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Abstract

Background: Glioblastoma (GBM) is the most common and aggressive brain tumors. It has poor prognosis even with
optimal radio- and chemo-therapies. Since GBM is highly heterogeneous, drugs that target on specific molecular
profiles of individual tumors may achieve maximized efficacy. Currently, the Cancer Genome Atlas (TCGA) projects
have identified hundreds of GBM-associated genes. We develop a drug repositioning approach combining disease
genomics and mouse phenotype data towards predicting targeted therapies for GBM.

Methods: We first identified disease specific mouse phenotypes using the most recently discovered GBM genes.
Then we systematically searched all FDA-approved drugs for candidates that share similar mouse phenotype profiles
with GBM. We evaluated the ranks for approved and novel GBM drugs, and compared with an existing approach,
which also use the mouse phenotype data but not the disease genomics data.

Results: We achieved significantly higher ranks for the approved and novel GBM drugs than the earlier approach. For
all positive examples of GBM drugs, we achieved a median rank of 9.245.60f the top predictions have been
demonstrated effective in inhibiting the growth of human GBM cells.

Conclusion: We developed a computational drug repositioning approach based on both genomic and phenotypic
data. Our approach prioritized existing GBM drugs and outperformed a recent approach. Overall, our approach shows

potential in discovering new targeted therapies for GBM.
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Background

Glioblastoma (GBM) is one of the leading causes of
cancer-related deaths in both the pediatric and adult
populations [1]. The standard treatment includes radi-
ation plus chemotherapy following maximal safe resec-
tion of cancer mass [2]. However, the prognosis of GBM
patients remains poor even with optimal radio- and
chemo-therapies: the mean survival is 15 months and
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most patients die within two years [2, 3]. In addition,
GBM is not a priority for new drug development because
of socioeconomic problems and medical difficulties [3].
Both the grim prognosis and urgent clinical needs have
motivated us to develop an “in silico” drug repositioning
approach and pursue FDA-approved agents that has the
potential to treat GBM but not previously identified as
GBM therapeutics.

Since GBMs are highly heterogeneous at the genomic,
histological and differentiation level, the lack of specific
therapies contributes to the treatment failures. Cancer
therapies that target on specific molecular profiles of
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individual tumors have the potential to maximize the
efficacy [4]. For example, Imatinib has been used to suc-
cessfully treat a subtype of leukemia with mutations in the
BCR-ABL fusion protein and has achieved a median sur-
vival of five years [5]. Over the past two decades, extensive
researches have identified hundreds of genetic mutations
that likely drive the GBM formation [6, 7]. More recently,
systemic multi-platform analysis of glioma and bioinfor-
matic mining by The Cancer Genome Atlas (TCGA) has
led to the classification of GBM into distinct molecular
subtypes according to the genes altered during gliomagen-
esis [8, 9]. Here, we use the accumulated genomic data for
GBM to guide the drug repositioning approach towards
discovering precise targeted drugs for GBM.

Disease genetic and genomic profiles have been
demonstrated useful in computational drug discovery
approaches [10-15]. These approaches estimate the asso-
ciation between a drug and a disease through calculating
their genomic profile similarities. They show increased
ability in discovering new drug-disease pairs comparing
with drug-based and disease-based repositioning strate-
gies (Fig. 1), which depend on existing drug-indication
knowledge to infer new drug-disease associations. How-
ever, the profile-based approach (Fig. 1(c)) has an inherent
challenge: the lower-level genomics profile similarities
between drugs and diseases do not necessarily translate
into higher-level drug treatment efficacy in diseases. Pre-
vious studies have demonstrated that phenotypic data
are critical in computational drug discovery approaches
[16-19]. Recently, the Mouse Genome Informatics (MGI)
database [20] has provided large amounts of phenotypic
descriptions for mouse genetic mutations based on sys-
tematic gene knockouts, which are impossible on human.
These causal gene-phenotype associations in mice have
been demonstrated useful in discovering of new disease-
associated genes [21] and drug targets [22], and also have
the potential to overcome the challenge in genomics-
based drug repositioning approaches.
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In this study, we develop a novel GBM drug reposi-
tioning strategy leveraging both lower-level disease and
drug genomics and higher-level mouse phenotypes. We
first identify GBM-specific mouse phenotypes using a
compiled list of GBM-associated genes identified by mul-
tiple TCGA studies [6, 8]. Then we screen all the FDA-
approved drugs for candidates that share similar mouse
phenotype profiles with GBM. We validate the approach
using approved GBM drugs, and approximate the perfor-
mance in detecting novel GBM drugs using two evaluation
sets: a set of potential GBM therapies tested in clinical tri-
als and a set of off-label GBM drugs in the post-marketing
surveillance system. Finally, we investigate the top 10 %
drug predictions. Overall, we combine the genomic and
phenotypic data for diseases and drugs towards identify-
ing novel targeted therapies for GBM.

Methods

Our approach ranks 1348 approved drugs by the mouse
phenotype profile similarities between GBM and each
drug. Figure 2 shows two steps in the algorithm: (1) identi-
fying the phenotypes in mice for GBM and each approved
drug, using the well-studied disease-associated genes and
drug target genes, respectively; and (2) calculating the
semantic similarities of the mouse phenotype profiles
between the disease and drugs. The rank of drugs based
on the phenotype similarities suggests how likely the drug
can be used to treat GBM. The following parts describe
each step as well as the evaluation methods in detail.

Identify mouse phenotype profiles for GBM and drugs
using disease genetics and drug target genes

TCGA Research Network provides a comprehensive
catalog of genomic abnormalities driving tumorgenesis.
We compiled a list of 102 genetic mutations that sig-
nificantly differentiate GBM tumors and healthy tissue
from several recent TCGA studies [6, 8]. The list pri-
marily contains the genes in the core GBM-associated
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Fig. 1 Computational drug repositioning strategies: a Disease-based methods (Similar diseases may be treated with the same drug), b Drug-based
methods (similar drugs may treat the same disease), and ¢ Profile-based methods (the association between a drug and a disease is estimated by
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Fig. 2 Our method contains two parts: a Identify mouse phenotype profiles for GBM and all approved drugs, and b Rank candidate drugs by mouse

pathways, including p53, Rb, and receptor tyrosine
kinase (RTK)/Ras/phosphoinositide 3-kinase (PI3K)
signaling.

We extracted the mouse phenotypes that are linked to
102 GBM-associated genes from the MGI database. Each
phenotype was weighted and ranked by the number of
genes it is linked with. The mouse phenotype terms were
removed from the list if their weights are smaller than
the median of all weights. At last, we identified a list of
945 GBM-specific mouse phenotypes. We mapped the
phenotype terms into 26 categories by tracing the isa rela-
tionship in the mammalian phenotype ontology. A score
was calculated for each category as the sum of weights of
all phenotypes in it. We ranked the phenotype categories
by their scores and investigated the top five categories.

Then we identified the mouse phenotype profile for
each of the 1348 FDA-approved drug. The drug target
genes were first extracted from the STITCH database,
and each drug-target link has a confidence score. Then
we extracted the mouse phenotypes that are linked with
the target genes for each drug. The phenotype terms are
weighted by the sum of confidence scores of the corre-
sponding target genes. Finally, we obtained a vector of
weighted mouse phenotype features for each candidate
drug.

Rank candidate drugs for GBM using mouse phenotype
similarities between GBM and drugs

We calculated the phenotypic similarity between GBM
and the drugs in order to rank the candidate drugs by their
similarity to GBM. Phenotype terms associated with both
GBM and the drugs were normalized by concepts in the
ontology, which provides semantic relationships between
concepts and has been widely used in biomedical applica-
tions [17, 21, 23, 24]. We calculated the semantic distances
between the mouse phenotype vectors for GBM and the

candidate drugs in the context of the mouse phenotype
ontology.

We first quantified the information content for each
phenotype term t as —logp(t), in which p(¢) represents the
frequency among phenotype annotations to all the 7568
mouse genes. In calculating the information content, if a
gene is annotated by one phenotype term, we assumed
that it is also annotated by the ancestors of this term in
the hierarchy of mammalian phenotype ontology. Hence,
a phenotype term has higher information content than its
ancestors, which lie on higher levels in the ontology.

Then we defined the semantic distance sim(t1,tp)
between phenotype terms #; and £ as:

sim(ty,f) = max (1)

—logp(a),
acA(ty,t2) gp( )

where A(t1, t») is the set of common ancestors for ¢; and £,
in the ontology. To calculate the distance from the pheno-
type vector p; to py, we matched each phenotype feature
in p; to the most similar feature in py and took the average:

2)

sim(p; — p2) = avg Z gnez;ax sim(ty,t2)
2 2

l1€p1
To calculate the distance between p; and pj, we aver-
aged the semantic distances in both directions:

1 1
sim(p1, p2) = Esim(pl — p2) + isim(pz —p1) (3)

A similar definition of distance between a pair of con-
cepts in an ontology was also used before [24].

Validate our approach through de novo prediction of
approved, potential, as well as off-label GBM drugs

We tested whether our approach can prioritize the exist-
ing and novel GBM drug therapies in the top among
1348 candidates. We compiled three evaluation drug sets
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based on previous studies [25, 26]: the approved GBM
drugs, potential GBM drugs that have been tested in clin-
ical trials, and off-label GBM drugs identified from a
post-marketing drug surveillance system. The approved
GBM drug set contains temozolomide and carmustine,
which are cytotoxic (non-targeted) chemical drugs, and
bevacizumab, which is the first targeted drug approved
for brain tumor. The potential GBM drug set contains
52 drugs collected from the clinical trials. In addition,
the FDA drug surveillance system contains large-scale
drug-disease data collected from hospitals, patients, and
pharmaceutical companies. A total of 36 off-label uses
for GBM were extracted from this system (containing
zero overlap with the 52 potential GBM drugs). We have
removed the approved GBM drugs from both the poten-
tial and off-label GBM drug sets, and evaluated the ranks
for these two sets to approximate the performance of the
proposed approach in predicting novel GBM drugs.

We compared the performance of our approach with
a recent drug repositioning approach proposed by
Hoehndorf [27] in ranking the above evaluation sets. The
Hoehndorf’s method also used the mouse phenotype data,
but did not incorporate the human disease genomics data.
They matched the human phenotype ontology [24] and
the mammalian phenotype ontology [28] to predict genes
for a human disease using the gene-phenotype relation-
ships in animal models. After that, they linked the pre-
dicted disease genes with the drug target genes to suggest
candidate drugs for the given disease.

We first evaluated the ranks for approved GBM drugs,
and the median ranks for the potential and off-label GBM
drug sets. We tested the median rank instead of the aver-
age, because the median is not affected by individual large
ranks. For example, if the rank for a GBM drug is 1348
using method A and 1000 using method B, both meth-
ods fail in detecting this positive example. But method B
may achieve much higher average ranks than method A,
affected by the large values of these two ranks. We also
extracted the overlapping drugs between the ranked drug
lists generated by the two methods, and performed the
paired student’s t-test to evaluate the significance of their
ranking difference. Then we combined the three evalua-
tion sets, assumed all the drugs as the positive examples,
and compared the precision-recall curve as well as the
mean average precision between methods.

Result

Identified mouse phenotypes are associated with GBM
pathogenesis

We classified the GBM-specific mouse phenotypes
detected through GBM-associated genes, and ranked
the phenotype categories. Table 1 shows that the top-
ranked phenotype categories are “tumorigenesis” and
“nervous system phenotype” as expected. Besides, the
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Table 1 The top-ranked categories of GBM-specific mouse
phenotypes detected through disease genetics

Rank  Phenotype category Example phenotype

1 Tumorigenesis Increased glioblastoma incidence

2 Nervous system phenotype  Abnormal astrocyte morphology

3 Hematopoietic system Abnormal hematopoiesis
Phenotype

4 Mortality/aging Decreased survivor rate

5 Immune system phenotype  Decreased leukocyte cell number

result shows that GBM interacts with the immune sys-
tem and hematopoietic system, which is consistent with
a series of previous researches. A recent mouse model
study [29] reveals that the GBM cells are able to migrate
along the cerebral blood vessels and extract nutrients from
the blood for themselves. They also replace the special-
ized brain cell named astrocytes to create a breakdown
in the blood-brain barrier (BBB), which tightly controls
the lymphocyte traffic into the central nervous system
(CNS) in healthy people. Then the GBM cells evade the
immune responses through inhibiting the T cell prolif-
eration [30], inducing immunosuppressive microglia [31]
and other channels. Studies on the pathways involving
these immune evasion strategies have led to several recent
advances in developing targeted immunotherapies for
GBM [32, 33].

Our approach outperforms an existing drug repositioning
approach in prioritizing approved, potential and off-label
GBM drugs

Using the phenotype profiles detected through GBM and
drug genomics, our approach prioritized the approved
GBM drug bevacizumab in top 24.4 % among a total
of 1348 chemicals, which is a much higher rank than
Hoehndorf’s rank in 67.9 %. In addition, we identified the
other two GBM approved drugs temozolomide and car-
mustine and ranked them within top 6.7 % and 10.7 %,
respectively, while Hoehndorf’s ranking list does not con-
tain these two drugs.

Table 2 shows that our median rank for the potential
GBM drugs in clinical trials is 7.8 %, which is 4.8-fold
higher than Hoehndorf’s median rank. For the off-label
GBM drugs from the post-marketing surveillance system,
our median rank is 15.3 %, which is 1.8-fold higher than
Hoehndorf’s approach. We generated significantly better
ranks for both the potential drug set (p = 0.003) and the
off-label drug set (p = 0.02) than Hoehndorf’s approach
based on result of the paired t-test. Besides, we ranked
the potential drugs higher than the off-label drugs, pos-
sibly because of the mixed and noisy data sources of the
post-marketing drug surveillance system.

We combined the three evaluation sets as a positive
sample set and found their median rank is within top 9.2
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Table 2 The ranks for GBM drugs in the three evaluation sets generated by our approach and Hoehndorf's approach
Evaluation drug (set) Our approach Hoehndorf's approach p-value

Temozolomide 6.7 % NA NA
Approved drugs Carmustine 10.7 % NA NA

Bevacizumab 244 % 67.9 % NA
Potential drugs (clinical trials) 7.8 % 454 % p=0.003
Off-label drugs (post-marketing surveillance) 153 % 442 % p=0.02
Combination 9.2 % 45.6 % p=0.0003

% (Table 2). Comparing with Hoehndorf’s approach, we
achieved significantly better performance in ranking these
positive drugs (p = 3e~%). Figure 3 shows the precision-
recall curve for the two methods. The mean average
precision calculated based on the curve is 0.29 for our
approach, comparing to 0.20 for Hoehndorf’s approach.
We classified the drugs in all evaluation sets into three
types, namely non-targeted cancer drugs, targeted can-
cer drugs and non-cancer drugs (Table 3). Our approach
achieved the best performance in ranking the targeted
cancer drugs, which has a median rank of 7.3 %. On
the other hand, Hoehndorf’s approach performed best
when predicting the non-targeted cancer therapies. This
may be due to the different input data for the two
methods: we incorporated the disease genomics data,
while Hoehndorf’s approach directly analyzed the dis-
ease phenotypes. Overall, our approach works better than
the baseline approach in ranking the evaluation drugs,
which are more likely to be able to treat GBM than ran-
dom drugs. The most significant difference between our

approach and the baseline approach lies in ranking the
non-cancer drugs that have been tested or in off-label use
for GBM, and the paired t-test yielded a p-value of 6e~%.

Together, the result suggests that our approach per-
formed significantly better than an existing method that
also utilizes the mouse phenotype data in prioritizing all
approved and novel GBM drugs, and specially in identi-
fying potential targeted GBM drugs. One possible reason
is that we used the most recent discoveries of GBM
associated gene mutations and a more comprehensive
drug-target database, which provides opportunities for
discovering targeted therapies for GBM.

Table 4 lists five examples in our top 5 % predictions and
their traditionally approved indications. Among them,
rosiglitazone is a PPARy agonist that shows the ability to
inhibit proliferation of human GBM cell lines [34]. Borte-
zomib may overcome MGMT-related resistance of GBM
cell lines to temozolomide [35]. Estradiol is a form of
estrogen and induces JNK-dependent apoptosis in human
GBM and rat glioma cells [36]. Simvastatin was identified
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Fig. 3 Precision-recall curve in ranking the positive examples of GBM drugs for our approach and Hoehndorf's approach
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Table 3 Median ranks for different types of drugs in the combined evaluation set

Drug type Our approach Hoehndorf's approach p-value
Non-targeted cancer therapies (chemotherapies) 9.5 % 258 % p=0.023
Targeted cancer drugs 73 % 564 % p=0.015
Non-cancer drugs 133 % 67.4 % p=0.0006

by a recent drug screening study using human cell lines
[37]. Decitabine can efficiently induce the differentiation
and growth inhibition in IDH1 mutant glioma cells [38].

Discussion

In this study, we predict candidate targeted drugs for GBM
through combining discoveries on disease genomics and
large-scale mouse phenotype data. We currently have not
considered the blood-brain barrier (BBB) permeability of
the candidate drugs, which is a major challenge for drug
discovery for CNS diseases. No readily available BBB per-
meable drug database can be publicly accessed to enable
simple filtering among the candidate GBM drugs. Com-
putational approaches based on decision tree have been
developed to identify BBB permeable drugs [39]. It is also
possible to modify the drug chemically or pharmaceuti-
cally to increase its permeability [40]. In summary, our
future work contains further selecting the candidate GBM
drugs that can be delivered into the brain.

TCGA recently classified GBM into four types: Proneu-
ral, Neural, Classical and Mesenchymal [6, 8]. Each class
has distinct genomic profiles. The Classical GBM has
increased EGFR expression and lacks TP53 mutations.
The Proneural subtype shows alterations of PDGFRA and
point mutations in IDH1. The Neural subtype is char-
acterized by expressions of neuron markers. And the
Mesenchymal GBM shows deletions of NF1, expression of
mesenchymal markers, and high expressions of the TNF
super family pathway and NF-«B pathway [8]. Patients of
the four types also respond differently to chemo- and/or
radiotherapy [8]. In the future, We will predict drugs
for each of the four types targeting on their distinct
genetic and genomic features towards achieving precision
medicine for GBM. We expect specific and different drug
predictions across the GBM subtypes.

In addition, human disease phenotypes, disease pheno-
typic similarities and drug similarities may also contribute

Table 4 Examples in our top 5 % drug predictions for GBM

Drug Traditional indication

Rosiglitazone Type 2 diabetes

Bortezomib Multiple myeloma

Estradiol Symptoms of menopause
Simvastatin High cholesterol and triglyceride
Decitabine Myelodysplastic syndrome

to GBM drug repositioning. For the drug-gene interaction
database, we currently use the STITCH database, but
other sources like Cancer Cell Line Encyclopedia (CCLE)
[41] may contain different knowledge. In the future, we
will develop algorithms to seamlessly integrate more com-
prehensive data to further filter strong candidate GBM
drugs. We will also test the candidate drugs in biomedical
experiments and clinical studies.

Conclusions

We screened 1348 approved drugs and predicted tar-
geted drugs for GBM through combining disease genomic
and mouse phenotype data. Our approach prioritized the
approved GBM drugs, and outperformed a recent drug
repositioning method in identifying novel GBM drugs.
For all positive examples of GBM drugs, we achieved
a median rank of 9.2 %, comparing to 45.6 % gener-
ated by the earlier approach. In the paired t-test, our
approach generated significantly higher ranks for the eval-
uation drugs than the baseline approach (p = 3e~%). We
found that many of our top-ranked predictions have been
demonstrated effective in inhibiting the growth of human
GBM cells. Overall, the results show that our drug reposi-
tioning approach has the potential in finding new targeted
therapies for GBM.
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