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Abstract

Background: Gastrodia elata Blume (Orchidaceae) is an important Chinese medicine with several functional
components. In the life cycle of G. elata, the orchid develops a symbiotic relationship with two compatible
mycorrhizal fungi Mycena spp. and Armillaria mellea during seed germination to form vegetative propagation corm
and vegetative growth to develop tubers, respectively. Gastrodin (p-hydroxymethylphenol-beta-D-glucoside) is the
most important functional component in G. elata, and gastrodin significantly increases from vegetative propagation
corms to tubers. To address the gene regulation mechanism in gastrodin biosynthesis in G. elata, a comparative
analysis of de novo transcriptome sequencing among the vegetative propagation corms and tubers of G. elata and
A. mellea was conducted using deep sequencing.

Results: Transcriptome comparison between the vegetative propagation corms and juvenile tubers of G. elata
revealed 703 differentially expressed unigenes, of which 298 and 405 unigenes were, respectively up-regulated
(fold-change ≥ 2, q-value < 0.05, the trimmed mean of M-values (TMM)-normalized fragments per kilobase of
transcript per Million mapped reads (FPKM) > 10) and down-regulated (fold-change ≤ 0.5, q-value <0.05, TMM-
normalized FPKM > 10) in juvenile tubers. After Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway analysis, 112 up-regulated unigenes with KEGG Ortholog identifiers (KOids) or
enzyme commission (EC) numbers were assigned to 159 isogroups involved in seventy-eight different pathways,
and 132 down-regulated unigenes with KOids or EC numbers were assigned to 168 isogroups, involved in eighty
different pathways. The analysis of the isogroup genes from all pathways revealed that the two unigenes
TRINITY_DN54282_c0_g1 (putative monooxygenases) and TRINITY_DN50323_c0_g1 (putative glycosyltransferases)
might participate in hydroxylation and glucosylation in the gastrodin biosynthetic pathway.

Conclusions: The gene expression of the two unique unigenes encoding monooxygenase and glycosyltransferase
significantly increases from vegetative propagation corms to tubers, and the molecular basis of gastrodin
biosynthesis in the tubers of G. elata is proposed.
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Background
Gastrodia elata is a rootless and leafless achlorophyllous
orchid that grows in a symbiotic relationship with two
compatible mycorrhizal fungi, Mycena spp. and Armillaria
mellea, during seed germination and vegetative growth, re-
spectively [1–3]. The seeds of G. elata are tiny and do not
possess an endosperm, and these seeds germinate only
when adequate nutrition is obtained through the digestion
of the specific fungi, Mycena spp., which invades the
embryonic cells of these seeds [4–9]. Currently, four fungi
species, including Mycena anoectochila, M. dendrobii
(Fig. 1a), M. orchidicola, and M. osmundicola, isolated from
different species of orchids [10], promote the germination
of G. elata seeds to form protocorms and further develop
into vegetative propagation corms (Fig. 1b) [11–16]. Once
vegetative propagation corms have been established from
seed germination, G. elata undergoes vegetative growth
through an established symbiotic association with the com-
patible mycorrhizal fungi, A. mellea (Fig. 1c), to yield juven-
ile tubers (Fig. 1d) [1, 6, 17]. The vegetative propagation
corms of G. elata obtain nutrition and energy from A. mel-
lea to develop into tubers, and the growth conditions of
tubers are positively and closely associated with the hyphal
development of this fungi [1, 9, 18, 19]. The hyphae of A.
mellea develop well in the cortical layers of G. elata tubers
[1, 20-22]; however, the cells in the pith of tubers digest the
invaded hyphae to obtain nutrition and energy [1].
Since ancient times, Gastrodia elata has been used as a

Chinese medicine for the cure of various conditions, in-
cluding for its analgesic, antiepileptic, neuroprotective,
anticonvulsant, and sedative effects against vertigo, gen-
eral paralysis, and tetanus [23–26]. Numerous functional
components isolated from G. elata have been character-
ized, such as gastrodin (4-hydroxymethylphenyl-β-D-

glucopyranoside) and the aglycone gastrodigenin (4-
hydroxybenzyl alcohol) as a primary active ingredient
[27–29], and the other related components, including 4-
hydroxybenzaldehyde, vanillyl alcohol, and vanillin, also
show potential anticonvulsant activity [30–36]. Moreover,
other constituents in G. elata, including gastrodioside, 4-
hydroxybenzyl methyl ether, 4-hydroxybenzoic acid,
parishin, β-Sitosterol, bis (4-hydroxybenzyl) sulfide, N6-
(4-hydroxybenzyl) adenine riboside, dauricine, citric acid,
palmitate, and succinic acid, have been reported [37–39].
Gastrodin, a simple glycoside comprising glucose and 4-

hydroxybenzyl alcohol (the precursor of gastrodin), is the
major phenolic compound of G. elata, and pharmaco-
logical tests have shown that this compound exhibits tran-
quilization, anti-inflammation, analgesia, cortical neuron
protection, memory improvement, sedative, anticonvul-
sant, free radical scavenging, neuroprotective effect,
anesthetic, and antioxidant effects [40–42]. Gastrodin was
identified, characterized, and artificially synthesized at the
end of 1970s [43]. Furthermore, gastrodin biosynthesis
markedly increases from the growth stage of vegetative
propagation corms to that of juvenile tubers, which have
no flower buds [44]. In general, gastrodin production is
derived from 4-hydroxybenzyl alcohol through a one-step
glycosylation with different glucose donors. Therefore,
one of key enzymes of gastrodin biosynthesis is glucosyl-
transferase, a large family identified in various plants [45].
Glycosylation is typically the final step in the biosynthesis
of secondary plant compounds, resulting in the formation
of a large number of glucosides [45–48]. The glycosylation
might increase solubility or decrease volatility com-
pared with non-glycosylated molecules [47]. Toluenes
are general components in plants that serve as the
precursors of plant secondary compounds [49–52].

Fig. 1 Materials in the study. Fungus of Mycena dendrobii (a), vegetative propagation corm (b), Armillaria mellea (c), and juvenile tuber (d) of Gastrodia
elata. Scale bars = 1 cm
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Toluene is considered as a precursor of gastrodin [53]. The
derivation of the metabolic pathway of 4-hydroxybenzyl al-
cohol derived from toluene is largely unknown in G. elata
and other plants. However, the catalytic pathway from
toluene to 4-hydroxybenzyl alcohol has been reported to
involve hydroxylation through monooxygenase of cyto-
chrome P450 (CYP450) [54, 55], a member of a large
enzyme family in plants that catalyzes most of the oxida-
tion steps in plant secondary metabolism [56–58]. The
molecular basis of gastrodin biosynthesis remains largely
unknown. In the present study, the comparative transcrip-
tome analysis among A. mellea, the vegetative propagation
corms and juvenile tubers of gastrodia was conducted
using deep sequencing to reveal the gene regulation of gas-
trodin biosynthesis in G. elata.

Results and discussion
The transcriptome sequencing of NGS
De novo transcriptome sequencing has been used in
various functional genomics studies, and is particularly
suitable for gene expression profiling in non-model
organisms without genomic sequences. The next gener-
ation sequencing (NGS) technology not only provides a
comparative expressed sequence tag (EST) analysis for
gene discovery on a genome-wide scale in non-model
plants but also an efficient process for transcriptome
sequencing and characterization. NGS platforms, such
as the Illumina/Solexa Genome Analyzer and the Roche
454 GS FLX, have been widely used in recent years for
the high-throughput sequencing of various organisms
[59, 60]. Using these techniques for de novo transcrip-
tome sequencing, EST databases have been successfully
obtained for several medicinal herbs, including Ameri-
can ginseng [48], Salvia miltiorrhiza [61], sweet worm-
wood [62], Euphorbia fischeriana [63], Taxus [64], and
other crops, such as chili pepper [65], maize [66], Cur-
cuma longa [67], chestnut [68], Eucalyptus tree [69],
olive [70], Camellia sinensis [71], sweet potato [72], Ara-
bidopsis [73], and Phalaenopsis [74]. The Illumina plat-
form is beneficial and useful for gene discovery because
this technique can obtain deeper coverage and higher
accuracy than Roche 454 sequencing technology [74].
Hence, the Illumina system was used in the present
study to clarify the differential gene expression of differ-
ent life stages of G. elata.

Sequencing and de novo assembly
A total of 21,045,338 (2x75 bases, 51 % GC), 18,436,794
(2x75 bases, 44 % GC) and 18,253,900 (2x75 bases, 45 %
GC) high-quality paired-end (PE) reads were generated
from Illumina HiSeq2000 platform, and approximately 3
giga bases of sequence data were obtained for each of A.
mellea, vegetative propagation corm, and juvenile tuber
of G. elata (Table 1). These short sequence reads have

been deposited in NCBI under GEO accession number
GSE73633. High-quality bases (above Q20) were more
than 97 % for all three samples, indicating an excellent
quality (Q20 means 1 error per 100 sequenced bases),
while another high quality indicator was the aboundance
peak of average sequence quality per read located
around Q38 (less than 0.0158 % of error rate) for all
three samples. The high-quality PE reads were used for
de novo transcriptome shotgun assembly (TSA) to build
transcript isoforms based on paired-end information.
From a total of 161,517 assembled transcript isoforms
(≥200 bases), 134,441 transcripts were selected as the
representive unigenes with longest length for all loci
(i.e., genes). The mapping rates of these high quality
reads from all three samples against the total transcripts
were all above 86 % (Table 2). The final N50 lengths of
1592 and 1184 bases, and the total lengths of
137,618,051 and 92,177,843 bases were calculated for
the transcripts and the unigenes, respectively (Table 2)
(Fig. 2). N50 statistics are widely used to assess the qual-
ity of the assembly, and the higher the N50 value repre-
senting the assembly the better the quality [67].
Compared with other plant transcriptome sequencing of
de novo TSAs [61, 67, 69, 71, 72, 75–78], the N50 value
obtained in the present study was above the average and
adequate for further analysis (Table 3).

Functional annotation and Gene Ontology classification
All unigenes were annotated according to the sequence
similarity search against NCBI non-redundant protein
sequence (nr) database using BLASTX algorithm. A total
of 59,932 unique sequences were annotated, accounting
for 44.58 % of the total unigenes (Table 4). Gene Ontol-
ogy (GO) assignment were performed for the functional
categorization of the annotated unigenes. A total of
11,645 unigenes were mapped to GO terms, accounting
for 8.66 % of the unigenes (Table 4). Because multiple
GO terms can be assigned to the same unigene [79],
totally 58,488 GO terms were assigned in the present
study. The GO annotation showed that these unigenes
represent diverse functionalities and are involved in vari-
ous metabolic pathways. In A. mellea, 9101, 7484, and
5694 GO terms, respectively, represent molecular func-
tion, biological process and cellular component categor-
ies [See Additional file 1: Figure S1]. In the molecular
function category, the terms integral to “binding”
(GO:0005488) and “catalytic activity” (GO:0003824)
were shown as the most frequently occurring, constitut-
ing 19.23 % (4285) and 18.56 % (4136) of the level 2 GO
terms, respectively. “Metabolic process” (GO:0008152)
and “biological regulation” (GO:0065007) were the most
frequently occurring under the biological process cat-
egory, representing 9.50 % (2116) and 6.97 % (1552) of
the level 2 GO terms, respectively. In the cellular
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component category, “cell part” (GO:0044464) was the
most frequently occurring, representing 19.20 % (4277)
of the total level 2 GO terms.
In vegetative propagation corm of G. elata, 17,371,

9875, and 6915 GO terms, respectively, represent mo-
lecular function, biological process, and cellular compo-
nent categories [See Additional file 1: Figure S1]. In the
molecular function category, the terms integral to “bind-
ing” (GO:0005488) and “catalytic activity” (GO:0003824)
occurred most frequently, representing 24.84 % (8484)
and 20.71 % (7076) of the total level 2 GO terms,

respectively. In the biological process category, “meta-
bolic process” (GO:0008152) was the most frequently
occurring, representing 11.95 % (4083) of the total level
2 GO terms. In the cellular component category, “cell
part” (GO:0044464) was the most frequently observed,
representing 15.69 % (5359) of the total level 2 GO
terms.
In the juvenile tuber of G. elata, 10,259, 5927, and

3753 GO terms were shown for molecular function, bio-
logical process and cellular component categories,
respectively [See Additional file 1: Figure S1]. In the

Table 1 Basic Statistics of RNA-Seq generated from Armillariella mellea, vegetative propagation corm and juvenile tuber of Gastrodia
elata encoding by Illumina HiSeq2000 platform

Sample

Vegetative propagation corm Juvenile tubera Armillaria mellea

Total number of read pairs 18,436,794 18,253,900 21,045,338

Total nucleotides (nt) 2,765,519,100 2,738,085,000 3,156,800,700

GC percentage 44 % 45 % 51 %

≥Q20 percentage 97 % 97 % 97 %

Read length 75 75 75
aThe tubers of Gastrodia elata have established symbiotic associations with Armillaria mellea

Table 2 Summary of the de novo transcriptome shotgun assembly from all Illumina sequences

Assembled transcripts

Total number of transcripts 161,517

Total bases of transcripts 137,618,051 nt

Longest transcript 19,660 nt

Average transcript length 852 nt

Median transcript length 420 nt

N50 transcript length 1592 nt

Read mapping rate of sample Armillaria mellea 88.21 %

Read mapping rate of sample juvenile tubera 88.73 %

Read mapping rate of sample vegetative propagation corm 86.75 %

Assembled unigenes

Total number of transcripts 134,441

Total bases of unigenes 92,177,843 nt

Longest unigene 19,660 nt

Average unigene length 686 nt

Median unigene length 358 nt

N50 unigene length 1184 nt

Predicted peptides

Total number of peptides 50,084

Total amino acids of peptides 14,597,170 aa

Longest peptide 5370 aa

Average unigene length 291 aa

Median peptide length 199 aa

Abbreviations: aa amino acids, nt nucleotides
aThe tubers of Gastrodia elata have established symbiotic associations with Armillaria mellea
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molecular function category, the terms integral to “bind-
ing” (GO:0005488) and “catalytic activity” (GO:0003824)
were most frequently observed, representing 27.18 %
(5420) and 19.53 % (3895) of the total level 2 GO terms,
respectively. Metabolic process (GO:0008152) was the
most frequently observed under the biological process
category, representing 12.37 % (2466) of the total level 2
GO terms. In the cellular component category, “cell
part” (GO:0044464) was the most frequently observed,
representing 14.8 % (2951) of the total level 2 GO terms.

Differential expression analysis between A. mellea and
juvenile tuber of Gastrodia elata
The comparative analysis of the transcriptomes of the A.
mellea and G. elata (symbiosis with A. mellea) juvenile
tubers was conducted based on the combined transcrip-
tome assembly of all three samples. Among the total
134,441 unigenes, 49,890 and 71,722 unigenes were
aligned with reads from A. mellea and G. elata juvenile

tubers, respectively [See Additional file 2: Figure S2].
Among these unigenes, only 5547 unigenes were identi-
fied in both samples of deep sequencing data. To evalu-
ate differential gene expression, the absolute value of the
log2-FC (fold changes) ≥ 1, the q-values < 0.05 and the
TMM-normalized FPKM > 0.3 were used as the criteria
to determine the significance of gene expression differ-
ences [80]. A total of 292 differentially expressed uni-
genes were revealed in the transcriptome comparison, of
which sixty-nine unigenes were significantly up-
regulated (log2-FC ≥ 1, FPKM > 0.3, q-values < 0.05) in A.
mellea [See Additional file 3: Table S1], and 223

Fig. 2 Summary distribution of the lengths of the 134,441 unigenes from combing three samples of raw reads (>200 nt, mean length = 686 nt,
N50 = 1184 nt, Min = 201 nt, Max = 19,660 nt)

Table 3 Comparative analysis of plant transcriptome N50 values

Organisms N50 (in bases)

Ipomoea batatas (Wang et al. [72]) 765

Eucalyptus grandis (Mizrachi et al. [69]) 1640

Salvia miltiorrhiza (Hua et al. [61]) 533

Camellia sinensis (Shi et al. [71]) 506

Cajanus cajan (Kudapa et al. [76]) 1510

Myrica rubra (Feng et al. [75]) 708

Capsicum frutescens (Liu et al. [65]) 1108

Curcuma longa (Annadurai et al. [67]) 1448

Cuscuta pentagona (Ranjan et al. [77]) 1550

Hevea brasiliensis (Salgado et al. [78]) 837

Average of above studies 1061

This study 1592

Table 4 Summary statistics of unigenes with functional
annotations for all combined assembly and for each sample

Functional annotation No. of unigene hits Percentage (%)

All (134,441 unigenes)

NR 59,932 44.58

GO 11,645 8.66

KEGG 27,008 20.09

Vegetative propagation corm (82,712 unigenes)

NR 33,638 40.67

GO 7338 8.87

KEGG 15,073 18.22

Juvenile tubera (71,722 unigenes)

NR 27,296 38.06

GO 4396 6.13

KEGG 11,301 15.76

Armillaria mellea (49,890 unigenes)

NR 29,401 58.93

GO 3900 7.82

KEGG 13,243 26.54
aThe tubers of Gastrodia elata have established symbiotic associations with
Armillaria mellea
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unigenes in G. elata juvenile tubers were expressed at
significantly higher levels (log2-FC ≤ -1, FPKM > 0.3, q-
values < 0.05) (Fig. 3a) [See Additional file 4: Table S2].
Of 292 the differentially expressed unigenes, only 106
unigenes can be assigned with KEGG Ortholog identi-
fiers (KOids) or enzyme commission (EC) numbers
corresponding to biological pathways for cellular func-
tions and molecular interactions after KEGG analysis.
Among these, twenty-five up-regulated unigenes from A.
mellea and G. elata juvenile tuber were assigned KOids or
EC numbers corresponding to twenty-eight isogroups in-
volved in sixteen different pathways [See Additional file 5:

Table S3]; and eighty-one down-regulated unigenes were
corresponding to 134 isogroups involved in sixty different
pathways [See Additional file 6: Table S4].

Differential expression analysis between the juvenile
tuber and vegetative propagation corm of Gastrodia elata
The comparative analysis of transcriptomes of the juven-
ile tubers (symbiosis with A. mellea) and vegetative
propagation corms (asymbiosis with A. mellea) was con-
ducted also based on the combined transcriptome
assembly of all three samples. Among the total 134,441
unigenes, 71,722 and 82,712 unigenes were aligned with

Fig. 3 Differentially expressed unigenes between a Armillaria mellea and juvenile tuber of Gastrodia elata (under the criteria: the absolute value of
the log2-FC≥ 1, the q-values < 0.05 and the TMM-normalized FPKM > 0.3), and b vegetative propagation corm and juvenile tuber (under the criteria:
the absolute value of the log2-FC≥ 1, the q-values < 0.05 and the TMM-normalized FPKM > 10). Numbers of up- and down-regulated unigenes were
shoen in boxes
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reads from juvenile tubers and vegetative propagation
corms, respectively [See Additional file 7: Figure S3].
Among these, 63,317 unigenes were identified in both
samples, and 22,942 differentially expressed unigenes were
revealed in the transcriptome comparison using the same
criteria (the absolute value of the log2-FC ≥ 1, the q-
values < 0.05 and the TMM-normalized FPKM> 0.3).
7383 and 15,559 unigenes were expressed at higher levels
in G. elata juvenile tubers and vegetative propagation
corms, respectively (data not shown). To focus on highly
and differentially expressed unigenes by modifying the
threshold of TMM-normalized FPKM larger than ten, 703
highly and differentially expressed unigenes were revealed
in the transcriptome comparison. Among which 298 uni-
genes were significantly up-regulated (log2-FC ≥ 1, q-
values < 0.05, TMM-normalized FPKM> 10) in juvenile
tubers [See Additional file 8: Table S5], and 405 unigenes
in vegetative propagation corms were expressed at signifi-
cantly higher levels (log2-FC ≤ -1, q-values < 0.05, TMM-
normalized FPKM> 10) (Fig. 3b) [See Additional file 9:
Table S6]. Of 703 the differentially expressed genes, only
244 unigenes can be assigned to KOids or EC numbers
corresponding to to biological pathways for cellular func-
tions and molecular interactions after KEGG analysis.
Among these, 112 up-regulated (log2-FC ≥ 1, q-value <
0.05, TMM-normalized FPKM> 10) unigenes from juven-
ile tubers compared with vegetative propagation corms
were assigned to KOids or EC numbers corresponding to
159 isogroups involved in seventy-eight different pathways
[See Additional file 10: Table S7]; and 132 down-regulated
(log2-FC ≤ -1, q-value < 0.05, TMM-normalized FPKM>
10) unigenes were assigned to KOids or EC numbers cor-
responding to 168 isogroups involved in eighty different
pathways [See Additional file 11: Table S8].
Kusano (1911) first reported that G. elata existed in a

mycorrhizal relationship with the wood-rotting pathogen
A. mellea; however, this relationship was uncharacterized
[18]. Until 1980, Zhang and Li showed that G. elata di-
gests the invasive hyphae of A. mellea as the source of nu-
trition [1]. Lan et al. (1986) also confirmed that A. mellea
was used as the source of nutrition for G. elata through
the observation of labeled materials from A. mellea in the
transverse section of G. elata. The labeled materials
appeared in mitochondria, the endoplasmic reticulum and
vacuoles of G. elata cortical cells [20]. When the hyphae
of A. mellea are disconnected between wood (source of
nutrition for A. mellea) and G. elata, the growth of G.
elata terminates and this organism dies; therefore, the role
of A. mellea for G. elata was considered as the food for
survival [21]. According to the differential gene expression
in G. elata in response to A. mellea symbiosis, unigene
TRINITY_DN70668_c0_g1 is significantly induced [See
Additional file 8: Table S5], as high as ~7 folds, and this
gene was annotated as a gastrodianin (i.e., gastrodia

antifungal proteins, GAFPs) gene, which digests the cell
wall of A. mellea [81]. This result suggested that G. elata
digests the invasive hyphae of A. mellea as a source of
nutrition according to Zhang and Li (1980) [1]. In the
present study, the low-level gene expression of the gastro-
dianin biosynthetic gene was detected in vegetative propa-
gation corms (i.e., primary corms), which differentiated
from protocorms, suggesting that the symbiotic relation-
ship between A. mellea and G. elata only can be devel-
oped during the vegetative propagation corms of G. elata
[82]. According to previous reports, there are two copies
of gastrodianin biosynthetic genes in G. elata [81], and
these two genes (unigenes TRINITY_DN70668_c0_g1 and
TRINITY_DN48867_c0_g1) were also identified through
deep sequencing data in the present study, only unigene
TRINITY_DN70668_c0_g1 was significantly induced in
the juvenile tubers of G. elata in response to A. mellea
symbiosis [See Additional file 8: Table S5]. The result was
consistent with the previous gene expression study of the
gastrodianin biosynthetic gene in G. elata [81].

Identification and validation of candidate genes involved
in gastrodin biosynthesis
The mechanism and related genes in the gastrodin biosyn-
thesis pathway are currently unknown. To the best of our
knowledge, gastrodin (4-hydroxymethylphenyl-β-D-gluco-
pyranoside) is a simple glycoside comprising glucose and
4-hydroxybenzyl alcohol [27]. The last biosynthesis
enzyme of gastrodin is glucosyltransferase [45]. Gastrodins
are synthesized from 4-hydroxybenzyl alcohol with UDP-
glucose via glucosylation catalyzed through glucosyltrans-
ferase. The precursor of gastrodin, 4-hydroxybenzyl alco-
hol, is catalyzed through cresols degradation (toluene
degradation) from toluene through two steps of hydroxyl-
ation via monooxygenase (CYP450) [54, 55]. Therefore,
both monooxygenase and glucosyltransferase are consid-
ered two key enzymes for gastrodin biosynthesis [53].
According to the chemical structure of gastrodin and gas-
trodin precursors, analyzed in previous reports, the puta-
tive gastrodin biosynthetic pathway is shown in Fig. 4.
However, both monooxygenase (CYP450) and gluco-
syltransferase belong to a large enzyme families in-
volved in different biosynthesis pathways in various
plants [45, 54, 55]. Moreover, 4-hydroxybenzyl alcohol
and gastrodin were also detected in Anoectochilus for-
mosanus [83]. To determine the candidate genes
involved in gastrodin biosynthesis, the comparative
analysis of the transcriptomes between vegetative
propagation corm and juvenile tuber of G. elata was
conducted. A total of thirty and forty-six unigenes,
respectively, were annotated to monooxygenase and
glucosyltransferase among the 63,317 unigenes
expressed both in the juvenile tubers and the vegeta-
tive propagation corms of G. elata. Under the criteria
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of log2-FC ≥ 1, TMM-normalized FPKM > 3 and q-
values < 0.05, four putative monooxygenases were selected.
Among them, unigene TRINITY_DN54282_c0_g1 was the
most abundance in FPKMs and differentially expressed
one (~2.4 times higher in the juvenile tubers). Under the
same criteria, three putative glucosyltransferases were
selected and the unigene TRINITY_DN50323_c0_g1 was
the highest differentially expressed one (~3.2 times higher
in the juvenile tubers).
To validate the differential expression of gastrodin

biosynthesis-related unigenes TRINITY_DN54282_c0_g1
and TRINITY_DN50323_c0_g1, we investigated the ex-
pression of these genes in different life stages between
the vegetative propagation corms and juvenile tubers of
G. elata using semi-quantitative RT-PCR and real-time
PCR (quantitative RT-PCR, qRT-PCR), and compared
the results with fold-changes of FPKM (RNA-Seq). The
specific primers for semi-quantitative RT-PCR and qRT-
PCR were designed. In semi-quantitative RT-PCR,
expression profiling revealed the differential expression
of both monooxygenases and glycosyltransferases
between the vegetative propagation corms and juvenile
tubers of Gastrodia elata (Fig. 5). Both monooxygenases
and glycosyltransferase genes were up-regulated in the
juvenile tubers and were considered as gastrodin
biosynthetic-related genes, as gastrodin production
markedly increases from the growth stage of vegetative

propagation corms to that of juvenile tubers [44]. In
addition, the differential expression of the two genes was
also validated through qRT-PCR analysis as shown in
Fig. 6. The expression levels of the unigene TRINI-
TY_DN54282_c0_g1 were up-regulated up to 6.5 times
in juvenile tubers and 2.4 times for qRT-PCR and RNA-

Fig. 4 Putative gastrodin biosynthetic pathway in Gastrodia elata

Fig. 5 Semi-quantitative RT-PCR profile of gasstrodin related candidate
genes unigene TRINITY_DN54282_c0_g1 (monooxygenase) and
TRINITY_DN50323_c0_g1 (glycosyltransferase) in different life stage of
vegetative propagation corm (a) and juvenile tuber (b) of Gastrodia elata
tissues with ubiquitin as the internal control. RT+ and RT- represent
amplifications with and without reverse transcriptase
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Seq, respectively. Similarly, qRT-PCR and RNA-Seq
showed that the expression levels for unigene TRINI-
TY_DN50323_c0_g1 were up-regulated approximately
3.6 and 3.2 times, respectively, in juvenile tubers. The re-
sults of both semi-quantitative RT-PCR (Fig. 5) and
qRT-PCR analysis (Fig. 6) were consistent with the
RNA-Seq data.
Monooxygenases belong to cytochrome P450 proteins,

the largest family of plant proteins, which catalyze most of
the oxidation steps in plant secondary metabolism [57, 58].
The comparison of the chemical structures of 4-
hydroxybenzyl alcohol and the precursor toluene (Fig. 4),
revealed two steps catalyzed through monooxygenase, the
conversion of toluene to 4-hydroxytoluene and the conver-
sion of 4-hydroxytoluene to 4-hydroxybenzyl alcohol.
Therefore, unigene TRINITY_DN54282_c0_g1 (EC:
1.14.13.-) was considered as a toluene monooxygenase
gene, consistent with the KEGG pathway annotation (Fig. 7).
Generally, glycosylation is the last step in the biological bio-
synthesis of secondary metabolism because sugar conjunc-
tion results in both the increased water solubility and
stability of the compounds [84–86]. In G. elata, glycosyl-
transferase catalyzes the last step of the gastrodin biosyn-
thesis pathway, which converts 4-hydroxybenzyl alcohol to
gastrodin [45] (Fig. 4). Therefore, unigene TRINI-
TY_DN50323_c0_g1 (EC: 2.4.1.12) was considered as a gly-
cosyltransferase gene, consistent with the KEGG pathway
annotation (Fig. 8). In short, both unigenes TRINI-
TY_DN54282_c0_g1 and TRINITY_DN50323_c0_g1
might be key enzyme genes that, respectively, participate in
the hydroxylation (Fig. 7) and glucosylation (Fig. 8) of gas-
trodin (Fig. 4).

Cloning of gastrodin biosynthesis related genes
The full-length cDNA sequences of monooxygenases (uni-
gene TRINITY_DN54282_c0_g1) and glycosyltransferases

(unigene TRINITY_DN50323_c0_g1) from G. elata were
further isolated through RACE analysis. The nucleotide se-
quence of the full-length monooxygenase cDNA has an
open reading frame (ORF) of 1476 nucleotides spanning
from the first initiation codon (ATG) to the termination
codon (TGA), an in-frame stop codon located 12 nt up-
stream from the initiation codon and an out-of-frame ATG
located upstream of the main ORF. The complete ORF en-
codes a protein of 491 amino acids with a predicted mo-
lecular mass of 55.8 kDa (Fig. 9a). In addition, the
nucleotide sequence of the full-length glucosyltransferase
cDNA has an ORF of 1635 nucleotides spanning from the
first initiation codon ATG to the termination codon TGA,
an in-frame stop codon located 12 nt upstream from the
initiation codon and an out-of-frame ATG located up-
stream of the main ORF. The complete ORF encodes a
protein of 544 amino acids with a predicted protein of
63.1 kDa (Fig. 9b).
Notably, both monooxygenases (unigene TRINI-

TY_DN54282_c0_g1) and glycosyltransferases (unigene
TRINITY_DN50323_c0_g1) induced in response to
fungi symbiosis possess an out-of-frame upstream ATG
and an in-frame stop codon in the main ORF within the
5’UTR. In mammals, upstream ATGs/upstream ORFs
significantly reduce protein expression levels through a
reduction of the translation efficiency [87, 88] or mRNA
decay [89–91]. Upstream AUGs/upstream ORFs in the
5′ UTR efficiently disrupt the translation of the down-
stream coding sequence, thereby reducing the transla-
tion efficiency of the main coding region [87, 88].
According to deep sequencing, semi-quantitative RT-
PCR, and real-time RT-PCR, both monooxygenases (uni-
gene TRINITY_DN54282_c0_g1) and glycosyltransferase
(unigene TRINITY_DN50323_c0_g1) genes were co-
expressed in vegetative propagation corms. Therefore,
the upstream ATGs of these two genes might result in

Fig. 6 Quantitative real-time PCR (Q-PCR) validations of (a) unigene TRINITY_DN50323_c0_g1 and (b) unigene TRINITY_DN54282_c0_g1 of
RNAseq results (TMM-normalized FPKM fold changes). Comparison of differential expression values between the juvenile tuber (white bar) and
vegetative propagation corm (grey bar) of Gastrodia elata determined by qRT-PCR and RNAseq
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the low concentration of gastrodin in vegetative propa-
gation corms. The induction of gene expression in re-
sponse to fungi symbiosis might increase the translation
efficiency or mRNA stability of the two key enzymes to
increase gastrodin production in juvenile tubers. In re-
sponse to stress, the translation repression of upstream
ATGs/upstream ORFs could be significantly reduced
[92–94] or mRNA stability could be increased [95, 96].
In response to fungi invasion, the repression reduction
of the translation efficiency of both monooxygenases
(unigene TRINITY_DN54282_c0_g1) and glycosyltrans-
ferase (unigene TRINITY_DN50323_c0_g1) genes in G.
elata might also increase the accumulation of gastrodin
in juvenile tubers, as fungal infection could be a biotic
stress to G. elata.

Conclusions
The molecular basis of gastrodin biosynthesis in G. elata
was clarified based on de novo transcriptome sequencing
in the present study. Two putative monooxygenase (uni-
gene TRINITY_DN54282_c0_g1) and glycosyltransferase

(unigene TRINITY_DN50323_c0_g1) genes associated
with the gastrodin biosynthesis pathway were identified.
The genes of the two key enzymes involved in gastrodin
biosynthesis might be applied as the target genes for plant
gene transformation in future studies to obtain transgenic
plants or microbial hosts with gastrodin production.
Moreover, this transcriptome dataset also provides im-
portant information to accelerate future gene expression
and functional genomics studies in G. elata.

Methods
Materials
Plant materials used in this study were got from the
Chinese medical farm. The voucher specimens were
deposited at the herbarium of the Taiwan Endemic
Species Research Institute (TAIE) and the voucher
numbers are Hsu 17054 and 17055. The vegetative
propagation corms and juvenile tubers of G. elata
were, respectively, harvested 1 and 12 months after
sowing at the Chinese medical farm (Hakusan City,
Jilin Province, China) (Fig. 1b and d). A. mellea was

Fig. 7 Hydroxylation by monooxygenase (EC:1.14.13.-) in toluene degradation. The putative enzymes are in red
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isolated from the juvenile tuber of G. elata and identi-
fied based on ITS sequence of nuclear ribosomal DNA
(nrDNA) (data not shown). The fungi were cultured
on PDA medium according to Mishra and Dubey
(1994) for further molecular studies (Fig. 1c) [97].

RNA isolation, cDNA library preparation, deep sequencing
and de novo assembly
The vegetative propagation corms of G. elata, juvenile
tuber of G. elata and A. mellea was separately harvested
and extracted total RNA using Trizol® Reagent

Fig. 8 Glucosylation by beta-1,4-glucosyltransferase (EC:2.4.1.12) in starch and sucrose metabolism. The putative enzyme is in red

Fig. 9 a Schematic representation of the mRNA transcripts of (a) unigene TRINITY_DN54282_c0_g1 (monooxygenase) with an out-of-frame AUG
and an in-frame stop codon upstream the start codon; b unigene TRINITY_DN50323_c0_g1 (glycosyltransferase) with an out-of-frame AUG and
an in-frame stop codon upstream the start codon
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(Invitrogen, Carlsbad, CA, USA) and followed by the
RNeasy Plant Mini Kit (Qiagen, Hilden, Germany). Puri-
fied RNA was quantified at OD260 using a ND-1000
spectrophotometer (NanoDrop Technology, San Diego,
CA, USA) and qualitated using an Agilent Bioanalyzer
2100 with the RNA 6000 nano labchip kit (Agilent
Technology, Santa Clara, CA, USA). The RNA Integrity
Number (RIN) was identified 8.7, 9.1, and 8.0 for vegeta-
tive propagation corm, juvenile tuber, and A. mellea,
respectively. Each of the RNA libraries was separately
constructed using TruSeq RNA Library Preparation Kit v2
(Illumina Inc., San Diego, CA) with standard Illumina pro-
tocols. After quality-control using an Agilent Bioanalyzer
2100, each library was paired-end deep sequenced by Illu-
mina HiSeq 2000 sequencer (Illumina Inc., San Diego,
CA, USA) according to the manufacturer’s instructions.
The quality of the produced fastq sequences was assessed
using FastQC program (http://www.bioinformatics.babra-
ham.ac.uk/projects/fastqc/), see Additional files 12, 13 and
14: Figures S4, S5 and S6. Before the assembling stage, the
reads were processed to trim adaptor sequences and low-
quality ends via Trimmomatic version 0.32 [98] with
parameters “ILLUMINACLIP: TruSeq3-PE.fa:2:30:10 SLI-
DINGWINDOW:4:5 LEADING:5 TRAILING:5 MIN-
LEN:25”. A single de novo transcriptome assembly was
generated from high-quality short reads of all three sam-
ples using the Trinity software (https://github.com/trini-
tyrnaseq/trinityrnaseq/wiki/) [99]. Trinity v2.1.0 (release
20140413p1) was employed with the default k-mer of 25
and minimum assembled contig length of 200. Candidate
coding regions within transcript sequences were identified
using TransDecoder (http://transdecoder.github.io/).

Transcript abundance estimation
Quantification of transcripts was estimated using the
RNA-Seq by Expectation-Maximization (RSEM) soft-
ware version 1.2.23 [100], which was bundled with the
Trinity software distribution. The RSEM protocal uses
the Bowtie software (http://bowtie-bio.sourceforge.net/
index.shtml) [101] to align trimmed reads from each
sample seperatively to the assembled transcripts, and
then computes transcript abundance, estimates the num-
ber of aligned fragments corresponding to each tran-
script, including normalized expression values as FPKM
for paried-end reads. In addition, RSEM computes
‘gene-level’ expression values using the Trinity compo-
nent as a proxy for the gene. For comparing expression
levels of different transcripts or genes across samples, a
Trinity-bundled script invokes the EdgeR package to
perform an additional TMM scaling normalization that
aims to estimate differences in total RNA production
across all samples [102, 103]. Transcripts with zero
TMM-normalized FPKM values for all three samples
were removed from the assembly and not counted into

the total transcript number, and the rest with longest
length per component (i.e., gene locus) defined by Trin-
ity were interpreted to represent “unigenes” for down-
stream analysis. The data presented in this publication
have been deposited in NCBI’s Gene Expression Omni-
bus [104] and are accessible through GEO Series acces-
sion number GSE73633 (https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE73633).

Gene functional annotation, GO classification and KEGG
pathway analysis
The functional annotation of the unigenes was con-
ducted using the BLASTX algorithm of DIAMOND pro-
gram [105] with E-values < 1.00E-5 and enabled
‘sensitive mode’ against NCBI non-redundant protein se-
quence database (nr, October 2015), which consisted of
all non-redundant peptide sequences from GenBank
CDS translations, RefSeq Proteins, PDB (Protein Data
Bank) database, SwissProt database, PIR (Protein Infor-
mation Resource) database, and PRF (Protein Research
Foundation) database. Gene Ontology (GO) annotations
of unigenes was performed by coverting the GeneBank
identifiers (gi) of hits from the BLASTX results into
UniProt IDs through the IDmapping data files [106]
downloaded from The Universal Protein Resource (Uni-
Prot; http://www.uniprot.org/), then the corresponding
GO terms were retrieved via the UniProt IDs using
home-made Perl scripts. KEGG (http://www.kegg.jp/)
[107] pathway annotation of unigenes was performed
using the BLASTX algorithm of DIAMOND program
with E-values < 1.00E-5 and enabled ‘sensitive mode’
against KEGG gene peptide database (October, 2015),
and then the corresponding KO identifiers, EC numbers
and pathway categories were parsed using home-made
Perl scripts.

Comparative analysis of differentially expressed genes
The number of unigenes per sample was counted if the
corresponding TMM-normalized FPKM values of uni-
genes above zero. For differential expression analysis, each
pairwise comparison was performed from the TMM-
normalized FPKM values using the R package limma (Lin-
ear Models for Microarray and RNA-Seq Data) [108] with
upper-quantile normalization. Zero TMM-normalized
FPKM values were replaced to 0.001 from either sample
to avoid problems associated with zero value. A number
of statistics were calculated, including log2-FC (fold
changes) between the two samples, the p-values, and asso-
ciated q-values (FDR-corrected p-values). Differentially
expressed unigenes were selected using the criteria that
the absolute value of the log2-FC ≥ 1, the q-values < 0.05,
and different TMM-normalized FPKM values under vari-
ant stringency. Genes with a q-value < 0.05 were consid-
ered to be differentially expressed [109].
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Semi-quantitative RT-PCR, real-time RT-PCR analysis and
SMART-RACE cDNA amplification
The cDNA products were diluted 20-fold with deionized
water prior to use as a template in semi-quantitative RT-
PCR and real-time PCR [110]. Semi-quantitative RT-PCR
reactions were performed in 20 μl reactions containing
gene-specific primers [See Additional file 15: Table S9]
and the ubiquitin gene primer as an internal control [108,
111]. Additional reaction components were 1X Red Taq
Mastermix (RBC Bioscience, Taipei, Taiwan), 1 mM
MgCl2 and 1 μM of the specific primers. Following PCR
amplification, 5 μl of the PCR products were separated on
a 1 % TAE agarose gel containing ethidium bromide, and
the bands were photographed under UV light using gel
documentation system alpha imager EC (Alpha Innotech,
Japan). Real-time RT-PCR was performed using the Power
SYBR Green PCR Master Mix (Applied Biosystems, Foster
City, CA, USA) and a 7900HT Fast Real-Time PCR Sys-
tem (Applied Biosystems, Foster City, CA, USA) accord-
ing to the manufacturer’s instructions. SDS2.2.2 software
(Applied Biosystems, Foster City, CA, USA) was used for
the comparative ΔCt analysis, and the ubiquitin gene
served as an internal control. The relative gene expression
was calculated using the 2-ΔΔCt method [112]. In SMART-
RACE cDNA amplification, the 5′ and 3′-RACE (5′ and
3′-rapid amplification of cDNA ends) was performed
using the SMART-RACE cDNA amplification kit (Clon-
tech, Palo Alto, CA, USA) according to the manufacturer’s
instructions. All primers used in the present study are
listed in Additional file 15: Table S9.

Availability of supporting data
The data set supporting the results of this article are
available in the NCBI GEO repository, with the acces-
sion numbers GSE73633 (https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE73633). All the supporting
data are included as additional files.
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scores. The higher the score the better the base call. The background of
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