebraska

C. botulinum 20397 LFOR00000000 | A1(B) Hall 8388A Al-orfX+, (B)-ha+  chr Al-arsC, (B)-oppB/BrnQ 1935  chili pepper (FB) USA:New Mexico

C. botulinum 20398 LFOS00000000 | A1(B) Hall 8857Ab Al-orfX+, (B)-ha+  chr Al-arsC, (B)-oppB/BrnQ 1935  corn (FB) USA:Nebraska

C. botulinum Mauritius  LFPLO0O000000 | A2 Mauritius orfX+ chr arsC fish (FB) Mauritius

C. botulinum U21063  LFPNO0000000 | A2 Su1937 orfX+ chr arsC 2009  soil Argentina

C. botulinum U21067  LFPQ00000000 | A2 SU1274 orfX+ chr arsC 1997  soil Argentina

C. botulinum U21068  LFPRO0000000 | A2 SuU1917 orfX+ chr arsC 2009  soil Argentina

C. botulinum U21069  LFPS00000000 | A2 Su1887 orfX+ chr arsC 2007  soil Argentina

C. botulinum U21070  LFPTO0000000 | A2 SU1275 orfX+ chr arsC 1997  soil Argentina

C. botulinum U21075  LFPU00000000 | A2 SU1934 orfX+ chr arsC 2010 soil Argentina

C. botulinum U21077  LFQY00000000 | A2 SU1259 orfX+ chr arsC 1996  soil Argentina

C. botulinum U21078  LFQZ00000000 | A2 SU1891 orfX+ chr arsC 2007  soil Argentina

C. botulinum U21082  LFPW00000000 | A2 SU1054 orfX+ chr arsC 1998  soil Argentina

C. botulinum U21084  LFPX00000000 | A2 SU1072 orfX+ chr arsC 1998  soil Argentina

C. botulinum U21086  LFPY00000000 | A2 SU1064 orfX+ chr arsC 1998  soil Argentina

C. botulinum U21088  LFPZ00000000 | A2 SU1074 orfX+ chr arsC 1998  soil Argentina

C. botulinum U21089  LFQA00000000 | A2 SUT112 orfX+ chr arsC 1995  soil Argentina

C. botulinum U21306  LFRC00000000 | A2 SU0801 orfX+ chr arsC 2010 soil Argentina

C. botulinum U21307  LFQB00000000 | A2 SU0998 orfX+ chr arsC 1994 soil Argentina
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Table 1 Information regarding newly sequenced strains (Continued)

C

OO0 N0 o0 0000000000000 0000000000

botulinum U21309
botulinum U21310
botulinum U21311
botulinum U21729
botulinum U21064
botulinum U21076
botulinum U21087
botulinum U21181
botulinum 20497
botulinum 10159
botulinum 20506
botulinum 10258
botulinum AM1195
botulinum AM370
botulinum AM553
botulinum 20552
sp. U21066
sporogenes U20719
botulinum 20536
botulinum 20541
botulinum 20547
botulinum 20675
botulinum K15
botulinum 20544
botulinum 10178
botulinum 20549
botulinum K3

sp. U20725

LFQC00000000
LFQD00000000
LFQE00000000
LFQG00000000
LFPO00000000
LFPV00000000
LFRA00000000
LFRBOO000000
LFOX00000000
LFOL00000000
LFQV00000000
LFONO00000000
LFPH00000000
LFPJ0O0000000
LFPK0O0000000
LFPFO0000000
LFPPO0000000
LFPM00000000
LFPA00000000
LFPBO0000000
LFPD0O0000000
LFPG00000000
LFQW00000000
LFPC00000000
LFOMO00000000
LFPEOO000000
LFQX00000000
LFRG00000000

A2
A2
A2
A2
A2f4
A2f4
A3
A3
B1
B2
B3
B5f2
B6
B6
B6
F1
NT
NT
E1

E1

E1

E1

E1
E2
E3
E3
B3
NT

SU0807
SU0994
SU0634
SU0635W
SU1306
SU1304
SU1169
SU0945

Hall 80
ATCC 17843 (BS)
CDC 795
An436
AM1195
AM370
AM553
Walls 8G
SU1575NT
ATCC 19404
CDC KA-958B
L-572
Prevot Ped 1
ATCC 9564
K15

CDC 5247
21

Prevot R81-3A
K3

ATCC 25772

orfX+
orfX+
orfX+
orfX+

A2-orfX+, F4-orfX+
A2-orfX+, F4-orfX+

orfX+

orfX+

ha+

ha+

ha+

B5-ha+, F2-orfX+
ha+

ha+

ha+

orfX+

orfX+
orfX+
orfX+
orfX+
orfX+
orfX+
orfX+
orfX+
orfX+

chr
chr
chr
chr
chr

chr

chr
chr
chr
plasmid
plasmid
plasmid
plasmid

chr

chr
chr
chr
chr
chr
chr
chr
chr

chr

arsC
arsC
arsC
arsC
A2-arsC, F4-PulE
A2-arsC, F4-PulE

oppA/BrnQ
oppA/brnQ
oppA/BrnQ

arsC

rarA
rarA
rarA
rarA
rarA
rarA
rarA
rarA

rarA

1987
1994
1980

1998
1998
1998
1992
1918

1987
1979
1981
1968
1999

1961
1995

1995

soil
soil
soil
soil
soil
soil
soil
soil

beans (FB)

1B
1B
salted fish

crabs (ENV)

soil - colony variant of SU1575

forest soil
sea mud
smoked salmon

trout

lake sediment

trout

Argentina
Argentina
Argentina
Argentina
Argentina
Argentina
Argentina
Argentina
USA:lllinois

USA:Michigan
Sweden
Australia
Australia
Australia
USAVirginia

Argentina

USA:Washington
Greenland
Canada

Finland
USA:Alaska
Japan

France

Finland

FB foodborne isolate, /B infant botulism case, ENV environmental isolate
putative information based upon draft genome assemblies
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Fig. 1 World map indicating the provenance of whole genome sequenced BoNT-producing strains analyzed in this study. Strains in red were
sequenced as part of this study. Strains in black are previously published strains. Countries from which sequenced strains originated are colored
blue. Numbers in parentheses indicate how many strains of each subtype are included in this study. Blank map downloaded from amcharts.com

(Fig. 3) as well as in core genome phylogenies (discussed
below). While minimum ANIm values fall below the
species delineation value when all genomes in either
Group I or Group II are considered, ANIm values are
above 95 % within each of the two distinct clades
present in Group I, and ANIm values are above 97 %
within each of the two distinct clades present in Group
II. By this measure, both Groups I and II could be con-
sidered to encompass multiple species, subspecies or
genomovars (distinct groups on the genomic level but
similar phenotypically) [86]. Regardless of the assigned
nomenclature, the genomic diversity within the Groups
is evident.

Phylogeny of Group | C. botulinum/C. sporogenes

Many of the newly sequenced strains belong to the
Group I C. botulinum/C. sporogenes. To provide a high-
resolution investigation of the relationships of 93 Group
I strains, a maximum likelihood phylogeny was esti-
mated from an alignment of ~200,000 core genome
SNPs (Fig. 5). Core genome phylogenies generated with
an alternative reference genome as well as kSNP are also
presented (Additional file 4: Figure S1). Group I includes
diverse BoONT/A,/B and/F-producing strains as well as
non-BoNT-producing strains that fall into multiple
clades, which is consistent with previous studies [1, 50,
82, 84]. When considering ANIm values, strains within
the C. sporogenes-BoNT/B-producing outgroup (bottom
of Fig. 5) share ANIm values above 95 %. The strains in

the remainder of the tree also share ANIm values above
95 %. However, when comparing all Group I strains
ANIm values fall below 95 % (minimum of ~92.2 %) (as
mentioned above), indicating the high genomic diversity
present in Group I. The core genome phylogeny pro-
vides a framework for investigating Group I strains
including the variation in genomic backgrounds express-
ing the same toxin type or subtype.

BoNT/A-producing strains (subtypes Al, A2 and A3)
belong to multiple clades of the Group I core genome
phylogeny presented in Fig. 5. Subtype Al strains show
considerable genomic diversity. The newly sequenced
orfX+ bont/Al strain U21312 from Argentina belongs to
a clade that includes the orfX+ bont/Al strain CDC 297
(two assemblies for this strain from New York, labeled
CDC 297 and CFSANO002368, were included to compare
results when analyzing the same strain sequenced and
assembled by different groups and methods — the strains
group together in the phylogeny) but is less closely re-
lated to strain CDC 297 than other bont/A2 and bivalent
strains. Two clades of bont/A1(B) strains (orfX+ bont
Al) are found in the Group I phylogeny. Five bont/
A1(B) strains (10148, 20397, 20398, 20396 and 2039)
from the United States are closely related to other bont/
A1(B) strains from Ecuador, Japan and the US while
three recently published bont/A1(B) strains isolated from
infant botulism cases in Japan [50] fall into a distinct
clade. The ha+ bont/Al strains included in this study
belong to one clade that also includes a bont/B1 strain, a
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Fig. 2 16S rRNA gene phylogeny of Clostridia strains. A phylogeny inferred with FastTree2 [54] on near-full-length 16S rRNA gene sequences
extracted from genome assemblies and aligned and masked with ssu-align [52]. The tree is rooted with Acetobacter woodii DSM 1030
[GenBankNC_016894]. Strains are color-coded by botulinum neurotoxin serotype. Stars indicate newly sequenced (this study) strains. Groups |-V,
Clostridium perfringens and C. tetani clades are labeled. Gray circles indicate bootstrap values over 90 %

bont/F4 strain and a strain that does not contain a botu-
linum neurotoxin gene (strain U21066 is a colony vari-
ant of a bont/A strain). Three ha+ bont/Al subclades
include previously published genomes, but strain 20412
isolated from spinach associated with a food botulism
case in the US (Indiana) is less closely related to these
previously sequenced ha+ bont/Al strains.

Argentinian subtype bont/A2 strains analyzed in this
study were all isolated from soils. Many of the newly se-
quenced bont/A2 strains are closely related to the bont/
A2 strain C. botulinum Kyoto-F (Fig. 5). However, the
newly sequenced bont/A2 Argentinian strains U21069,
U21089, U21063 and U21075 form a distinct but closely
related clade to the bont/A2 group that includes the
Kyoto-F strain. Additionally, two newly sequenced
Argentinian bont/A2 strains (U21311 and U21729) are
distantly related to the previously mentioned bont/A2
strains, but appear to be more closely related to orfX+
bont/A1 and bivalent strains. One newly sequenced
bont/A2 strain from the Republic of Mauritius, an island
country off the eastern coast of Africa, is not closely re-
lated to any of the Argentinian bont/A2 strains or the
Kyoto-F strain. The diversity of the genomic back-
grounds in which bont/A2 genes are found is evident
from this analysis.

Prior to this study, only one genome assembly for a
strain producing BoNT/A3, C. botulinum strain Loch
Maree isolated in Scotland [87, 88], had been published.
The Loch Maree strain is not closely related to any other
whole genome sequenced strain (Fig. 5). Two Argentin-
ian bont/A3 strains (U21087 and U21181) sequenced as
part of this study are distantly related to the Loch Maree
strain and are most closely related to bivalent bont/Af
strains from Argentina.

BoNT/B-producing strains are also found in multiple
clades in the Group I phylogeny. The BoNT/B1-produ-
cing strain 20497 is not closely related to the published
whole-genome-sequenced BoNT/B1-producing strain, C.
botulinum Okra, but instead falls within a clade that in-
cludes ha+ bont/Al strains. Newly sequenced BoNT/B2-
producing strain 10159 and BoNT/B3-producing strain
20506 are not closely related to other BoNT/B-produ-
cing strains. The distantly related clade at the bottom of
the Group I core genome phylogeny includes C. sporo-
genes strains and C. botulinum strains that produce
BoNT/B2 and/B6 subtypes. The newly sequenced strains
include three BoONT/B6-producing strains from Australia
that are closely related to the Japanese BoNT/B6-

producing strain Okayama 2011 (and Japanese bont/B6
strain Osaka05 not included in this study) [50]. Interest-
ingly, the acquisition or loss of the ability to produce
BoNT/B within the C. sporogenes-bont/B clade appears
to be plasmid-mediated, which is consistent with find-
ings of Weigand and colleagues [84]; although, evalu-
ation of additional strains would be needed to confirm
this observation.

The bont/F1 strain 20552 (from the United States) is
closely related to previously published bont/F1 strains
F230613 and Langeland (from Denmark). Strain 20552
was isolated from an environmental source (crabs) while
the Langeland strain was isolated from duck liver paste
associated with a food botulism case. The bont/F4 strain
CDC 54088 and bont/F5 strain CDC 54075 (both from
Argentina) are found in different clades and are not
closely related to the serotype F1 strains.

Bivalent strains are found within two clades in the
Group I phylogeny. A clade of closely related bivalent
strains is nested within the clade just above the basal
clade at the bottom of Fig. 5. This bivalent clade in-
cludes two strains that produce both BoNT/A and/B
(strains CDC 657 and CDC 1436) as well as the BoNT/
B5f2-producing strains 10258 (from Sweden) and Bf.
The second bivalent clade includes bont/A2f4 strains
U21064 and U21076 from Argentina that are closely re-
lated to previously published bivalent bont/A2f4 and tri-
valent bont/A2f4f5 strains also from Argentina.

The core genome phylogeny illustrates the diversity of
whole genome sequenced Group I strains. MLST is a
comparative method available to many laboratories that
does not require whole genome sequencing. To allow for
the comparison of strains included in this study with pub-
lished MLST data, a phylogeny of concatenated MLST
genes including 83 sequence types (ST) available through
the PubMLST C. botulinum database [77, 78] is included
(Additional file 5: Figure S2). Similar to the core genome
phylogeny (Fig. 5), the concatenated MLST gene phyl-
ogeny separates the Group I strains into two main clades.
Sequence types associated with BoNT-producing and
non-BoNT-producing strains fall into both main clades.
C. sporogenes and BoNT/B-producing strains and two se-
quence types associated with serotype A strains (ST5 and
ST17) fall into the clade corresponding to the C. sporo-
genes and bont/B strain clade in the core genome phyl-
ogeny (Fig. 5). Genome assemblies were not available for
the two serotype A strains in this clade that might assist
in further understanding the relationships of these strains.
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Fig. 3 Phylogenies of Clostridia strains inferred on (a) concatenated marker genes and (b) a SNP matrix. Phylogenies inferred with FastTree2 [54]
on (a) 40 concatenated marker genes for the delineation of species (specl) [56] aligned with MUSCLE [57] and (b) a SNP-matrix including SNPs
identified in at least 50 % of the analyzed strains produced by kSNP v2 [59]. The trees are rooted with Acetobacter woodii DSM 1030 [GenBankNC_0168%4].
Strains are color-coded by botulinum neurotoxin serotype. Groups |-V, Clostridium perfringens and C. tetani clades are labeled. Gray circles indicate bootstrap

values over 90 %

Phylogeny of Group Il C. botulinum

Newly sequenced strains also included BoNT/E-produ-
cing isolates belonging to the Group II C. botulinum.
The relationships and diversity of 15 Group II strains
were investigated with a maximum likelihood phyl-
ogeny inferred from an alignment of ~200,000 core
genome SNPs (Fig. 6). Phylogenies generated with an
alternate reference genome as well as kSNP are also
presented (Additional file 6: Figure S3). Two distinct
clades are apparent in the Group II phylogeny. ANIm
values are above 97 % within each major clade but fall
below the species-delineating threshold of 95 % (mini-
mum of ~93.8 %) when all Group II strains are consid-
ered, which illustrates the genomic diversity within the
Group. The two major clades include a clade of only
BoNT/E-producing strains and a clade of BoNT/B,/E
and/F-producing strains. The newly sequenced serotype
E strains fall into a clade comprised entirely of BONT/

E-producing strains representing Canada, Finland,
France, Greenland, Japan and the US. The second
major clade includes BoNT/B4,/E9 and/F6-producing
strains. The BoNT/E9-producing strain CDC 66177
from Argentina falls into the clade with BoNT/B and/
E-producing strains from the US, which is consistent
with microarray hybridization profile analysis [83] and
SNP analysis [89].

To allow for comparison of strains included in this
study with published MLST data for other strains, a
phylogeny of concatenated MLST genes including 41
C. botulinum serotype E strains presented in MacDon-
ald et al. [22] is included (Additional file 7: Figure S4).
Similar to the core genome phylogeny, the MLST
phylogeny separates the Group II strains into two
main clades: one that includes only bont/E strains and
one that includes bont/B and/F strains as well as the
bont/E9 CDC6617 strain.
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Fig. 5 Group | core genome phylogeny. Core genome phylogeny of C. botulinum Group | inferred with RAXML v8.1.1 [63] using the ASC_GTRGAMMA
model on an alignment of 200,641 core genome SNPs produced with NASP [61] using C. botulinum strain Kyoto-F [GenBank:CP001581] as a reference

genome. The consistency index is 0.57, and the retention index is 0.91. Gray circles indicate bootstrap values over 95 %. The phylogeny was rooted with
the clade that includes Clostridium sporogenes and C. botulinum B serotypes (bottom of Figure) using FigTree [55]. Strains are color-coded by botulinum
neurotoxin serotype. Additional information regarding bont gene cluster characteristics is included in Table 1

SNP and homoplasy density in C. botulinum Groups | and Il
Recombination is a common evolutionary process [90]
that has been detected among C. botulinum strains [21]
and may impact accurate phylogenetic inference. Re-
gions of the genome with high proportions of homopla-
sious SNPs (shared SNP alleles found in different
lineages of a phylogeny not inherited from a common
ancestor) may indicate regions of recombination [91].
For Groups I and II, parsimony informative SNPs (sites
at which at least two SNP alleles are present in at least
two genomes) and putative recombination, indicated by
regions of the genome with high proportions of homo-
plasious SNPs, appear to be distributed throughout the
core genome (Fig. 7a and c). A comparison of the histo-
grams of homoplasy density ratio values for 1 kb seg-
ments of the core genomes for Groups I and II (Fig. 7b
and d) suggests that recombination is more prevalent in
Group I strains as compared to Group II strains. It
should be noted that fewer Group II strains were evalu-
ated and the underlying reasons for the apparent differ-
ence in the prevalence of recombination in each Group
is unknown. Additionally, the approach to detect recom-
bination used here does not address potential recombin-
ation (or lack thereof) between or within specific clades
of the Group I or Group II phylogenies. Additional ana-
lyses could provide more information about recombined
regions in BoNT-producing clades (e.g. are certain types
of genes more impacted by recombination events).

Gene content of C. botulinum Groups | and I

LS-BSR [74], a tool for comparing the relatedness of
coding sequences among genomes, was used to evaluate
the genetic content of Group I and II strains and to clus-
ter strains based upon coding sequence similarity —
(Additional file 8: Figure S5). Dendrograms of Group I
and II strains constructed by clustering BSR values with
an average linkage algorithm (this method considers the
entire pan-genome for each Group) show similar overall
strain clustering patterns as the core genome phyloge-
nies for both Groups I and II. These clustering patterns
indicate that clades identified by core genome phyloge-
nies share coding sequence similarity. Future research
could investigate potential functional roles of different
clades and could identify marker genes for different
clades.

The LS-BSR tool was also applied to investigate the
presence or absence of cold shock protein genes in
Group II assemblies. Soderholm and colleagues [92]
demonstrated that cold shock protein genes, which are
commonly found in microbes, were absent from three
Group II BoNT/E genome assemblies but were present
in the Group II strain Eklund 17B (BoNT/B) genome.
Although Group II strains have been shown to grow and
produce toxins at low temperatures [93], the LS-BSR ap-
proach demonstrated that homologs of cold shock pro-
tein genes found in other C. botulinum genomes are
absent from Group II BoNT/E genomes, while cold

neurotoxin serotype

Serotype
= B4 - C. botulinum 20549 E3
. E1

E2 - C. botulinum K3 E3
Eg C. botulinum 10178 E3
F6 C. botulinum 20541 mm E1
C. botulinum 20544 E2

C. botulinum Alaska E43 E3

C. botulinum 20536 mm E1

C. botulinum 20675 mm E1

- C. botulinum 20547 mm E1

- C. botulinum K15 mm E1

— C. botulinum Beluga mm E1

C. botulinum Eklund 17B mm B4

- C. botulinum CDC 66177 E9

—_— - C. botulinum Eklund 202F F6
005 C. botulinum KAPB-3 == B4

Fig. 6 Group Il core genome phylogeny. Core genome phylogeny of C. botulinum Group Il inferred with RAXML v8.1.1 [63] using the ASC_GTRGAMMA
model on an alignment of 197,688 core genome SNPs produced with NASP [61] using C. botulinum Eklund 17B [GenBank:CP001056, CP001057] as a
reference genome. The consistency index is 0.81, and the retention index is 0.90. Gray circles indicate bootstrap values over 95 %. The phylogeny was
rooted with the clade that includes strains Eklund 202F, KAPB-3, Eklund 17B and CDC 66177 using FigTree [55]. Strains are color-coded by botulinum

Cluster Type Genomic Site Location - Country
orfX+ rarA France
orfX+ rarA Finland
orfX+ rarA Japan
orfX+ rarA USA:Washington
orfX+ rarA USA:Alaska
orfX+ rarA USA:Alaska
orfX+ rarA
orfX+ rarA Canada
orfX+ rarA Greenland
orfX+ rarA Finland
orfX+ rarA Canada

ha+ plasmid-borne site USA:Washington
orfX+ rarA Argentina
orfX+ topB USA:Washington
ha+ USA
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Fig. 7 Single nucleotide polymorphism density and homoplasy density in Group | and Group Il. @ A map of SNP density and homoplasy density
in Group | genomes. The outer ring displays the reference genome (C. botulinum strain Kyoto-F). Blue shaded regions indicate the core genome of
Group | (only the core genome was considered for this analysis). The middle ring displays SNP density (SD), which is defined here as the number
of parsimony informative SNPs found in 1 kb segments of the core genome. The inner ring displays the homoplasy density (HD), which is defined
as the proportion of parsimony informative SNPs with a retention index below 0.5 for 1 kb segments of the core genome. b Histogram displaying
the counts of 1 kb genome segments with homoplasy densities between 0 and 1 for Group | genomes. The vertical line indicates the median
homoplasy density value. ¢ A map of SNP and homoplasy density in Group Il genomes. The outer ring displays information about the reference
genome (C. botulinum strain Eklund 17B). Blue shaded regions indicate the core genome of Group Il. The middle ring displays the SNP density and
the inner ring displays the homoplasy density. d Histogram displaying the counts of 1 kb genome segments with homoplasy densities between
0 and 1 for Group Il genomes. The vertical line indicates the median homoplasy density value. The figures suggest that SNPs and recombination

are spread throughout the core genomes of each Group
.

shock protein genes are present in the genomes falling
into the Group II clade including BoNT/B,/E9 and/F ge-
nomes (Eklund 17B, KAPB-3, CDC 66177 and Eklund
202F).

bont gene cluster analyses

The bont genes from each of the newly sequenced
strains were evaluated to determine if there were any
new variants or subtypes. A maximum likelihood phylo-
genetic tree of bont gene sequences extracted from gen-
ome assemblies and previously published bont gene
sequences is presented (Additional file 9: Figure S6).
Subtype-specific clades can be seen for serotypes. Re-
cently, new bont subtypes have been identified for sero-
types A [94] and E [95, 96], and an unusual toxin type
(H or F/A) was identified in an isolate from an infant
botulism case [4, 5]. However, bont gene sequences from
newly sequenced strains in this study are closely related

(>99 % BLAST identity) to known bont subtype gene se-
quences, indicating that novel bont subtypes were not
discovered in the newly sequenced strains.

Botulinum neurotoxin genes are associated with
two gene cluster types (ha+ and orfX+) that appear
to be located at specific locations in the chromo-
some or within a plasmid [3]. Information regarding
the bont type and putative bont gene cluster location
for draft genome assemblies is included in Table 1.
The presence of a marker gene (PL-6) for identifying
bont-containing plasmids [80] in all genome assem-
blies was determined with BLAST. The PL-6 gene
was present in genome assemblies of published
Group I strains known to have plasmids containing
bont genes (Af84, Bf, CDC 657, CDC 1436, CDC
54075, Loch Maree, Okra, Prevot 594) as well as
newly sequenced Group I strains with bont genes
putatively located on plasmids (10258, AMS370,
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AMS553 and AM1195 — all bont/B strains). The PL-6
gene was not identified in assemblies that do not
contain bont-containing plasmids.

The putative location of toxin gene clusters in the
newly sequenced strains was examined and compared
to previously published BoNT-producing strain ge-
nomes (Table 1). The bont/Al genes in ha+ gene clus-
ters have putative chromosomal locations and are
associated with oppA/brnQ operons. The orfX+ bont/
Al gene in strain U21312 and in serotype Al(B)
strains is located within the chromosome and associ-
ated with the arsC operon, which is also the case in
the published orfX+ bont/A1l strain CDC 297 [1] and
serotype A1(B) strain NCTC 2916 [97]. The bont/A2
genes in newly sequenced genomes have putative
chromosomal locations and are associated with orfX+
gene clusters and arsC operons, which are common
traits for bont/A2 genomes [9, 98]. This is in contrast
to the bivalent strain CDC 1436 where the bont/A2
gene and a bont/B5 gene are within a plasmid [1]. Two
Argentinian bont/A3 strains (U21087 and U21181)
and the Loch Maree strain contain orfX+ bont gene
cluster types. The bont/A3 gene of the Loch Maree
strain is located within a plasmid while the location of
the bont/A3 gene of the newly sequenced serotype A3
strains is unclear. All of the bont/B genes in newly se-
quenced and published Group I and II strains are pu-
tatively found in ha+ gene clusters. Interestingly,
while the bont/B1 gene in the published Okra strain is
located on a plasmid [88], the bont/Bl gene in newly
sequenced strain 20497 has a putative chromosomal
location. In contrast to the plasmid location of the
bont/B2 gene in strain Prevot 594 [1], the bont/B2
gene in strain 10159 and strain IBCA1-7060 [4] and
bont/B3 gene in 20506 have putative chromosomal lo-
cations. The bont/B6 genes in the newly sequenced
Australian strains (AM370, AM553, AM1195) have
putative plasmid locations, which is consistent with
published bont/B6 subtypes from Japan [50]. The
bont/F genes of newly sequenced Group I strains are
found in orfX+ gene clusters, which is consistent with
previously published genomes [9, 98, 99]. All bont/F1
genes in strains analyzed in this study are associated
with arsC operons and have chromosomal locations.
Toxin genes in Group I bivalent bont/Af strains are
associated with orfX+ gene clusters, and the bont/A2
and bont/f4 genes have putative chromosomal loca-
tions. The bont/f5 gene of the trivalent strain Af84 is
located within a plasmid [98]. Bivalent bont/Ab,/Ba
and/Bf strains in Group I have bont genes putatively
located on plasmids. All the bont/E genes in the
Group II strains analyzed here are associated with
orfX+ gene clusters and rarA operons and have puta-
tive chromosomal locations.
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Discussion

Diverse members of the Clostridia produce potent botu-
linum neurotoxins that cause botulism, a flaccid paraly-
sis that affects humans, other mammals, birds and fish.
These microbes are of interest for public health and bio-
defense reasons [100]. Horizontal gene transfer, insertion
and recombination events have been documented in
BoNT-producing clostridia [1, 7-10], resulting in vari-
ation in botulinum neurotoxins, toxin gene clusters and
the genomic backgrounds in which the same toxin type
or subtype are found. Thus, whole genome sequencing
of Clostridia strains was conducted to provide insight
into toxin gene cluster characterisitics, genomic diver-
sity, phylogenetic relationships and global distribution of
BoNT-producing Clostridia. Genomic sequence data
and draft genome assemblies were generated for 59 Clos-
tridia strains from six continents providing a resource to
the research community. These data were compared to
publicly available whole genome sequence data using
multiple methods. Group designation of BoNT-
producing strains was achieved with 16S rRNA gene se-
quence phylogenies and confirmed by phylogenies that
included larger swaths of the genome: a phylogeny of
concatenated marker genes and a reference-
independent, SNP-based phylogeny. While the topolo-
gies of the three different phylogenies show some vari-
ation, the Group designations of strains are consistent
among all three methods. The concatenated marker
genes and reference-independent, SNP-based phyloge-
nies demonstrate the diversity within the BoNT-
producing Groups I, II and III that has been described
with other methods [7, 11, 15, 81, 84].

Core genome phylogenies of Group I and II strains
(Figs. 5 and 6) illustrate the phylogenetic diversity
within each Group. Homoplasy is distributed through-
out the Group I and II core genomes (Fig. 7), which
suggests a history of recombination and could affect ac-
curate phylogenetic inference. However, the distinct
groupings as well as the diversity of Group I and II
strains are apparent. Clustering of genomes based upon
gene content (BSR values) produces similar groupings
of strains as the core genome phylogenies for both
Groups. ANIm values reveal the genomic diversity
within both Groups I and II indicating that multiple
species, subspecies or genomovars are likely present in
each Group [86]. Weigand and colleagues [84] recently
delineated Group I C. botulinum and C. sporogenes
strains using similar comparative genomic techniques.
The diversity within BONT-producing Clostridia should
be considered when studying these microbes. For ex-
ample, appropriate strains must be chosen for conduct-
ing microbiological challenge tests used for evaluating
the risk of BoNT-producing Clostridia or botulinum
neurotoxins contaminating food [101-103].
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The core genome phylogenies of Group I and II strains
also illustrate the diversity of genomic backgrounds that
express the same toxin type or subtype. Examples of dif-
ferent genomic backgrounds containing the same toxin
type/subtype are abundant in Group I. Subtype bont/Al
strains are found in multiple clades. Argentinian bont/
A2 strains and bont/A2 strain Kyoto-F cluster distantly
from the Mauritius bont/A2 strain and two other Argen-
tinian bont/A2 strains. Two rare bont/A3 strains from
Argentina cluster distantly from the bont/A3 Loch
Maree strain from Scotland. A clade of bivalent bont/Af
strains is distantly related to a clade of bivalent strains
containing bont/A, bont/B and bont/F genes indicating
the diversity of genomic backgrounds containing dif-
ferent combinations of these three toxin types. Two
clades of bont/A1(B) strains are distinguished: one
clade with isolates from Ecuador, Japan and the US
and the other clade with isolates from Japan. Subtype
bont/B1 and/B2 strains in which the bont genes have
putative chromosomal locations are not closely related
to previously sequenced bont/Bl and/B2 strains in
which the bont genes are located on plasmids [1, 88].
This distribution of toxin types and subtypes through-
out the Group I phylogeny suggests a history of hori-
zontal gene transfer.

This study includes BoNT-producing strains isolated
from both environmental sources and human botulism
cases from across the globe; however, whole genome se-
quence data for strains from many parts of the world are
not available. Large geographical gaps are evident in
much of Africa, Asia, and South America suggesting
much additional diversity is unsampled and unknown.
Diversity of both genomic backgrounds and toxin type is
apparent in some geographic regions for which many
genome assemblies are available. For example, Argentina
is a major reservoir of many serotypes. Interestingly,
many BoNT/A2 strains were identified in Argentina,
and examination of the Group I core genome phylogeny
illustrates the genomic diversity present in this country.
While some subtypes have been reported only in certain
locales (e.g. bont/A2f4 in Argentina [98, 104]), many
subtypes and/or strains that are closely related by core
genome comparisons are found in distant locations. For
instance, BONT/A1l-producing strains are found through-
out the world, and bont/A1(B) strains showing a close
phylogenetic relationship are found in Ecuador, Japan and
the United States. Patterns of global serotype and genomic
background distribution are not apparent from the ana-
lyses presented in this study. Understanding the global
distribution of BoNT-producing strains is complex as
these Clostridia are spore-forming microbes capable of
persisting in an environment and can be distributed by a
number of dispersal processes. However, a better under-
standing of the phylogeography of BoNT-producing
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strains and of the ability for strain attribution in events
such as public health emergencies (e.g. foodborne out-
breaks) may be possible through additional whole genome
sequencing efforts (including producing complete ge-
nomes representing the diversity of BoNT-producing
strains).

The comparative genomic techniques used in this
study are capable of differentiating BoNT-producing
Clostridia (including strains of the same serotype and
from similar geographic locations) and provide a frame-
work for the study of these toxin-producing microbes
(e.g. investigating horizontal gene transfer and phylogeo-
graphy). As more whole genome sequence data for
BoNT-producing strains become available our under-
standing of the diversity and distribution of these mi-
crobes has expanded. Recent whole genome sequencing
of serotype E strains revealed information on stress re-
sponse [92] and new bont/E toxin variants [95], and
whole genome sequencing has identified bont/B6 strains
in Australia that are closely related to bont/B6 strains
previously reported in Japan [50]. Future research
utilizing the growing number of whole genome se-
quenced strains will further our understanding of
these microbes and potentially aid the development
of diagnostics and treatments. For instance, com-
parative genomics may aid in the identification of
marker genes capable of identifying strains within
Groups (or specific clades in each Group) more rap-
idly than methods relying on cultivation and subse-
quent whole genome sequencing.

Conclusions

Whole genome sequence analyses of Clostridia species
illustrate the diversity of botulinum-neurotoxin-
producing strains and the plasticity of the genomic
backgrounds in which bont genes are found. Core gen-
ome phylogenies are a powerful tool for differentiating
BoNT-producing strains and providing a framework for
the study of these bacteria. As more BoNT-producing
strains are whole genome sequenced, our understand-
ing of the genomic diversity of microbes capable of
producing potent botulinum neurotoxins will continue
to expand.

Availability of supporting data

Whole genome sequence data in support of the results
of this article have been deposited in the NCBI Sequence
Read Archive (BioProject ID PRJNA286797, study acces-
sion number SRP059640). Draft genome assemblies have
been deposited in the NCBI WGS database; accession
numbers for draft genome assemblies are included in
Table 1 and Additional file 1: Table S1. Phylogenetic data
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is deposited in the TreeBase database (Study 18872) and

https://github.com/chawillia/phylogenetic_data_2016.

Additional files

Additional file 1: Table S1. Information regarding newly sequenced
strains analyzed in this study. Additional information regarding newly
sequenced strains. (XLSX 22 kb)

Additional file 2: Table S2. Information regarding publicly available
genomes examined in this study. Table of information regarding
genomes included in this study. (XLSX 27 kb)

Additional file 3: Table S3. Table of all pairwise ANIm values. Table of
pairwise ANIm values computed with JSpecies [72]. (XLSX 168 kb)

Additional file 4: Figure S1. Core genome phylogenies of Group |
strains. A) Core genome phylogeny of C. botulinum Group | strains
inferred with RAXML [63] using the ASC_GTRGAMMA model on an
alignment of 182,200 core genome SNPs produced with NASP [61]
using C. sporogenes ATCC 15579 [GenBank:ABKW00000000] as the
reference genome. The consistency index is 0.56, and the retention
index is 0.91 (computed with the R package phangorn). B) Core
genome phylogeny of Group I strains inferred with FastTree2 [54] on
a 1780-character core SNP matrix generated with kSNP [59]. The
consistency index is 064, and the retention index is 0.93. The phylogenies
were rooted with the clade that includes C. sporogenes and C. botulinum
bont/B serotypes (bottom of Figure). Gray circles indicate bootstrap values
over 95 %. While there are small variations in the phylogenies generated
with different methods (Fig. 5 and Additional file 4: Figure S1), the overall
topology of the Group | tree appears robust. The pairwise overall topological
scores computed by Compare2Trees [69] range from 80 to 86 % for the
phylogenies presented in Fig. 5 and (Additional file 4: Figure S1). (PDF 59 kb)

Additional file 5: Figure S2. Group | concatenated MLST gene
phylogeny. Phylogeny of aligned (MUSCLE [57]) and concatenated MLST
genes for Group | genomes inferred with FastTree2 [54]. The MLST profile
included acekK, arof, hsp60, mdh, oppB, recA and rpoB [21]. Taxa labeled ST
are 83 sequence types available from PUbMLST [77, 78]. Investigation of
the concatenated MLST gene phylogeny suggests that diverse BoNT-
producing strains have yet to be whole genome sequenced. (PDF 31 kb)

Additional file 6: Figure S3. Core genome phylogenies of Group I
strains. A) Core genome phylogeny of C. botulinum Group I strains
inferred with RAXML [63] using the ASC_GTRGAMMA model on an
alignment of 200,276 core genome SNPs produced with NASP [61]
using C. botulinum strain Alaska E43 [GenBank:CP001078] as the
reference. The consistency index is 0.81, and the retention index is
0.90 (computed with the R package phangorn). B) Core genome
phylogeny of Group Il C. botulinum strains inferred with FastTree2
[54] on a 35,382-character core SNP matrix generated with kSNP [59].
The consistency index is 0.83, and the retention index is 0.90. The
phylogenies were rooted with the clade that includes strains Eklund
202F, KAPB-3, Eklund 17B and CDC 66177. Gray circles indicate bootstrap
values over 95 %. While there are small variations in the phylogenies
generated with different methods (Fig. 6 and Additional file 6: Figure S3), Group
II' strains are separated into two distinct clades. The pairwise overall topological
scores computed by Compare2Trees [69] range from 93 to 100 %. (PDF 35 kb)

Additional file 7: Figure S4. Group Il concatenated MLST gene
phylogeny. Phylogeny of aligned (MUSCLE [57]) and concatenated MLST
genes for Group Il genomes inferred with FastTree2 [54]. The MLST profile
included 16S rRNA genes, atpD, guaA, gyrB, ilvD, lepA, mutl, oppB, pta, pyc,
recA, rpoB, trpB and tuf [22]. Taxa labeled C. botulinum are WGS samples. Taxa
labeled with single-word name include serotype E strains for which the MLST
genes were sequenced by MacDonald and colleagues [22]. (PDF 37 kb)

Additional file 8: Figure S5. Dendrograms clustering Group | and
Group Il strains by BSR values. A) A dendrogram generated by clustering
Group | strains by BSR values with an average linkage method in MeV
[76]. B) A dendrogram generated by clustering Group I strains by BSR
values with an average linkage method in MeV [76]. (PDF 41 kb)
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Additional file 9: Figure S6. bont gene phylogeny. A phylogeny inferred
with FastTree2 [54] on a nucleotide alignment (MUSCLE [57]) of botulinum
neurotoxin genes. Gray circles indicate bootstrap values over 90 %. The tree
was rooted with tetanus toxin gene sequences in FigTree [55]. (PDF 54 kb)
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