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Abstract

Background: Previous studies compared running cost, time and other performance measures of popular
sequencing platforms. However, comprehensive assessment of library construction and analysis protocols for Proton
sequencing platform remains unexplored. Unlike lllumina sequencing platforms, Proton reads are heterogeneous in
length and quality. When sequencing data from different platforms are combined, this can result in reads with
various read length. Whether the performance of the commonly used software for handling such kind of data is

satisfactory is unknown.

Results: By using universal human reference RNA as the initial material, RNaselll and chemical fragmentation
methods in library construction showed similar result in gene and junction discovery number and expression level
estimated accuracy. In contrast, sequencing quality, read length and the choice of software affected mapping rate
to a much larger extent. Unspliced aligner TMAP attained the highest mapping rate (97.27 % to genome, 86.46 %
to transcriptome), though 47.83 % of mapped reads were clipped. Long reads could paradoxically reduce mapping
in junctions. With reference annotation guide, the mapping rate of TopHat2 significantly increased from 75.79 to 92.
09 %, especially for long (>150 bp) reads. Sailfish, a k-mer based gene expression quantifier attained highly
consistent results with that of TagMan array and highest sensitivity.

Conclusion: We provided for the first time, the reference statistics of library preparation methods, gene detection
and quantification and junction discovery for RNA-Seq by the lon Proton platform. Chemical fragmentation
performed equally well with the enzyme-based one. The optimal lon Proton sequencing options and analysis

software have been evaluated.
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Background

High-throughput RNA sequencing (RNA-Seq) is a powerful
tool for transcriptome research of gene expression quantifi-
cation, alternative splicing detection, gene regulation and
single nucleotide polymorphisms (SNPs) discoveries [1-7].
Since the rapid development of sequencing technology
in the last decade, several sequencing platforms such as
Roche 454, Illumina HiSeq, Life Technologies SOLID,
Personal Genome Machine (PGM) and Proton and Pacific
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Biosciences RS have been released, which facilitate large-
scale transcriptome studies [8—10].

Previous studies conducted by the Association of Bio-
molecular Resource Facilities (ABRF) and the Sequencing
Quality Control Consortium (SEQC) reported high intra-
and inter-platform concordance in RNA-Seq among HiSeq,
PGM and Proton, SOLID, 454 and PacBio RS [11, 12].
However, bias and artifacts that can be introduced during
different stages of library construction, such as RNA
fragmentation, reverse transcription, phosphorylation, and
adaptor ligation [13-16], were not studied in details for
their possible consequences for the Ion Proton platform.
Moreover, many popular RNA-Seq analysis tools were de-
veloped based on HiSeq data featured with high accuracy
and equal read length, whilst sequencing data generated
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from Proton and PacBio RS are prone to indels and of
variable read length [11, 17]. Whether the analysis strat-
egies and software for HiSeq data can be applied directly
to the Ion Proton data has not been evaluated. For exam-
ples, the ABRF study [11] showed that the performance of
GMAP [18] could achieve at about 90 % mapping rate but
for STAR [19] only 60 % for PacBIO sequencing reads.
The lower mapping rate by STAR was also observed for
Proton data (50 %), when compared with that by TMAP
(80 %). We also reported that care has to be taken for the
detection of minor variants from sequencing errors on se-
quencing data generated by PGM [20].

Several studies demonstrated the potential of semicon-
ductor sequencing applications on bacterial genome as-
sembly, target region sequencing and RNA-Seq in a
cost-effective way with a rapid turnaround [21-23]. At
present more than one-third of RNA-Seq conducted by
Beijing Genome Institute is for gene expression quantifi-
cation, where accuracy at individual position is not the
major concern. So is the case in single genome assembly
with sufficient coverage. In 2012, Life Technologies re-
leased the next-generation semiconductor sequencer
Proton, with much higher throughput (at gigabases) than
PGM (at megabases), which expands semiconductor se-
quencing to the applications to whole exome and tran-
scriptome sequencing [17, 24]. Ease of operation and
maintenance and short run time of both the PGM (and
applicable to Proton) platform attracted much attention
[12, 23], because these are crucial factors in pathogen
detection in outbreak investigations [23] and clinical appli-
cations such as disease biomarker detection, cancer diag-
nostics and therapeutics and prenatal diagnosis [25, 26].

Library preparation is the first step before sequencing.
First of all, long contiguous RNAs have to be fragmented
and enzyme digestion is a common option. RNaselll is a
ribonuclease that can digest eukaryotic single strand
RNAs (ssRNAs) at specific sites, or recognize and cleave
double stranded RNA (dsRNA). During eukaryotic dsRNA
metabolism, RNaselll cleavage usually generates both short
and long fragments, and is generally considered to be a ran-
dom cutter [27, 28]. Therefore it has been successfully ap-
plied in NGS RNA-Seq library construction [29]. However,
some studies also pointed out that bias can be introduced
by RNaselll fragmentation on SOLID sequencing platform,
as RNaselll has preferred cutting sites [13]. How these
biases are manifested in variable-length sequence gener-
ation platforms remains to be investigated. To identify suit-
able protocols and software for processing Proton data in
RNA-Seq applications, we constructed universal human
reference RNA (UHRR) libraries by RNaselll and chemical
fragmentation with different initial amounts of RNA and li-
brary insertion sizes, and compared the performance of a
repertoire of software originally developed for analyzing
HiSeq data on Proton sequencing data.
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Reliable alignment is usually the pre-requisite for ana-
lyses like gene expression quantification, alternative spli-
cing detection and SNP calling [30]. Aligning RNA-Seq
data to a eukaryotic genome is more challenging than to
its transcriptome, because many genes exhibit multiple
exon-intron architecture in a genome, while reads se-
quenced from mature mRNA transcripts are intron-free.
Moreover, in mammalian genomes, introns can span a
very wide range of lengths, typically from 50 to 100,000
bases. Since longer reads are more likely to span (more)
exons, programs were developed to deal with the reads
across exon-exon junction sites when aligning RNA-Seq
data to a reference genome [19, 31]. Software and methods
were also developed to accommodate the features of se-
quencing reads generated from different sequencing plat-
forms, such as short read aligner Bowtie2 [32] and BWA
[33] for SOLID and HiSeq sequencing data, GS Reference
Mapper(GSRM)  (http://www.454.com/products/analysis-
software/) for 454 sequencing data, TMAP (https://github.
com/iontorrent/TMAP) for Ion Proton/PGM sequencing
data, and BWA-SW [34] and GMAP [18] for long read
alignment.

Gene detection and expression quantification have long
been mature and important applications in RNA-Seq, a
number of methods and software for estimating genes and
transcripts abundance have been released over the past
years. To quantify gene expression level, the first step is to
find out how many reads assigned to a certain gene or
transcript. Based on Fragments Per Kilobase of transcript
per Million mapped reads (FPKM) [2], Reads Per Kilobase
of transcript per Million mapped reads (RPKM) [5] or
Transcripts Per Million (TPM) [35], there are two major
types of gene quantification method. One is alignment-
based, calculating from transcriptome alignment results
such as RSEM [36], BitSeq [37], eXpress [38], [soOEM and
its variation tailor-made for Ion Torrent Data MaLTA-
IsoEM [39, 40] or genome alignment results such as Cuf-
flinks/Cuffdiff [41], HTseq [42] and MISO [43]; it is also
important to differentiate count-based methods (e.g.,
HTseq [42]) and methods that first estimate transcripts
frequencies by which gene expression levels are estimated
(e.g, RSEM [36], Cufflinks [41]); the other is alignment-
independent, for example, Sailfish [44]. To evaluate the
performance of Proton in gene expression quantification,
we selected several combinations of alignment and quanti-
fication software for both transcriptome and genome map-
ping analyses.

Result

Library preparation and sequencing statistics

Two libraries were constructed by RNaselll fragmenta-
tion according to Ion Total RNA-Seq Kit v2 specifica-
tions (Life Technologies, Fig. 1a), the other nine were by
chemical fragmentation according to the BGI protocol
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(Fig. 1b), yielding a total of more than 204 million reads.
Along with two additional HiSeq RNA-Seq libraries se-
quenced on HiSeq 2000, the detailed information of
every library is presented in Table 1 and Additional file
1: Figure S1 and Additional file 2: Figure S2. The se-
quencing data are deposited in Sequence Read Archive
with project ID SRP064015. The Ion Proton sequencing
reads had variable length, peaking at around 150 ~
200 bp and ranging from 30 to over 300 bp (Additional
file 1: Figure S1). The median and interquartile range
(IQR) of read length, proportions of Q10, Q20 and Q30
reads were (140.0; 18.5) and (98.82 %, 72.14 %, 1.730;
0.08 %, 2.81 %, 0.35 %) respectively.

Alignment

The mapping rates among Ion Proton sequencing reads
by different library preparation conditions and programs
are depicted in Fig. 2a. The mapping rates for little start-
ing material (200 ng) were expectedly lower than those
for 2ug. The average performance of aligners in mapping
Ion Proton reads prepared by all the 2ug libraries is fur-
ther summarized in Table 2. The proportion of proton
reads that could be mapped to the reference human
transcriptome was small by BWA (49.87 %) and Bowtie2

(31.04 %), in contrast to that by BWA-SW (82.28 %) and
TMAP (86.46 %). The mapping rates by BWA and Bow-
tie2 declined significantly when read lengths were larger
than 150 bp (Fig. 2b). TMAP attained the highest map-
ping rates and the rate did not decrease with increasing
read length, so did BWA-SW. Nevertheless, the per-
formance of BWA-SW was worse than that of TMAP
for reads shorter than 120 bp (Fig. 2b). The difference in
mapping rates to the human transcriptome and genome
between BWA and BWA-SW could be as high as up to
60 and 80 % respectively.

Likewise, the performance of BWA also deteriorated
for longer read length and so did TopHat2. The other
aligners were less affected. When reference junction an-
notation was allowed to guide the alignment by TopHat2
(TopHat2G), the mapping rate elevated by as high as
40 % for long reads (Fig. 2c).

To determine whether the low alignment rates with
long reads in general (Fig. 2) were due to read length or
sequencing errors (or read quality), we simulated RNA-
Seq data with either high or low sequencing quality (for
details see Method) and of different length. For the
alignment of high quality reads to reference transcrip-
tome, BWA, Bowtie2 and BWA-SW all manifested more
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Table 1 Sequencing platforms, library preparation, and sequencing results

Sequencer Fragmentation Initial Library Library insert Mean read Raw Q10 Raw Q20 Raw Q30 Total reads  Total base
methods RNA(ug) name size(bp) length(bp)
lon Proton  Chemical 2 ProC_1 196 153 9869 % 70.85 % 1.55 % 19448438 2,975,809,154
2 ProC_2 179 138 98.70 % 69.81 % 1.34 % 25,262,605 3,505,548,278
ProC_3 200 155 98.82 % 72.14 % 1.80 % 8,139,486 1,263,964,775
2 ProC_4 166 136 98.80 % 7231 % 1.79 % 23,866,259 3,267,082,715
ProC_5 196 155 98.82 % 73.90 % 1.88 % 15,461,415 2,408,389,343
0.2 ProC_6 175 137 98.74 % 69.79 % 1.35 % 22,673,571 3,123,633,358
ProC_7 215 158 98.75 % 70.67 % 143 % 13,098,194 2,076,154,568
02 ProC_8 180 140 98.82 % 71.57 % 161 % 23,142,854 3,251,986,105
ProC_9 199 160 98.85 % 73.24 % 1.73 % 12,219,286 1,955,402,424
RNaselll 2 ProR_1 89 94 99.25 % 83.05 % 4.04 % 16,024,785 1519618514
2 ProR_2 91 92 99.17 % 81.95 % 387 % 25434,638 2,364,470,896
HiSeq Chemical 2 HiSeq_1 193 90,90 98.11 %; 97.03 %; 91.86 %; 60,313,246 10,856,384,280
2000 95.11 % 93.73 % 8843 %
2 HiSeq_2 187 90,90 97.72 %; 96.59 %; 91.51 %; 56,610,071 10,189,812,780
94.53 % 93.06 % 87.58 %

or less the same mapping rates by different read lengths.
In contrast, low quality reads decreased mapping rates
of BWA and Bowtie2 with increasing read length, which
suggests that the low mapping rate with long reads can
be caused by the accumulation of sequencing errors
(Fig. 2d). Similar phenomenon was observed in genome
alignment. The good performers BWA-SW and TopHat2G
were insensitive to read quality and length. Moreover, since
TopHat2G far outperformed TopHat by the same length,
junction alignment complexity was also likely responsible
for reduced mapping rates (Fig. 2e).

Gene detection and expression quantification

All methods showed high consistency with the TagMan
array results obtained from MAQC I project in expres-
sion quantification in general (median correlation coeffi-
cients > 0.80) but the dispersion of Pearson correlation
coefficients were higher (interquartile range = 0.066) than
Spearman’s (interquartile range = 0.015) (Fig. 3a). Quantifi-
cation by transcriptome-based RSEM and alignment-free
Sailfish was in general higher and more robust than
genome-based Cuffdiff-based methods under various con-
ditions, consisting of fragmentation methods, sequencing
depth, initial RNA input and insert size (Fig. 3a).

Sailfish was more sensitive in gene detection than other
software, while RSEM detected much fewer genes, most of
which can also be found in other gene quantification strat-
egies (Fig. 3b and d). Cuffdiff-based strategies manifested
variable performance in mapping rate and correlation with
TagqMan array results (Additional file 3: Figure S3C and D).
The higher the mapping rate (Table 2), the more was corre-
lated with TagMan array results (Fig. 3a), and could more
genes be detected (Fig. 3b).

Junction discovery

Compared to Microarray, a unique application of RNA-
Seq is to detect alternative splicing events and discover
novel isoforms. The very first step of these analyses in-
volves junction discovery. To estimate the performance
of the Proton platform in junction discovery, we com-
pared the results obtained from TopHat2, TopHat2G
and Subjunc in the numbers of total and annotated de-
tected exon-exon junctions.

All programs detected more than 150,000 junctions
covered by 40 million reads (ProC_1, ProC_2, ProC_3,
ProC_4 and ProC_5 in Table 1) (Fig. 4a), with over
130,000 junctions were commonly detected by all the
three methods. However, there remained a large number
of junctions detected by individual methods (Fig. 4b).
Subjunc detected more junctions than TopHat2, however
when reference junction annotation (reference gtf) was
allowed to guide alignment for TopHat2 (TopHat2G), the
number of detected junctions significantly increased, espe-
cially for the annotated junctions (Fig. 4a and c). As the se-
quencing depth increased, Subjunc detected more novel
junctions (20.29 % novel junctions/total junctions) than
TopHat2 (16.74 %) and TopHat2G (8.92 %) (Fig. 4c). The
proportion of junction reads in total aligned reads in-
creased along with read length in general and TopHat2G
was more efficient in aligning junction reads than Subjunc
and TopHat2, especially for long reads (Fig. 4d).

Library preparation based on chemical and RNaselll
fragmentation method

In this study, we constructed RNA-Seq libraries based on
two protocols: one with RNaselll fragmentation (ProR)
with Ion Total RNA-Seq kit v2, the other with chemical
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fragmentation (ProC) according to BGI’s protocol. The
two methods were consistent in gene expression quantifi-
cation (Spearman correlation >0.97) (Fig. 5a) and detec-

tion (96.6 % overlap)

(Fig. 5b), and junction discovery

(88.2 % overlap) (Fig. 5¢).

We also compared the read counts mapped to each

gene from the libraries constructed with Ion Total RNA-
Seq kit v2 protocol (ProR) and BGI protocol (ProC).
Some genes and junctions were identified with high read
depth according to one method but not the other (Fig. 5d
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Table 2 Average performance of aligners in mapping lon Proton reads prepared by all the 2ug libraries (see Table 1 for details) to

reference human genome and transcriptome

Aligner type Software Percentage of reads aligned to reference human
Genome Transcriptome
Unspliced Bowtie2 - 31.04 %
BWA 39.90 % 49.87 %
BWA-SW 93.25 % 82.28 %
TMAP 97.27 % 86.46 %
Subread 84.44 % ND*
Splice-aware Subjunc 85.99 % ND
TopHat2 75.70 % ND
TopHat2G 92.09 % ND
*Not done

and e). The effect was possibly not only due to the non-
stranded nature of BGI protocol (Fig. 1), but also caused
by the difference in RNaselll and chemical fragmenta-
tion methods, a similar phenomenon also identified in
SEQC/MAQC III assessment, in which bias in gene and
junction detection could still be identified after the effect
of anti-sense genes had been removed [12].

RNaselll specifically recognized RNA secondary struc-
tures that contain double-strand and cleaved it into
mainly 90 bp fragments (Additional file 4: Figure S4A).
We confirmed the cutting pattern (Additional file 4:
Figure S4B) reported in a previous study using SOLiD
[13], and additionally identified some duplicate reads
(Additional file 4: Figure S4B) contained hairpin structure
(Additional file 4: Figure S4C).

The read coverage among all transcripts showed no
distinctive bias or deflections (Additional file 4: Figure
S4D and E), but the coverage within each transcript
showed visible differences between RNaselll and chemical
fragmentation (Fig. 5f). Moreover, even the estimated gene
expression were highly consistent between the two proto-
cols (Fig. 5a), the coverage of the bases in exon region
showed significant differences (Fig. 5g), which suggested
that exon-level expression analysis, variation discovery
and alternative splicing detection may be affected due to
coverage bias between different library construction proto-
cols [45]. Ion Proton sequencing and mapping results
demonstrated a similar distribution of genomic categories
(Fig. 5g and h) to those by other technologies reported in
the ABRF study with poly-A enrichment [11]. However,
there is an obvious difference in the proportions identified
between using the GENCODE v24 Comprehensive (H)
and Basic (I) gene annotations.

Discussion

With growing interest in applying RNA-Seq for tran-
scriptome annotation, novel transcript discovery, gene
expression and other applications, systemic deviations

and reproducibility are the two issues that cannot be
ignored [13, 46, 47]. Although the influence of library
construction methods and sequencing platforms was
investigated extensively [12, 13, 45, 48], there has been
no dedicated study for Ion Proton RNA-Seq analysis.
We have reported a comprehensive assessment of the
application of Proton sequencing platform on RNA-Seq,
including software and analysis strategies in alignment,
gene detection, gene expression quantifications and junc-
tion discovery, as well as the bias introduced by different
library construction methods.

The phenomenon of increasing length yet deteriorat-
ing quality towards the end of a sequencing read is
widely accepted and confirmed in platforms like HiSeq,
MiSeq, 454 and Ion Proton/PGM [11, 49, 50]. Neverthe-
less, shorter reads are not necessarily of higher quality,
especially when the read length in the same library is
not constant. The automatic filter strategy of Torrent
Suite trims the 3’ end of reads below certain quality
threshold, which can generate short reads passing the
quality filter check, but with still lower than average
mean read quality. In our study, the highest average read
quality is around 120 bp ~ 160 bp (Additional file 2:
Figure S2). Ion Proton base calling software derives
reads as long as possible, and some long reads with
high quality can also be yielded. Therefore, read simu-
lator developers should not only focus on base quality
along read position, but should also take the average
read quality associated with read length into consider-
ation for Proton.

BWA is an unspliced aligner, widely used in NGS
based DNA analysis which align genome resequencing
reads back to reference genome. Even it cannot handle
long gaps like introns in RNA-Seq data, its good perform-
ance in alignment accuracy and efficiency with HiSeq data
extends its use in RNA-Seq analysis as SNP and indel
calling [1]. The mapping ratio of Proton RNA-Seq data
aligned to reference genome by BWA demonstrated
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J

strong negative correlation to read length, possibly long
reads were more likely to span junction site of multi-
exon (Fig. 3), which gives rise to complexities and diffi-
culties in alignment for BWA to open such long gaps
for introns [33].

Unspliced aligners TMAP and BWA-SW attained the
highest mapping rates against the reference human gen-
ome among all programs in this study (Table 2, Additional
file 1: Figure S1 and Additional file 2: Figure S2A), and the
alignment rates were not affected by read length. For
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TMADP, reads spanning junction sites or difficult to be
mapped were clipped directly at either 3’ or 5’ ends, or
mapped poorly at one end with many indels and mis-
matches. For BWA-SW, reads spanning multi-exon were
clipped or aligned multiple times in different exon positions

[34]. Compared to TopHat2 that attempts to align each
base and does not clip reads at all, TMAP and BWA-SW
seem to work in a simpler and more efficient way, though
it is not known whether the clipped reads affect the align-
ment accuracy and contain important information.
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Even though the mapping rate is sensitive to parame-
ters, it is still critical to adjust the best combination for
Ion Proton data, because some parameters may actually
be read length dependent, such as the number of mis-
matches may increase for longer reads, maximum gap
length, maximum edit distance in TopHat2, maximum
mismatches in Subread, but the length of read se-
quenced from Ion Proton is not equal (Additional file 1:
Figure S1), which makes it scarcely possible to increase
sensitivity without sacrificing specificity.

Moreover, because of the different alignment algorithm
and parameters such as mismatch number, error rate or
indel penalty among different programs, comparing the
mapping ratio directly to evaluate the performance of
aligners can hardly be fair [50]. Besides the overall map-
ping ratio, it is more concerned whether mapping rate is
associated with read length. The read length of some other

NGS sequencers such as PGM, Roche 454, PacBio RS can
also be varying, and likely to be increased by size selection,
updating of sequencing enzyme or base calling method.
So, how to handle reads with varying length is still challen-
ging in NGS software design.

Our study suggests that the decline of mapping rates
of long reads against reference transcriptome by BWA
and Bowtie2 was mainly due to the accumulation of se-
quencing error (Fig. 2c), whilst both sequencing errors
and difficulty in junction alignment accounted for the
poor mapping performance to genome (Fig. 2d and e).
When reference junction annotation was allowed to
guide the alignment, it reduced the complexity in read
alignment to known junctions, and hence resulted in in-
creased mapping rates (Fig. 2b).

Many gene expression estimation methods relied on
alignment results, thus the performance of gene detection
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and quantification was highly dependent on the alignment
rate and accuracy [5]. However, due to the unequal
read length and high sequencing error rate, some well-
performed software and methods are not suitable in
processing Proton RNA-Seq data. RSEM requires strict
alignment, which any gaps, indels or clipping of read
are not allowed [36]. Considering the sequencing quality
and read length with Proton, those criteria can be too
harsh. When read length increases, sequencing errors can
also accumulate, resulting in extremely low alignment rate
for long reads (Table 2, Fig. 2a), which in turn make fewer
reads available for gene detection.

The alignment-free Sailfish performed well in error
tolerance, were concordant with TagMan array results
and sensitive in gene detection when compared to other
methods (Fig. 3, Additional file 3: Figure S3). Besides,
the performance of Cuffdiff + TMAP was also remarkable,
even better than the official protocol Cuffdiff + TopHat2G
[51] (Fig. 3, Additional file 3: Figure S3C and D). This
could be due to the high alignment rate of TMAP (Table 2,
Fig. 2a). Even though TMAP is an unspliced aligner, which
is not designed for mapping RNA-Seq data to a reference
genome, because each read can be anchored to a particu-
lar exon of a certain gene before exon-exon junctions are
detected, unspliced alignment result can also be used to
estimate expression level [52]. We also compared the per-
formance of HTSeq, a representative of the count-based
methods, with Cuffdiff. HTSeq detected fewer genes than
Cuftdiff and the two methods have a similar trend. How-
ever, Cuffdiff attained higher consistency with Tagman
qPCR results (Additional file 5: Figure S5).

Long Proton reads are more likely to span across
(multiple) junctions and thus are more effective in iso-
form and alternative splicing detection (Fig. 4d) [11].
Nonetheless, they are also more difficult to be aligned
against reference genomes. In the presence of a refer-
ence annotation guide, the mapping rate of TopHat2 in-
creased significantly (Fig. 2, Table 2), so did the detected
junction number (Fig. 4, Additional file 3: Figure S3E).
Although Subjunc detected more novel junctions (Fig. 4),
they need experimental verification.

In this study, we compared different library construc-
tion protocols, initial RNA input, and library insert size,
all libraries showed high concordance in gene and junc-
tion detection (Additional file 3: Figure S3A and B). We
also found that by different fragmentation methods as
RNaselll and chemical, even the overall transcript coverage
shown no bias in 3’ or 5" end (Additional file 4: Figure S4D
and E), however the within transcript coverage illustrated
different mapping pattern (Fig. 5f), and low concordance in
base coverage (Fig. 5g), which indicates that the variation
detection and alternative splicing discovery can be affected
by the coverage bias introduced during library construction.
Therefore the same protocol should be followed in a single
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project. Finally, although our results demonstrated a com-
parable distribution of genomic categories (Fig. 5h and i)
with the ABRF study result [11], the difference in the
proportions identified between using the GENCODE
v24 Comprehensive and Basic gene annotations war-
rants second thoughts before comparison among
RNA-seq results. Whether the same software is used
to derive genomic profiling, whether the same param-
eters or definitions of intergenic regions are used,
whether the same reference is used are all aspects we
should pay attention to before a rigorous conclusion
can be drawn.

This is the first study that provides an in-depth RNA-
Seq analysis assessment on Proton platform, which facil-
itates software and method development for sequencing
platforms that yields variable sequencing read length
and sub-optimal sequencing quality. We also provide a
resource of proton data for comparisons with RNA-seq
data generated by enriched mRNA using new sequencing
platforms, for examples, BGISEQ-500 and Sequel.

Conclusion

In the study, universal human reference RNA was used
for library construction by RNaselll and an alternative
library preparation protocol based on mRNAs chemical
fragmentation for Proton sequencing. RNaselll or chem-
ical fragmentation constructed Proton as well as HiSeq
libraries share similar number of gene and junction dis-
covered. We compared a wide spectrum of software de-
veloped for analyzing HiSeq data on Proton data by
alignment rate, expression level correlation with TagMan
array results, the number of genes detected and junction
discovery. Simulated sequencing data were also used to
determine the factors that affect alignment rate. K-mer
based alignment free quantifier Sailfish was robust in
gene quantification and compatible with heterogeneous
length and sub-optimal quality reads. With inappropriate
mapping programs, long reads, even of high quality,
could paradoxically reduce mapping in junctions. Reference
guides could partially ameliorate the situation, demon-
strated by the superior performance of TopHat2G when
compared with TopHat2 in junction alignment. TMAP and
BWA-SW manifest high tolerance in sequencing error and
unaffected mapping rates for long reads. Decreased align-
ment rate with longer reads could be due to accumulated
sequencing errors, or higher probability of spanning across
junctions.

Method

Sample preparation

The standard commercial Universal Human Reference
RNA (UHRR, 740000, Agilent Technologies) was se-
lected as starting RNA materials because it has been
used in benchmarking studies, including MAQCI and
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SEQC/MAQC-III by US Food and Drug Administration
[12, 53]. This sample is composed of total RNA from 10
human cell lines, and the corresponding differential gene
expression data measured by Tagman array in MAQCI
[53], which is widely used for assessing the accuracy of
genes expression quantification in RNA-seq are available
[11, 12, 53]. The sample was diluted to 1 pg/pl and the
quality was assessed using Agilent Bioanalyzer 2100.

lon Proton library preparation and sequencing

Library construction based on chemical fragmentation

We used 2 pg or 0.2 pg total RNA (UHRR) as the starting
material to enrich mRNA with Dynabeads® mRNA Purifi-
cation Kit (#61006, Life Technologies) according to the
manufacturer’s protocol. The mRNA was then fragmented
using 5x first strand buffer and 0.1 ng N6 random primer
at 94 °C for 10 min. The first-strand cDNA synthesis was
constructed with dNTPs, DTT, RNase Inhibitor and
SuperScript® II Reverse Transcriptase (#18064014, Life
Technologies). The reverse transcription PCR conditions
were as follows: 25 °C for 10 min, 42 °C for 40 min, 70 °C
for 15 min, 4 °C hold. The first strand cDNA(ss-cDNA)
were incubated with 5x second strand buffer (#10812014,
Life Technologies), 20 mMdNTPs, 25U DNA Polymerase
I (#P7050L, Enzymatics), 1U RNaseH(Y922L, Enzymatics)
at 16 °C for 2 h to synthesize double strand cDNA (ds-
c¢DNA). The ds-cDNA was repaired by T4 Polynucleotide
Kinase, T4 DNA polymerase and Klenow fragment with
dNTPs to create phosphorylated blunt-end termini. The
end-repaired ds-cDNA was then ligated to synthetic A
and P adaptors. The adaptor-ligated ds-cDNA was puri-
fied with Ampure XP beads (#A63882, Beckman) to re-
move unincorporated adaptors. The purification libraries
were size selected by agarose gel electrophoresis, followed
by purification with QIAquick Gel Extraction Kit (#28706,
Qiagen). The size selected libraries were inserted with
templates of 150 bp ~ 220 bp, and then subjected to PCR
(72 °C for 20 min, 95 °C for 5 min, followed by 12 ~ 13 cy-
cles of 95 °C for 30 s, 58 °C for 30 s, 72 °C for 1 min, and
kept at 4 °C) in a final 25 pl reaction solution containing
1U Platinum® Pfx DNA Polymerase (#C11708-021, Invi-
trogen), 1 x Pfx buffer, MgSO4, dNTPs, A primer and P
primer. The amplified PCR libraries were purified with
Ampure XP beads and eluted in TE buffer.

Library construction based on RNaselll fragmentation
Libraries were prepared from 2 pg of total RNA (UHRR),
and mRNA was enriched with Dynabeads® mRNA Puri-
fication Kit. The mRNA fragmentation with RNaselll
and following steps were carried out according to Ion
Total RNA-Seq Kit v2 recommendation (#4476286E,
Life Technologies).
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Sequencing on lon Proton platform

Emulsion PCR was performed using the One Touch sys-
tem (Life Technologies). Beads were prepared using the
One Touch 2 Template Kit v3 (#4488318). Sequencing
was performed by using Ion Proton 200 sequencing kit
v3 (#4488315) on the P1 Ion chip. Data were collected
using the Torrent Suite v4.0 software.

lllumina Hiseq2000 library preparation and sequencing
We chose the same amount (2 pg) of UHRR as the start-
ing material to construct HiSeq RNA-Seq libraries for fair
comparison. Most library preparation steps were the same
as Ion Proton protocol based on chemical fragmentation.
The differences lie in that end-repaired ds-cDNA was in-
cubated with Klenow fragment (3" — 5’exo-) and dATP
to create 3’ overhangs, and then was ligated to HiSeq gen-
eral adaptors. After purifying with Ampure XP beads and
size selecting with agarose gel electrophoresis, the insert
template was adjusted to 180 bp ~ 250 bp. Finally, the
adaptors ligated DNA were amplified with the following
conditions: 94 °C for 2 min, and 13 cycles of 94 °C for
15s, 62 °C for 30 s and 72 °C for 30 s, 72 °C for 10 min in
a final volume 25 ul containing 1U Platinum® Pfx DNA
Polymerase, 1 x Pfx buffer, MgSO4, dNTPs, and general
HiSeq general PCR primers. Sequencing was carried out
on HiSeq2000 according to the Illumina protocols for
90 x 2 pair-end sequencing.

Sequencing data filtering

Since raw reads may contain low quality reads or
adaptor sequences, preprocessing before further analysis
is necessary. The filtering steps were as follows: adaptor
trimming; average quality calculation of the last 15 bases
from 3’ end, trimming the end until the average quality
is higher than 10; removal of the reads with length less
than 30 bp.

Alignment

To evaluate the performance of software in aligning Ion
Proton sequencing data, reads were mapped to reference
genome hg38 downloaded from UCSC and reference
transcriptome RefSeq v106 downloaded from NCBI (see
Data source in Additional file 6: Supplementary materials).
Replicate libraries were merged to analyze whether the
mapping ratio is associated with read length. Alignment
results were visualized by Integrative Genomics Viewer
(IGV) [https://www.broadinstitute.org/igv/].

Read simulation

dwgsim-0.1.11 [54] was used to simulate two sets of
RNA-Seq data based on RefSeq transcripts, one of high
sequencing quality, with error rate was 0.001, among
which 10 % of the errors were indels; and the other of
low sequencing quality, with error rate was 0.01, and
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80 % of the errors were indels. The length of simulated
reads were set to 300 bp with single-end, and then trimmed
to 100, 150, 200, 250 bp respectively.

Gene and isoform expression quantification

Since RefSeq v106 downloaded from NCBI contained
predicted transcripts (ID starting with XM or XR), which
may affect quantification accuracy, to better understand
the performance of gene expression estimated with Ion
Proton sequencing platform and library construction
methods, we used RefSeq downloaded from UCSC (Data
source in Additional file 6: Supplementary materials) in
this part, in which only transcripts confirmed by experi-
ment were used. Estimated gene expression level was
compared to TagMan result from MAQC I project [53].

Base coverage comparison

Isoforms with Fragments Per Kilobase of transcript
per Million mapped reads (FPKM) > =10 estimated by
TopHat2G + Cuffdiff were selected to avoid random
bias due to low expression level and/or coverage. We
used SAMtools to calculate the depth of each base in the
exon region of these isoforms [54]. Spearman correlation
was chosen as the metric to compare the within transcript
coverage concordance between libraries constructed by
RNasellI or chemical fragmentation.

Within-transcript coverage calculation

We used TMAP to align reads to reference transcrip-
tome, and then used SAMtools to calculate the depth of
each base for every transcript. To illustrate biases intro-
duced by different library construction methods we
compared within-transcript coverage in stably expressed
house-keeping genes. R scripts were used in visualizing
coverage distribution.

Read distribution

RSeQC [55] was used to calculate the percentage of
reads that map to various gene sequence categories de-
fined in GENCODE v24. When genome features are
overlapped, for example, a region can be annotated as
exon or intron depending on transcripts, the annotation
was processed following the order of: CDS exons > UTR
exons > Introns > Intergenic regions specified in RSeQC.
Intergenic region was defined as less than 1 kb from
transcription start sites (TSS) and transcription end sites
(TES), deep intergenic region was defined as between
1 k and 10 K from TSS and TES.

Additional files

Additional file 1: Figure S1: The number of reads by read length in (A)
the eleven Proton libraries. The peaks of read length of ProC libraries
were around 150 ~ 200 bp, whilst around 90 bp for ProR libraries. (B)
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Insert sizes of the two HiSeq libraries, calculated by the distance between
pair-end reads. (PDF 2520 kb)

Additional file 2: Figure S2. Mean read quality distribution. The shade
of color (from grey to blue to black) represents the density (percentage)
of read with certain mean quality. The reads of highest mean quality
were around 120 ~ 160 bp long in ProC libraries, whist for ProR libraries
the reads mean quality remained high until 150 bp, where the quality
began to deteriorate. (PDF 6020 kb)

Additional file 3: Figure S3. (A) Comparison of RNaselll fragment
(ProR), medial insert size (166 bp, ProC_insertM), long insert size (215 bp,
ProC_insertL), low initial RNA input (200 ng, ProC_lowinput), and HiSeq
with single-end, and pair-end sequencing libraries in gene detection and
expression quantification accuracy. Y axis on the left is the number of
detected genes, y axis on the right is the Spearman correlation with
TagMan result. All libraries manifest high quantification consistency with
TagMan, pair-end HiSeq library detected 1000 more genes than other
libraries. (B) Comparison of libraries in junction detection. All libraries
detected more than 120,000 junctions. (C-E) Comparison of detected
gene number (C), consistency with TagMan result (D) and junction
discovery (E) by different methods. (PDF 6708 kb)

Additional file 4: Figure S4. (A) Length distribution of mRNAs after
RNaselll fragmentation. X axis is fragment length in nt, y axis is the
concentration of the fragments. The peak length of both replicates is
around 90 nt, (B) Mapping patterns around the mitotic spindle
positioning (MISP) gene by the RNaselll fragmentation (ProR) and
chemical fragmentation (ProC) libraries. Mapped reads were visualized by
IGV. (C) The secondary structure of a duplicate read of MISP, predicted by
RNAfold. The free energy of the thermodynamic ensemble is -21.04 kcal/
mol. The frequency of the minimum free energy structure in the
ensemble is 11.46 %. The ensemble diversity is 8.87. (D-E) Overall read
coverage among transcripts of ProC and ProR respectively. (PDF 6494 kb)

Additional file 5: Figure S5. Comparison of gene expression estimate
method by HTSeq and CuffDiff in terms of (A) detected gene number,
and (B) consistency with TagMan result. (PDF 2185 kb)

Additional file 6: Supplementary Method. The files and commands
used in the study. (DOCX 19 kb)
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