Pellegrino et al. BMC Genomics (2016) 17:361
DOI 10.1186/512864-016-2694-2

BMC Genomics

RNA-Seq following PCR-based sorting @

reveals rare cell transcriptional signatures

Maurizio Pellegrino, Adam Sciambi, Jamie L. Yates, Joshua D. Mast, Charles Silver and Dennis J. Fastburn

Abstract

Background: Rare cell subtypes can profoundly impact the course of human health and disease, yet their presence
within a sample is often missed with bulk molecular analysis. Single-cell analysis tools such as FACS, FISH-FC and
single-cell barcode-based sequencing can investigate cellular heterogeneity; however, they have significant
limitations that impede their ability to identify and transcriptionally characterize many rare cell subpopulations.

Results: PCR-activated cell sorting (PACS) is a novel cytometry method that uses single-cell TagMan PCR reactions
performed in microfluidic droplets to identify and isolate cell subtypes with high-throughput. Here, we extend this
method and demonstrate that PACS enables high-dimensional molecular profiling on TagMan-targeted cells. Using
a random priming RNA-Seq strategy, we obtained high-fidelity transcriptome measurements following PACS sorting
of prostate cancer cells from a heterogeneous population. The sequencing data revealed prostate cancer gene
expression profiles that were obscured in the unsorted populations. Single-cell expression analysis with PACS was
subsequently used to confirm a number of the differentially expressed genes identified with RNA sequencing.

Conclusions: PACS requires minimal sample processing, uses readily available TagMan assays and can isolate cell
subtypes with high sensitivity. We have now validated a method for performing next-generation sequencing on
mRNA obtained from PACS isolated cells. This capability makes PACS well suited for transcriptional profiling of rare

cells from complex populations to obtain maximal biological insight into cell states and behaviors.
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Background

The analysis of rare and biologically important cell sub-
types presents a common challenge in the study of can-
cer, immunology, development and infectious disease.
Subtypes within a sample are often not observable
through bulk molecular measurements performed on
the entire population [1-4]. Consequently, tools that can
individually analyze single cells within a population are
essential for uncovering critical biological information
on subtypes. Fluorescence Activated Cell Sorting (FACS)
is one such single-cell analysis method that has been
widely employed to characterize heterogeneous popula-
tions of cells [5, 6]. Although FACS is very high in
throughput and can recover cells for downstream ana-
lysis, it relies on antibody staining that can be laborious
and is often low in sensitivity. More importantly, anti-
bodies are unable to characterize nucleic acid based
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biomarkers such as transcripts, genomic DNA, and
mRNA splice variants. To overcome this limitation, cy-
tometry methods that rely on Fluorescence in situ
Hybridization (FISH) have been used to enumerate and
sort cells based on nucleic acid sequences of interest
[7-9]; however, FISH-flow cytometry requires numerous
sample processing steps that can result in significant cell
loss, alter the gene expression profile of the cell or pre-
clude downstream sequencing of the isolated cells.

A promising new approach to single-cell analysis relies
upon molecular barcodes that are paired with the tran-
scriptomes of individual cells confined to microwells or
emulsion droplets [10-12]. The barcoded oligonucleo-
tides enable reverse transcription of polyadenylated
mRNAs and are used to reconstruct, in silico, the gene
expression profiles of individual cells following sequen-
cing of the pooled single-cell RNA-Seq libraries. The
relatively unbiased nature of this type of approach makes
it a powerful “bottom up” tool for the discovery of un-
known cell subtypes [13]. Although barcoding methods
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improve upon the throughput of previous single-cell se-
quencing methods [14], most of them are restricted to
the analysis of only hundreds to a few thousand cells per
experiment and many of the cells within a sample can
be lost due to inefficient barcode pairing [12]. This sig-
nificant throughput limitation makes them unsuitable
for biological samples consisting of tens or hundreds of
thousands of cells.

We previously introduced a novel cytometry technol-
ogy, PCR-activated cell sorting (PACS), which is able to
analyze more than 100,000 individual cells in parallel
[15], a level of throughput over 40-fold higher than
single-cell barcode sequencing methodologies. PACS
works by interrogating individual cells with multiplexed
TagMan PCR assays performed in microfluidic droplets
for the presence of specific combinations of transcripts,
splice variants, non-coding RNAs or genomic DNA and
accurately sorts the cell material for further processing
[15, 16]. The use of readily available TagMan assays en-
ables PACS to sort cells with high-specificity, low cost
and minimal assay optimization-major advantages over
other cytometry approaches. Another key feature of
PACS is the use of a two-step microfluidic workflow that
first compartmentalizes cells into droplets and then pre-
pares the cell lysate for amplification prior to subsequent
microfluidic addition of the TagMan RT-PCR reagents.
This approach is critical for mitigating non-specific Taq-
Man probe fluorescence and inhibition of RT-PCR en-
zymes caused by high concentrations of untreated crude
cell lysate in microdroplets [17-20]. Additionally, this
two-step microfluidic workflow affords the use of
smaller volume microdroplets that both reduce reagent
cost and enable high throughput.

PACS, like FACS and FISH-flow cytometry, is a “top
down” approach to subdividing cell populations [13].
This approach requires pre-selection of known nucleic
acid biomarkers for the multiplex TagMan reactions and
subsequent cell subtype classification. While the enu-
meration of cell subtypes provides valuable information
to researchers, for PACS to be most useful, it would not
only offer a unique and advantageous approach for the
initial high-throughput cell classification and enrich-
ment, but also enable unbiased high-dimensional profil-
ing of gene expression following isolation of subtypes.
This additional capability would make PACS ideally-
suited for the analysis of subtypes from large heteroge-
neous cell populations such as circulating tumor cells
partially enriched from blood [21-23], disaggregated
solid tumors [24—-28], leukemias [29-32], virally infected
cells [33-35], stem cells [36, 37] and subpopulations of
the immune system [13, 38, 39].

In this report, we further characterize PACS and show
that the method is capable of sensitive detection of pros-
tate cancer cells across multiple TagMan assays and cell
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types. We also demonstrate unbiased RNA sequencing
on PACS isolated cells and show that this approach can
be used to uncover the gene expression profiles of cells
that were originally masked by heterogeneity in the
unsorted population. These capabilities make PACS
valuable for isolating rare and clinically relevant cell sub-
types for comprehensive molecular characterization.

Results

PACS workflow for expression profiling

To investigate heterogeneous cell populations with the
PACS workflow, cells from a mixed cell suspension are first
encapsulated and lysed in microdroplets (Fig. 1la and b).
The cells are encapsulated at limiting dilution such that
most drops are empty but ~1-5 % contain single cells, in a
process governed by Poisson statistics. Following cell lysis
and thermal incubation, the droplet-compartmentalized lys-
ate is then merged with RT-PCR reagents and in-droplet
TagMan PCR assays are performed to identify the presence
of target nucleic acids (Fig. 1b). The reactions can be multi-
plexed to detect the expression of specific combinations of
nucleic acids in individual cells by using separate TagMan
hydrolysis probes, each linked to a different fluorophore.
The TagMan generated fluorescence values associated with
single cells in droplets can be visualized on scatter plots
and used to trigger dielectrophoretic droplet sorting when
the desired target subtype is identified (Fig. 1b) [15, 40, 41].
The cell contents from the isolated droplets are then re-
covered and prepared for downstream molecular analysis,
including transcriptome profiling (Fig. 1c-e). Unlike our
previous method that sampled a portion of each cell’s lysate
for single-cell droplet PCR [16], the totality of the lysate is
now analyzed and sorted with PACS.

Sensitive rare cell detection with PACS

The analysis of rare cells within a population requires
detection that is both specific for the target cells and
also capable of sensitively interrogating each and every
cell within a sample. Cell spike-in experiments offer a
straightforward way to assess PACS detection efficiency
on a known number of target cells. To investigate the
specificity and sensitivity of our method for target cell
spike-in detection, we first established a multiplex Taq-
Man PCR assay that could be used to precisely identify
differing numbers of prostate cancer cells from a back-
ground population of lymphocytes. Vimentin (VIM
gene) is an intermediate filament protein that is highly
expressed in cells undergoing epithelial-to-mesenchimal
transitions and is generally absent from cells of lympho-
poietic origin [15, 42]; conversely, PTPRC is commonly
expressed in leukocytes, but not highly expressed in
prostate cell types [16, 43, 44]. A multiplex TagMan
assay targeting VIM and PTPRC transcripts should iden-
tify both lymphocyte and prostate cancer cell types used
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Fig. 1 Workflow for droplet-based rare cell enrichment and analysis. a Single cells from a heterogeneous population are encapsulated in microfluidic
droplets and lysed (b). The cell content is merged with RT-PCR reagents, and single cell TagMan assays are performed in droplets. PCR-Activated Cell
Sorting (PACS) allows the recovery of droplets with the desired TagMan fluorescence profile (c). After breaking the emulsion, the nucleic acids are
recovered and used for downstream analysis, including library preparation for RNA-Seq (d) and gene expression analysis (e)

in our spike-in experiments. In the example spike-in 92 % and a minimum of 89 % TaqMan detection rates
assay shown in Fig. 2a, 50 PC3 cells were mixed for these experiments (Fig. 2c). Critically, these results
with ~10,000 Raji cells and analyzed with the PACS  were not unique to PC3 cells. We obtained similar PACS
workflow using a HEX-labeled TagMan assay targeting results with a different prostate cancer cell line, DU145.
VIM, and a FAM-labeled TagMan assay targeting PTPRC.  On average 75 % of the calcein positive DU145 input
To independently verify correlation of VIM+ TagMan sig-  spike-ins were identified, with an average VIM+ TagMan
nal with spike-in cells, the prostate cancer cells were detection rate of 93 % and a minimum of 85 % (Fig. 2c).
stained with calcein violet. As shown in the scatter plots, We also investigated whether background cell popula-
we efficiently identified a total of 47 out of 50 (94 %) cal-  tions that more closely resemble a complex primary bio-
cein positive spike-in cells with PACS. Furthermore, the logical sample affected PACS detection of prostate cancer
majority of the drops containing calcein violet were also  cells. Peripheral Blood Mononuclear Cells (PBMCs) were
positive for VIM expression (HEX signal positive, 44 out isolated from whole blood and used as the background
of 47-94 %, right panel) confirming the specificity and  cell population for PC3 cell spike-in experiments. We and
sensitivity of single-cell TagMan detection in droplets. 2 others have observed significant vimentin expression
of the 44 VIM-positive drops (5 %) were also positive for ~ within PBMC cell populations [45]; consequently, we used
PTPRC FAM signal. This was likely due to either low- TaqMan assays targeting EpCAM and ARHGAP29 tran-
level PTPRC expression in some PC3 cells or co- scripts for specific identification of prostate cancer cells.
encapsulation with a background Raji cell. The PTPRC+  Similar to our results shown in Fig. 2a, we identified
droplets were easily excluded from sorting, preventing spiked-in PC3 cells at a sensitivity of 83 % with the Taq-
possible contamination of the sorted cancer cells with Man assay targeting EPCAM and 94 % with the TagMan
undesirable background cells. assay targeting ARHGAP29 (Additional file 1: Figure S1)
To further characterize the sensitivity and limit of cell ~ [23, 43, 46]. Collectively, these data indicate that PACS is
detection with the PACS workflow, we spiked calcein- capable of detecting multiple rare cell types with high spe-
labeled PC3 cells into ~10,000 Raji cells at cell numbers cificity and sensitivity.
of 0, 25, 50, 100, 500 and 1000 cells. Using the VIM
+/PTPRC- TagMan assay selection criteria, we accur-  Rare cell molecular analysis following PACS isolation
ately identified and recovered, on average, 82 % of PC3  To test whether PACS sorting can efficiently enrich tar-
input cells across the different spike-in cell populations  get cell mRNA for downstream analysis, we examined
with PACS (Fig. 2b). Notably, VIM+ TaqgMan correlation =~ KRT19 transcript levels before and after sorting (Fig. 3).
with the calcein positive droplets displayed an average of =~ KRT19 is a cytokeratin that is expressed by many
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Fig. 2 Sensitivity and specificity of detection of rare cells using PACS. a Scatter-plot diagram of cell stain intensity values, and PTPRC (FAM,
lymphocyte staining, left) or VIM (HEX, PC3 staining, right) fluorescence from multiplexed TagMan assays. 44 out of 47 PC3 cells expressed VIM,
and only 2 of 44 also expressed PTPRC. The blue lines represent the thresholds applied to differentiate clusters; the heat map correlates with drop
counts. b Dynamic range of PACS. Different numbers of PC3 (blue circles) or DU145 (red circles) cancer cells were spiked in and sorted from a
background of lymphocyte Raji cells. The scatter plot shows strong correlation between the number of cells spiked in and the number of VIM+
drops, with a recovery of 82 % and 75 % for PC3 and DU145, respectively. Straight lines represent the fit across spike-ins. ¢ The scatter plot shows
the reproducibility of the PACS workflow across spike-ins in the two cancer cell lines. The detection efficiency (number of spiked-in cells that
show a positive TagMan signal) is consistently above 89 % (blue line) and 85 % (red line) for PC3 and DU145 cells, respectively

epithelial cancer cells but mostly absent in lymphocytes
[22, 23]. We quantified the expression of this transcript
in the cell lysate derived from both unsorted PC3:Raji
cell spike-in populations as well as PACS VIM+/PTPRC-
sorted spike-ins (all spike in populations contained
10,000 Raji cells prior to PACS sorting), and compared
its relative abundance to GAPDH to control for different

amounts of input material. We reasoned that if PACS
accurately identified and sorted PC3 cells from the het-
erogeneous population, we would expect the relative
abundance of KRT19/GAPDH following sorting to re-
semble that of the pure PC3 cells, while the unsorted
material would show reduced KRT19 levels due to the
presence of mostly Raji cells with a small percentage of
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Fig. 3 KRT19 expression analysis on PACS-sorted cells. a-b Representative qRT-PCR amplification curves using RNA from pure Raji and PC3 populations
(a), ora 50 PC3 cell spike-in unsorted and VIM + —sorted material (b) amplified using TagMan assays targeting GAPDH and the PC3-specific KRT19

gene. ¢ Relative quantification of KRT19 in VIM + —sorted lysate compared to material from a heterogeneous population across several cell spike-ins
shows reliable enrichment in sorted material. Dark red line represents the maximum AACt KRT19 calculated as the difference in ACt values between
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high-expressing PC3 cells. Indeed, qRT-PCR analysis on
material recovered from a PACS sorted 50 PC3 cell
spike-in experiment showed that KRT19 and GAPDH
were expressed at similar levels, and closely matched the
relative expression observed for the pure PC3 population
(Fig. 3a,b). As expected, pre-sorted material had much
lower KRT19 expression relative to GAPDH (Fig. 3b).
PACS-sorted material shows a similar level of KRT19/

GAPDH enrichment across the 100, 500 and 1000 cell
spike-in numbers, again validating that our approach is
both accurate and sensitive (Fig. 3c). The variability ob-
served in these experiments could be attributed to bio-
logical noise. With the small number of cells analyzed,
cell-to-cell variability in gene expression can play a sub-
stantial role in the overall expression pattern of KRT19.
Additionally, effects from RNA loss during processing
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and handling could also increase with decreasing cell
numbers leading to higher variability in the qRT-PCR
reactions.

Transcriptome analysis of PACS-sorted cancer cells
High-dimensional, quantitative gene expression analysis
with RNA sequencing can yield crucial insight into rare
cell states and behaviors [13, 14]. The successful enrich-
ment and qRT-PCR analysis of KRT19 expression indi-
cated that next-generation transcriptome sequencing on
PACS isolated cell subtypes might be possible. Thermocy-
cling can potentially reduce the amount of intact RNA in
a sample; therefore, we chose to optimize a random prim-
ing approach for RNA-Seq (see Methods). We generated
transcriptome libraries from replicate VIM+/PTPRC-
sorted cell lysate derived from 1000 PC3 cells spiked into
10,000 B-lymphocyte Raji cells, and compared them with
libraries prepared from unsorted heterogeneous cell spike-
in populations (Fig. 4a). Overall, we identified 4,461 differ-
entially expressed genes (FDR < 0.05), 2,242 of which were
enriched in the VIM + —sorted population and 2,219 in
the starting unsorted population (log,-fold change be-
tween 1.14 and 12.29, Additional file 2: Figure S2). We
then analyzed the 4,461 differentially expressed genes in
RNA-Seq data obtained from pure PC3 or Raji RNA
(Fig. 4a). Strikingly, the expression profiles from pure PC3
RNA closely resembled the VIM + —sorted RNA (Pearson’s
p =0.866, Fig. 4a and Additional file 3: Figure S3a), in-
dicating that PACS successfully enriched PC3 cells and
uncovered the prostate cancer cell transcriptional signa-
ture that was not observable in the unsorted population.
The transcriptional signatures of the unsorted spike-in
population and the Raji cells are also well correlated
(Pearson’s p=0.796, Fig. 4a and Additional file 3:
Figure S3b); however, as expected, the correlation is
slightly lower than between the VIM"-sorted and PC3
samples due to the presence of PC3 cells in the un-
sorted population (10:1, Raji:PC3).

We expected the PACS VIM + —sorted material to be
enriched in transcripts representative of prostate cells
that are epithelial in origin, and to be depleted of genes
typical of immune cells. Indeed, genes differentially
expressed in the VIM + -sorted population play roles in
epithelial polarity (STX2, STX3, EXOC6B) and adhesion
(integrins ITGB1 and ITGB5, CLDN4, CDH1), cell mi-
gration (ADAMTS1 and ADAMTS15 metallopeptidases)
and known markers of prostate cells (CD9, CD59, CD97,
KRT18, KRT19). Conversely, the unsorted RNA is
enriched in lymphocyte-specific transcripts and genes
involved in antigen processing and presentation (several
members of the HLA gene family, interleukins 10 and
16, CD74).

To further demonstrate that sequencing results from
PACS-sorted RNA are similar to those obtained from
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RNA isolated directly from cells, we compared the tran-
scriptional profiles of pure PC3 populations or those
from VIM"-sorted cells to the profile of pure Raji cells.
We identified 4,686 and 4,627 genes as differentially
expressed (FDR<0.05) in the VIM + -sorted and the
PC3 cell populations, respectively. Notably, 78 % of the
genes found to be differentially expressed in the pure
PC3 cells were also identified as differentially expressed
from the VIM + —sorted material (Fig. 4b). These results
support the use of PACS for high-dimensional gene ex-
pression profiling on sorted cell subtypes.

Validation of differentially expressed genes with single-
cell RT-PCR

We next sought to validate our transcriptome profiling
results by investigating the single-cell expression profiles
of selected genes (MAL2, ARHGAP29, CD9, and
KRT18) found to be enriched in VIM+ PACS sorted
RNA-Seq libraries (average log, fold change 2.8 +0.23,
Fig. 4a). Similar to previous experiments, PC3 cells were
stained with calcein violet and spiked into a Raji back-
ground population. If the target transcripts were differ-
entially expressed in PC3 cells, we would expect the
TagMan signal to be highly correlated with cell staining.
As shown in Fig. 5, the majority of PC3 cells expressed
each target gene (detection rates ranged between 95 %—
98 %, mean=97 +1 %), while only a small fraction of
Raji cells did (between 6 %—28 % of cells, mean =15 +
5 %). The presence of target transcripts in some of the
Raji population does not hinder PACS enrichment of
PC3 cells, since the Raji cells are also positive for
PTPRC expression detected with the multiplexed Taq-
Man approach. Subsequent to the above experiments,
we added Cy5 dye detection capability to the PACS plat-
form for expanded multiplex detection using calcein, a
TagMan assay targeting lymphocytes (PTPRC) and two
TagMan assays specific for prostate cancer cells (VIM
and EPCAM, Additional file 4: Figure S4). These experi-
ments validate the results from our transcriptome profil-
ing data and underscore the value of PACS for rare cell
subtype characterization and biomarker discovery.

Discussion

PACS is a powerful approach to cell subtype identifica-
tion, sorting and characterization. A fundamental feature
of the PACS workflow is the use of inexpensive, reliable
and readily available TagMan assays. These assays allow
for extremely sensitive and specific detection of nucleic
acids and give PACS key advantages over other “top
down” approaches to cell identification and sorting. We
showed that a VIM+/PTPRC- multiplex TagMan assay
run on the PACS workflow enables high-fidelity identifi-
cation of prostate cancer cells from both a background
cell line or primary cell population. PACS is currently
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configured for detection of four fluorescent channels.
With further expansion of our fluorescence detection
capability, PACS should enable efficient multiplexing of
at least five independent TagMan assays using readily
available probe dye and quencher combinations. The
ability to multiplex both positive and negative selection
markers with PACS provides efficient target cell identifi-
cation with an extremely low false positive rate. It is im-
portant to note that PACS is flexible and not restricted
to assaying only calcein viability dye and mRNA tran-
scripts within cells. PACS has also been used to identify
cell subtypes based on non-coding RNA and genomic
DNA sequences, a capability not possible with single-
cell barcoding methods that rely on polyadenylated
mRNA [11, 12, 15]. Moreover, the PACS method can
simultaneously interrogate cells labeled with fluorescent
antibodies against surface markers together with Taq-
Man reaction fluorescence. This ability to correlate pro-
tein and nucleic acid biomarkers in a single workflow
could prove highly effective for the unambiguous identi-
fication of many cell subtypes.

While PACS relies on preselected TagMan assays to ini-
tially identify cell subtypes, unbiased transcriptome profil-
ing on the contents of isolated cells can reveal essential
information on the biology underlying the selected sub-
population. The principal challenge to expression profiling
on PACS sorted material is the fragmentation of cellular
RNA during droplet thermocycling in the presence of di-
valent cations, which produces RNA quality similar to
FFPE samples. To overcome this challenge, we optimized
a random-priming RNA library preparation protocol that
works well on PACS-sorted RNA. The ability of this
protocol to deliver accurate and minimally biased tran-
scriptome information is evidenced by our data. We show
that sequencing of PACS sorted RNA is sufficient to
correctly differentiate among cell subtypes and extract
cell-specific transcriptional signatures. In addition to tran-
scriptome profiling, PACS could also enable full genome
sequencing on isolated cell subtypes. We previously dem-
onstrated the ability to perform targeted genomic DNA
sequencing with PACS and a related droplet-based en-
richment method, MESA [15, 40]. The combination of
transcriptome and genome sequencing makes PACS a
unique platform to reveal not only key aspects of cell
behaviors, but also the genetic drivers responsible for
those behaviors.

The potential applications of PACS are numerous and
encompass multiple fields in the life sciences. With a
demonstrated throughput of over 100,000 cells per ex-
periment [15], PACS is uniquely suited for analyzing
large heterogeneous cell populations, including immune
cells, disaggregated tumors and even circulating tumor
and fetal cells, especially when combined with cell pre-
enrichment or depletion strategies. Moreover, PACS is
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most useful when the cell subtype can’t be identified
with antibodies, either because a suitably specific anti-
body is not available or the biomarker of interest is not
translated into a protein. For example, PACS could allow
the detection and isolation of human cells latently in-
fected with HIV by directly targeting the genome inte-
grated virus with TagMan reactions [35]. Subsequent
transcriptome profiling on these isolated cell reservoirs
could identify critical host cell factors contributing to
persistent infection and/or latency. Another unique
PACS use case would be for the detection of non-coding
RNAs or alternative splicing events that mark a disease
state or contribute to its pathology [47].

Conclusions

PACS is a novel cytometry method that is capable of de-
tecting and isolating target cell subtypes with high sensitiv-
ity. The throughput, minimal sample processing and use
of readily available TagMan assays afford PACS significant
advantages over existing tools for studying cellular hetero-
geneity. With the added ability to sequence RNA following
sorting, we anticipate PACS will prove widely useful for
enumerating and transcriptionally profiling rare cell sub-
types from complex biological samples. Understanding the
transcriptional status of these rare cells will aid in the
study of human health and the causes of disease.

Methods

Cell culture and staining

Human PC3 and DU145 prostate cancer and Raji B-
lymphocyte cell lines (publicly available, ATCC catalog
numbers: PC3 CRL-1435, DU145 HTB-81 and Raji
CCL-86) were cultured in complete DMEM (DMEM
with 10 % FBS, 100 U/ml penicillin, and 100 pg/ml
streptomycin) at 37 °C with 5 % CO,. Before cell stain-
ing, adherent PC3 and DU145 cells were detached with
0.25 % trypsin-EDTA (Invitrogen). Cells were then pel-
leted at 400 g for 4 min and washed once in Phosphate
Buffered Saline solution (PBS, Life Technologies). Cells
were resuspended in 1 ml Hank’s Balanced Salt Solution
(HBSS, Life Technologies) with 5 uM Calcein Violet AM
(eBioscience) and stained for 20-30 min at room
temperature in the dark. Cells were then washed once
with HBSS and resuspended in PBS that was density
matched with OptiPrep (Sigma-Aldrich) prior to encap-
sulation in microfluidic droplets. For spike-in experi-
ments, 5 ul aliquots of cell suspension were combined
with an equal amount of trypan blue (Life Technologies),
then loaded on chamber slides and counted with the
Countess Automated Cell Counter (Invitrogen).

Peripheral blood mononuclear cell (PBMC) isolation
6 ml of whole blood was mixed with an equal volume of
PBS with 2 % FBS (Invitrogen), then loaded on a
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Histopaque-Accuspin column (Sigma). The column was
centrifuged at 1,000 RCF for 10 min, and the plasma and
buffy coat layers loaded on an Acrodisc WBC (Pall). The
filter was washed twice with 10 ml PBS, and leukocytes
were eluted in 7 ml of PBS-2 % FBS. Cells were pelleted
at 200 g for 10 min and resuspended in PBS-OptiPrep
as previously described.

Microdroplet TagMan RT-PCR

TagMan reaction primers and probes were purchased as
a pre-mixed assay from Integrated DNA Technologies
(IDT). Amplification primers for the VIM and PTPRC
genes were previously described [15, 16]. Exon junctions
targeted by the IDT TaqMan assays are as follows: ARH-
GAP29 ex. 20-21, CD9 ex. 2-3, EPCAM ex. 1-2,
GAPDH ex. 7-8, KRT18 ex. 4-5, KRT19 ex. 1-3, MAL2
ex. 3—4. SuperScript III Reverse Transcriptase (Invitrogen)
and Platinum Multiplex PCR Master Mix (Applied Biosys-
tems) were used for the microdroplet single-cell TagMan
reactions with the following thermocycling conditions:
15 min 50 °C, 93 °C for 2 min, 35-40 cycles of 92 °C for
15 s and 60 °C for 1 min. Reverse transcription in the
droplets was performed only on transcripts targeted by
the TagMan assays, not on the whole transcriptome. For
detection and sorting, thermocycled droplets were trans-
ferred to a 1 ml syringe and reinjected into a microfluidic
device.

Fabrication and operation of microfluidic devices

We performed the microfluidic droplet handling on de-
vices made from polydimethylsiloxane (PDMS) molds
bonded to glass slides; the device channels were treated
with Aquapel to make them hydrophobic. The PDMS
molds were formed from silicon wafer masters with
photolithographically patterned SU-8 (Microchem) on
them. We operated the devices with syringe pumps
(NewEra), which drove cell suspensions, reagents and
fluorinated oils (Novec 7500 and FC-40) with 5 % PEG-
PFPE block-copolymer surfactant into the devices
through polyethylene tubing [48].

Droplet fluorescence detection was carried out on a
inverted microscope (Motic) using four coincident lasers
(405 nm, 473 nm, 532 nm, and 640 nm, CNI lasers) to
excite the cell viability stain and TagMan probes. The
resulting fluorescence channels (centered at 440 nm,
510 nm, 572 nm, and 680 nm) were separated from the
lasers and each other with dichroic filters (Semrock) be-
fore being detected by four PMTs (Thorlabs). The detec-
tion was processed in real time using LabVIEW and an
FPGA card (National Instruments). For sorting, the
FPGA card was programmed to activate a high voltage
power supply (Trek) connected to a salt-water electrode
on the device to dielectrophoretically sort any drop that
matched the desired fluorescence profile [49]. The drop
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scatter plots and statistics were generated using
MATLAB. In the PACS scatterplots (e.g., Fig. 2a), the
vertically oriented calcein violet threshold was set manu-
ally in the empty gap just to the left of the tightly clus-
tered, brightly stained drops (red points). The thresholds
for the TagMan probes were set by placing an upper
bound on the “dark” cluster on the lower left of each cell
stain vs. probe plot (solid, multicolored regions); those
thresholds were chosen to sit in the middle of the flat
shoulder that was attached to the top of the dark cluster.
Rgl was used for the 3D plots in Additional file 4:
Figure S4c [50].

Quantitative RT-PCR analysis of PACS-sorted RNA
Emulsions were broken as previously described [15]. The
aqueous fraction from the droplets was diluted with water
and split into two TagMan RT-PCR assays targeting either
KRT19 or GAPDH. qRT-PCR reactions were performed on
the AriaMX Real-Time PCR System (Agilent Technologies).
Differences in expression levels were calculated using back-
ground normalized Ct values from qRT-PCR amplification
curves. For the KRT19 enrichment data in Fig. 3¢, all Ct
values were normalized using GAPDH as a standard. Prism
software was used for the amplification plots in Fig. 3.

RNA recovery and sequencing library preparation
Positively sorted TagMan emulsions were broken using
perfluoro-1-octanol and the aqueous fraction was diluted
in water. Total RNA was purified using the Quick-RNA
Microprep kit (Zymo), performing on column DNA di-
gestion with 5 pul DNAse I and 5 pl Exonuclease I (NEB)
for 90 min at RT to decrease genomic and TagMan PCR
amplicon contamination in the downstream preparation
steps. The RNA was recovered by performing two 8-ul
elutions. After rRNA depletion (Ribo-Zero Gold Kkit,
[lumina), libraries were prepared using the SMARTer
Stranded RNA-Seq kit (Clontech) and amplified using
15 PCR cycles. The libraries were purified with Select-a-
Size DNA Clean & Concentrator columns (Zymo) with a
75 bp cutoff, and eluted in 22 pl. Libraries were analyzed
on a High Sensitivity DNA Assay chip with a Bioanalyzer
(Agilent Technologies), and sequenced on a HiSeq4000 in
single-end 50 bp multiplexed runs. Sequenced reads
passing quality control (FastQC, cutadapt, trimmomatic,
[51, 52]) were aligned to the hgl9 human transcriptome
(iGenomes) using TopHat2-Bowtie2 mappers [53, 54].
Downstream analyses were performed using samtools,
HTSeq [55], and the edgeR and gplots packages for R
[56, 57]. The Benjamini—Hochberg procedure was used to
control for multiple comparisons.

Ethics
Anonymous blood samples were initially obtained from
a commercial provider (AllCells) that operates with
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independent IRB approval. Donor anonymity was protected
using United States HIPAA privacy and security rules. Fol-
lowing NIH policies governing human sample use, further
ethical approval was not required for this study.

Consent to publish
Consent was obtained by the commercial blood supplier
at the time of sample donation.

Availability of data and materials

The raw data and gene counts are accessible through the
Gene Expression Omnibus (GEO) database at the fol-
lowing address: http://www.ncbinlm.nih.gov/geo/query/
acc.cgi?acc=GSE80551.

Additional files

Additional file 1: Figure S1. PACS detection from a primary cell
population. (a-b) PC3 spiked in Peripheral Blood Mononuclear Cells
(PBMC) can be detected and sorted based on multiplex TagMan assays.
Scatter plots show cell stain (x-axis) versus PTPRC (left panels) and EPCAM
(a) or ARHGAP29 (b) fluorescence (right panels). Red dots represent
droplets with PC3 cells. The blue lines are the thresholds to define
clusters; the heat map colors are proportional to drop counts. (TIF 8059 kb)

Additional file 2: Figure S2. Distribution of fold changes of gene
expression. (a) Histogram representing the distribution of log,-fold change of
genes expressed in PACS VIM + —sorted material and the heterogeneous
Raji:PC3 (10:1) population (white bars). Red bars show the distribution
exclusively for the genes differentially expressed between the two samples.
(Insert) Box plot of the log,-fold change distribution for the differentially
expressed genes in (a). (TIF 7680 kb)

Additional file 3: Figure S3. Correlation of read counts. The scatter
plots show the correlation between read counts in VIM + —sorted
material and PC3 cells (a) and the correlation between read counts in the
heterogeneous Raji:PC3 population and Raji cells (b) for the differentially
expressed genes in Fig. 4a. The red line is a linear fit to the data. p
indicates the Pearson’s correlation coefficient. The data is plotted as log,
of the average read count (in counts per million, CPM) normalized for
library size. The green data points in (a) represent a subset of the 23 %
(1057) of differentially expressed genes that were unique to the VIM+
PACS sort vs. pure Raji comparison from the Fig. 4b Venn diagram. The
blue data points were also identified exclusively in the pure PC3 vs. pure
Raji comparison (998 genes shown in Fig. 4b). (TIF 14209 kb)

Additional file 4: Figure S4. PACS workflow showing 4-channel multiplex
detection of calcein stained PC3 and Raji cells. In many biological samples,
it isn't possible to specifically stain one cell type. Therefore, we performed
PACS on a heterogeneous population of Raji:PC3 cells (10:1 ratio),
staining both target and background cell populations. In this experiment,
we also employed a third TagMan assay targeting EPCAM. (a) A mixed
population of calcein violet-stained Raji and PC3 cells can be separated
as a PTPRC+ (green dots) and a PTPRC—/EPCAM+/VIM+ cluster (red dots),
respectively. (b) In the absence of PC3 cells, the PTPRC—/EPCAM+/VIM+
cluster is absent and there is minimal detection of false positive Raji cells.
The blue lines are the thresholds to define clusters; the heat map colors
are proportional to drop counts. (c) The calcein-violet positive drops from
(a) and (b) are represented in 3D plots. The plots highlight the position
of the PC3 (red) and Raji (green) clusters in the fluorescent space for the
heterogenous Raji:PC3 population (left) or Raji only cells (right). The black
cluster represents calcein positive drops with no TagMan fluorescent
signal. The blue dots represent drops that are positive for all TagMan
assays (38, left panel). This data demonstrates the utility of the TagMan
multiplexing approach to accurately identify target cells without relying
on cell-type specific staining. (TIF 19652 kb)
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