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Abstract

Background: Major depressive disorder (MDD) is a heterogeneous disease at the level of clinical symptoms, and
this heterogeneity is likely reflected at the level of biology. Two clinical subtypes within MDD that have garnered
interest are “melancholic depression” and “anxious depression”. Metabolomics enables us to characterize hundreds
of small molecules that comprise the metabolome, and recent work suggests the blood metabolome may be able
to inform treatment decisions for MDD, however work is at an early stage. Here we examine a metabolomics data
set to (1) test whether clinically homogenous MDD subtypes are also more biologically homogeneous, and hence
more predictiable, (2) devise a robust machine learning framework that preserves biological meaning, and (3)
describe the metabolomic biosignature for melancholic depression.

Results: With the proposed computational system we achieves around 80 % classification accuracy, sensitivity and
specificity for melancholic depression, but only ~72 % for anxious depression or MDD, suggesting the blood
metabolome contains more information about melancholic depression.. We develop an ensemble feature
selection framework (EFSF) in which features are first clustered, and learning then takes place on the cluster
centroids, retaining information about correlated features during the feature selection process rather than
discarding them as most machine learning methods will do. Analysis of the most discriminative feature clusters
revealed differences in metabolic classes such as amino acids and lipids as well as pathways studied extensively
in MDD such as the activation of cortisol in chronic stress.

Conclusions: We find the greater clinical homogeneity does indeed lead to better prediction based on biological
measurements in the case of melancholic depression. Melancholic depression is shown to be associated with changes
in amino acids, catecholamines, lipids, stress hormones, and immune-related metabolites. The proposed computational
framework can be adapted to analyze data from many other biomedical applications where the data has similar
characteristics.
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Background

Major Depressive Disorder is the most common mental
illness, affecting an estimated 350 million people world-
wide [1]. For many, MDD is a lifelong illness consisting
of recurrent episode, each of which may cause disability
and severely interfere with an individual’s everyday life,
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and greatly increase the risk of suicidal behavior [2].
Current antidepressants are fully effective in only about
a third of patients, with another third partially respond-
ing. Thus there is a tremendous need to identify novel
therapies to help those not served well by today’s treat-
ment strategies. This can only come with a deeper
understanding of the biology and the biological hetero-
geneity of MDD.

The identification of replicable biomarkers differentiat-
ing patients with MDD from healthy controls has lagged
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behind other diseases. This is reflected in a mega-
analysis of GWAS data performed by the Major Depres-
sive Disorder Working Group of the Psychiatric GWAS
Consortium on 9240 MDD cases and 9519 controls
which identified no replicable markers, despite the de-
tection of significant markers in 94 % of other disease
tested in populations of the same size [3]. A key factor
likely hindering the discovery of biomarkers for or pre-
diction of MDD compared with other diseases is high
degree of clinical and biological heterogeneity [4—11]. In
the DSM V diagnostic manual, MDD is defined by pa-
tients having at least one of the two core depressive
symptoms, ‘depressed mood’ and ‘anhedonia; and at least
5 of 9 overall symptoms. This definition alone leads to
heterogeneity based on the combination of symptoms
endorsed by any given patient. Even within individual
symptom items there is heterogeneity with criteria such
as “gaining weight or losing weight”, “hypersomnia or in-
somnia”, “psychomotor agitation or retardation”. It
would be surprising if such clinical heterogeneity were
not also reflected in the biology of MDD.

Two patient groups easily separable based on clinical
features are those with melancholic depression and those
with anxious depression. Melancholic depression is char-
acterized by pervasive anhedonia, lack of reactivity to
circumstances, depressed mood of a distinct quality, and
typical vegetative symptoms such as appetite or weight
loss, early morning awakening, worse mood in the
morning [4, 12, 13]. The prevalence of melancholic de-
pression among depression population is around 25-
30 % [14]. Melancholic depression is found to exhibit
stronger response to physical treatments but weaker re-
sponse to psychotherapy or placebos compared to other
subtypes of depression [15-17]. Anxious depression is
characterized by the co-occurrence of MDD with anx-
ious symptoms, possibly subthreshold for diagnosis of an
anxiety disorder. Anxiety during an MDD episode has
been widely studied as a predictor of a more severe
course of illness, and poorer patient outcomes [18-20].

Here we report results on the Janssen-BRC metabo-
lomics data set, consisting of 97 healthy control and
90 MDD subjects, of which 21 suffer melancholic de-
pression and 58 from anxious depression. In this work,
our goals are three-fold. First, we test the hypothesis
that more clinically homogeneous groups of MDD pa-
tients are easier to predict from healthy controls than
the entire MDD group using blood metabolomics data.
Second, we develop a novel method for building max-
imally predictive and robust machine-learning classi-
fiers that retain information on the correlation
structure of the metabolomics data to ease biological
interpretation. Third, we use this framework to de-
scribe the metabolomics biosignature of melancholic
depression.
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Methods

Data description

The Janssen-BRC metabolomic data set was part of a case-
control study of MDD designed to detect biomarkers of de-
pression and subtypes of depression by investigating various
data sources, such as patients’ demographic information,
psychophysiological and neuropsychological indices, and
molecular profiling. Volunteers were recruited nationwide
by Brain Resource Company (BRC) in Australia. Patients
were designated as MDD if they scored >= 14 on the
Hamilton Depression Rating Scale-17 (HAMD17). Within
MDD subjects, patients were designated as melancholic de-
pressed if they additionally scored > =8 on the CORE scale
[21-24]. The CORE scale for melancholic depression con-
sists of a 18-item scale with each item rated on a 4-point
scale (0-3) by clinicians [25, 26]. Patients were designated
as anxious depressed the number of comorbid anxiety dis-
orders on the M.LN.L International Neuropsychiatric Inter-
view > 0. Based on these diagnostic criteria, the data set
consists of 97 healthy control and 90 MDD subjects, of
which 21 suffer melancholic depression and 58 from anx-
ious depression. One healthy control subject was not evalu-
ated for anxiety, was therefore not included in the analysis
of healthy control vs. anxious depressed out of caution. For
detailed statistics of the samples used in our study, readers
may refer to Table 1.

This study was approved by Institutional Review Board
(IRB)/Independent Ethics Committee (IEC) including
the protocol and written informed consent form at each
trial site. Written consent was obtained from partici-
pants prior to enrollment in the study.

Metabolomics sample
A 20 ml sample of plasma was collected into EDTA-
containing tubes from 99 depressed subjects and 100
healthy controls (gender and age matched) collected
from four recruitment sites at BRC, Australia. Samples
were stored at BRC at -20 °C prior to shipment after
which they were shipped on dry ice and stored at -80 °C.
Plasma samples were profiled by Metanomics Health
GmbH. Plasma samples were extracted by a proprietary
method and separated into four fractions (lipid and polar
fractions) prepared for Gas chromatography—mass spec-
trometry (GC-MS) and Liquid chromatography—mass
spectrometry (LC-MS/MS). For GC-MS analytics the
samples were sequentially derivatized before measure-
ment. In LC-MS/MS analysis a metanomics proprietary
technology was applied which allows target and high
sensitivity MRM (Multiple Reaction Monitoring) profil-
ing in parallel to full screen analyses.

Data were acquired on 272 peaks: 160 peaks mapped
to known metabolites and the remaining 112 unknown.
Data were centered to the median of healthy control



Liu et al. BMC Genomics (2016) 17:669

Page 3 of 17

Table 1 Sample statistics of metabolite data for the classification of melancholic depression. Mean statistics are reported with
standard deviation, minimum value, and maximum value in the parenthesis

HC MDD Melancholic depressed Anxious depressed
# of samples 97 90 21 58
Age 3849 (14.72, 16.25-74.38) 39.70 (14.10,18.66-76.75) 40.59 (12.69, 19.86-68.97) 39.78 (13.95, 18.66-68.97)
Gender(%female) 60.82 % 63.33 % 57.14 % 60.34 %
Education 14.85 (241, 7-18) 13.87 (2.95, 3-18) 13.81 (3.72, 3-18) 14.36 (2.55, 9-18)
HAMD 0.28 (0.72, 0-4) 21.90 (349, 18-34) 24.57 (4.46,19-34) 22.14 (3.61,18-34)
CORE - 543 (4.21,0-23) 11.24 (3.96, 8-23) 5.71 (450, 0-23)

samples, and log-transformed to assure normal distribu-
tion of the data.

Correction of storage time effects

The concentration of many metabolites is known to
change as a function of storage time. We removed 44
metabolites reported by Metanomics Health as having
sensitivity to storage time in the same direction as the
change observed in our data set, leaving us with 228 me-
tabolites. Those not deemed sensitive to storage may still
have residual storage time effects. To assess this, we cal-
culate the p-values of bivariate correlations between me-
tabolites and the storage time, and assess their deviation
from the null distribution (that expected under the null
hypothesis of no metabolite associated with the storage
time) in a Quantile-Quantile (QQ) plot (Additional file
1: Figure S1 (left)). The calculated p-values (-log trans-
formed) for metabolites are sorted in descending order
and plotted against the values sampled from the ex-
pected uniform distribution of p-values. The strong devi-
ations from the straight line suggest that either the null
distribution is incorrect or that there exists a true associ-
ation. In our study, we observe that the linear relation-
ship with the storage time at -20° continues up to
200 days, while the effects of the storage time are
skewed after day 200. We thus remove samples stored
for more than or equal to 200 days.

To control for this effect, we correct the metabolite
data by taking the residuals of linear regression models
on storage time at -20° [27]. We build the regression
model on healthy controls only, and then apply the
model to all subjects in order to avoid the removal of
some disease-related effects as suggesied in [28].

Specifically, let X be one column of the metabolite fea-
ture vector (one metabolite) to be corrected, and T be
the column vector of the storage time at -20°. The
lengths of X and T equal the sample size. Let Xz and Ty
denote the feature and storage time vectors of healthy
controls respectively. Then, we correct the metabolite
features as follows.

1) We build the following linear regression model on
the 97 healthy control samples

Xg = ﬁo + THﬁp

where f3; and S, stand for the effect of storage time T on
X, and the bias, respectively. We can estimate the
parameters as follows:

(é‘;) — (s7s)7'sTx,

where S is a two-column matrix with the first column
being a vector of ones and the second column being T.
Once f3; is determined, the corrected metabolite feature
X, will be

X = X - TB,.

2) We apply the above storage time correction on all
subjects, and repeat this procedure for all metabolite
features.

After correction, the strong deviation is removed from
the QQ plot (Additional file 1: Figure S1 (right)) of the
p-values of bivariate correlation between metabolite fea-
tures and storage time, which indicates the effectiveness
of the correction approach.

Imputation of missing values

Among the 187 samples used in our study, 1.10 % of the
feature values are missing. We impute the missing values
by several different approaches:

halfMin: Impute the missing values by half of the
minimum value in the corresponding feature. The
assumption behind this method is that most of the
missing values are too small to be detected, and
therefore a simple approach is to replace the missing
entries with reasonably small values. For methods such
as GC/MS and LC/MS where nonlinear maps must be
aligned to match peaks across samples, it may be a
poor assumption that a missing value corresponds to a
value below the limit of quantification, because in some
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instances a missing value may be the result of a
misaligned, though possibly large, peak which does not
get counted.

kKNN3: Impute the missing values by the k-nearest
neighbor method (kNN). kNN imputes a missing value
with a weighted average of the top k nearest-neighbor
columns (k = 3 was used here). The weights used in
kNN are inversely proportional to the distances from
the neighbor columns.

EM: Impute the missing values by the expectation-
maximization (EM) method [29]. Under the assumption
that the data matrix is Gaussian distributed, EM
algorithm imputes the missing values with conditional
expectation values by iteratively estimating the mean
and covariance matrix from incomplete data and
maximizing the likelihood of the available data.

SVD: Impute the missing values by the Singular Value
Decomposition (SVD) method. The SVD method,
assuming the data matrix is low-rank, imputes the
missing values by iteratively updating the data matrix
with low-rank approximations.

In our study, all the input data matrices are normal-
ized with zero mean and unit standard deviation before
feature selection or classification. The distributions of
original and imputed values of four metabolite features
(Glyoxylate ratio, Caffeine ratio, Elaidicacid ratio and In-
dole 3 propionic acid ratio) are shown in Additional file
1: Figure S2. The distribution of the values imputed by
kNN3, EM and SVD are very similar to that of original
data while the halfMin method yields an imputed data
with more small values as it assumes that the missing
values are too weak to be observed. For our primary re-
sults reported we use kKNN3 and contrast with halfMin
to compare the effect on classifier performance.

Cluster representation

Recent studies on statistical learning show that advanced
feature learning algorithms like Lasso may fail to select
important but highly correlated features simultaneously,
and show that the clustered Lasso may lead to improved
prediction and feature selection [30]. In clustered Lasso,
we first apply clustering on the features to identify a set
of feature groups. Then, we construct a reduced dataset
consisting of cluster-representatives, which refer to the
averages of the features from the same cluster. In our
experiments, we first cluster the features into 100 groups
by two clustering algorithms, K-means and hierarchical
clustering, and then generate a 100-dimensional dataset
with each feature being the centroid of each cluster. The
distance used in K-means was Euclidean distance while
the inter-cluster distance used in hierarchical clustering
was the maximum correlation between points in two dif-
ferent clusters. For each cluster, the cluster centroid is
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calculated, and this is the new feature which is then used
for classification.

We show the QQ plots of the p-values in the two-
sample t-test are improved through feature clustering
(Additional file 1: Figure S3). Although all the p-values
obtained on raw features seem to be non-significant ex-
cept for the minimum one, there exist strong signals for
the clustering representatives (including K-means and
Hierarchical Clustering). This is because QQ plot as-
sumes that the p-values are independent to each other
while the raw metabolite features are correlated to each
other and the clustering on features can effectively miti-
gate the correlation.

An ensemble feature selection framework (EFSF)
Figure 2c illustrates the feature selection +ensemble
framework used in our study and we name the process
the Ensemble Feature Selection Framework (EFSF)
Ensemble learning is a general and powerful frame-
work in machine learning. The underlying philosophy of
ensemble learning is to build a learner by combining a
collection of base learners [31]. Ensemble learning can
be divided into two tasks: 1) building a set of base
learners from the training data; 2) combining the base
learners to produce the predictor. The majority voting
scheme in our study is one type of the ensemble learning
methods. The base learners (e.g., SVM, Random Forest)
are first trained from each undersample, and their pre-
dictions on testing data are then combined to form the
final prediction which decides the output that has the
majority (i.e., more than half the votes).

Undersampling

In our study, the ratio between the number of melan-
cholic depressive patients and the number of the healthy
controls is around 1:5, which is shown in Table 1. Trad-
itional machine learning methods are less effective for
such severely imbalanced data set as the classifier
trained in such case will be biased towards the majority
class. We adopt a very effective and commonly used ap-
proach, called “undersampling”, to deal with the imbal-
ance problem [32-34]. In our case, we have a relatively
large number of negative samples (e.g., healthy controls)
and a relatively small number of positive samples (e.g.,
melancholic depressive patients). During the training
stage, we randomly select a subset of negative samples
with size equal to the total number of positive samples,
and build a classifier on the combination of the positive
samples and the undersampled negative samples. For in-
stance, if there are 90 negative samples and 16 positive
samples available in the training set, then 16 out of 90
negative samples will be randomly selected, which is
combined with the 16 positive samples to form a train-
ing set to build a classifier. To reduce the variability of
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random undersampling and further enhance the per-
formance, we repeat the undersampling procedure 30
times in the experiment and thus build 30 classifiers
during the training process. Finally, we combine all the k
classifiers via majority vote as the final prediction.

Feature selection

To identify the most predictive features, we apply feature
selection. Since we adopt the undersampling strategy in
the training process, we do feature selection on each
undersampled data set and combine feature selection re-
sults to generate a final ranking of features. We employ
both univariate and multivariate feature selection
methods in this study including 7-test [35], Fisher’s
Score [36], Gini Index [37] and Stability Selection [38].

Classification

Two different widely used classifiers were tested in this
study: Support vector machines (SVM) and Random
Forest (RF). SVMs were first introduced in 1992 [39]. In
the task of binary classification, SVM separates the two
classes of data points by determining a boundary with a
hyperplane which maximizes the margin of the bound-
ary. The margin is defined as the width that a boundary
could be increased by before hitting a data point. SVMs
can easily build non-linear classifiers by adopting the
kernel tricks [39] to implicitly map the input data into
high-dimensional non-linear feature space where the
data are more easily separable. In RF, the learning ap-
proach models a predictor that averages a collection of
de-correlated decision / regression trees [31, 40]. In ran-
dom forest, the algorithm makes a large set of bootstrap
samples and builds decision / regression trees on them
by selecting the best split point among a random subset
of features. The final model of the random forest is the
ensemble (average) of the trees grown in the bootstrap
samples. Random forest takes advantage of the bootstrap
aggregation to effectively reduce the high-variance made
by the trees and shown success in a wide range of appli-
cations [31, 40].

In our experiments, we report the classification perfor-
mances obtained from 10-fold cross validation. We ran-
domly divide the data into 10 sets of equal size, and,
holding out one set for testing, use the remaining 9 sets
for training. The EFSF is applied on the training data
and the learned models are used for prediction. Each set
is used for testing once and thus the training and testing
procedure is repeated 10 times.

Classification performance measures

In our experiment, we treat melancholic depressed pa-
tients as positive samples and healthy controls as negative
samples. Because the dataset is highly imbalanced, the
commonly used performance measure, i.e., classification
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accuracy, is not sufficient. In addition to accuracy, we also
reported both sensitivity and specificity which measure
the proportions of positive and negative samples classified
correctly. Specifically,

sensitivity
number of true positives

number of true positives + number of false positives

and

specificity
number of true negatives

number of true negatives + number of false negatives’

In our experiment, the classification performance mea-
sures (i.e., accuracy, sensitivity and specificity) are ob-
tained from 10-fold cross-validation, described above.

Permutation testing

In order to demonstrate the strength of the signals dis-
covered in our study, we propose to use the framework
of permutation testing [41, 42] to validate the learning
results. In the permutation test [41, 42], sample labels
(i.e. Melancholic Depressed, Healthy Control) are ran-
domly permuted and the trained classifiers are tested on
the permuted data set. The permutation-based p-value is
defined as the fraction of randomized samples where the
classifier performs better in the original data than in the
permuted data, and is computed as:

b, - {D' eD:e(f, D) < e(f, D)}| + 1
K + 1 ’

where D is a set of K randomized (permuted) data sets
D' of the original data D, fis the trained classifier, and e
represents the error function.

Network visualization

Metabolites from the top 15 ranked clusters in the K-
means clustering were analyzed using IPA (Ingenuity®
Systems, www.ingenuity.com) for visualization and me-
tabolite annotation. Metabolites were mapped to KEGG
identifiers using the Human Metabolome Database (ver-
sion 3.5, http://www.hmdb.ca/); KEGG ID’s were used as
input in IPA. In some cases, the identity of metabolites
was too specific for mapping to the KEGG database.
Where possible, metabolites were assigned a KEGG ID,
which encompasses a class of molecules, e.g. triacylgly-
cerides. A union of 76 metabolites from the 4 feature se-
lection methods was used as input. Of the 76
metabolites, 56 were mapped to KEGG.

Results and discussion

Classification performance on MDD subtypes

We first compared the performance of the Random For-
est classifier using kKNN3 imputation using individual
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metabolites (228 features) on three different classifica-
tion tasks illustrated in Fig. 1. (1) MDD vs. Healthy
Control, (2) Anxious Depressed vs. Healthy Control, (3)
Melancholic Depressed vs. Healthy Control. The classi-
fier performance was higher for Melancholic Depressed
patients than for the other two subgroups (Fig. 1b), sug-
gesting that Melancholic Depressed patients may be
more homogenous at the biological level (at least the
blood metabolome) and easer to predict using a metabo-
lomics biosignature. That Anxious Depressed subjects
were not predicted with as high a degree of accuracy
could mean that either there is less of a signal in the
blood metabolome associated with symptoms of anxious
depression, or alternatively that within that designation,
there is still a considerable degree of biological hetero-
geneity. For the remainder of this work we focus on
building a robust classifier for melancholic depression,
and to describe the biology underlying the biosignature.

A robust classifier for melancholic depression

We next focused on optimizing the classification of the
Melancholic Depressed subjects from Healthy Controls.
Classifiers were built using either individual metabolites
(228 features), or deriving features by first clustering me-
tabolites using K-means or hierarchical clustering into
100 cluster. The 100 cluster centroids were used as fea-
tures in the predictive models (Fig. 2b).

The Ensemble Feature Selection Framework (EFSF)
was run testing four imputation methods (halfMin,
KNN3, EM and SVD, described in the Methods), and
four feature selection methods (Fisher’s Score, Gini
Index, T-Test, and Stability Selection as described in the
Methods). Tables 2 and 3 show the classification results
by Random Forest and SVM, respectively, across all
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imputation, feature selection and classification methods.
We observed that Random Forest achieved higher classi-
fication performance than SVM in most cases.

Imputing missing values with half of the minimum
feature value achieved better performance than other
methods on individual metabolite features, while K-
nearest neighbor imputation outperforms others on
cluster-representatives (both K-means and hierarchical
clustering). The performance obtained by the EM imput-
ation is slightly worse. However, overall all imputation
methods achieve fairly comparable classification per-
formance, a robustness that may be conferred by the
small amount of missingness in the data set.

Stability selection, which penalizes highly correlated
features that are less likely to be selected together in a
model, performed consistently better on the individual
features (not clustered). In contrast, Gini Index per-
formed better when learning was performed on cluster-
centroids.

Classification performance (especially sensitivity) over-
all was higher on K-means-clustered features than when
using individual metabolite features; this indicates that
highly correlated features with high predictive power can
be effectively grouped by clustering approaches.

We also compare the EFSF framework with the stand-
ard undersampling method using exactly the same
training-testing data splitting. The result of the standard
undersampling method depends on which majority sam-
ples are selected. To get a good estimate of the perform-
ance of the standard undersampling method, we simply
use the k classifiers from the k undersampled (balanced)
data constructed in the EFSF and report the average per-
formance of these k classifiers. The results are shown in
Additional file 1: Tables S1 and S2 for Random Forest

A B
MDD 90 subjects
MelD AnxD
- ) 58 subjects RF MDD vs HC AnxD vs HC MelD vs HC
subjects Accuracy 72.16% 72.68% 83.84%
Sensitivity 72.22% 72.00% 76.67%
'S
Specificity 72.00% 72.89% 85.44%
97 HC
228 metabolites
Fig. 1 Metabolites classify Melancholic Depression from Healthy Controls with greater accuracy MDD as a whole or Anxious Depression. a Classifiers
for 90 MDD, 58 Anxious Depressed, and 21 Melancholic Depressed subjects were trained against 97 HC subjects (96 for the Anxious
Depression classification, as described in the Methods). b The table includes results using kNN imputation, Random Forest classification
using individual metabolites as features, and the feature selection method which resulted in highest accuracy (Fisher, Gini, T-test or
Stability) for each comparison
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and Support Vector Machines, respectively. We observe
that, the highest performance (accuracy, sensitivity, and
specificity) achieved is around 73 %, which is signifi-
cantly lower than that obtained by the EFSF.

To further validate strength of the signals discovered
in the study, we permutations tests (100 iterations, ran-
domly permuting sample labels) and find that, for all
cases, the classifier consistently performs better in the
original data than in the permuted data and the
permutation-based p-value is 1/101, which indicates that
the performances achieved in the original study is sig-
nificantly high with significant level a=0.01 (Fig. 3).
This suggests our classification performance is not the
simple result of over-fitting to a small number of
samples.

The blood metabolomic biosignature of melancholic
depression

We selected K-means clustering, KNN3 imputation with
Random Forest classification as the combination method
with highest overall classification performance on which
to perform pathway analysis. Each feature selection

method resulted in similar classification accuracy (range
of 78.69-79.74 %), although cluster representatives se-
lected by each method did not overlap completely. The
number of cluster representatives required for optimal
performance also varied; 15, 30, 36, and 18 for Gini, Sta-
bility, Fisher, and ¢-test, respectively. Features comprising
the top 15 clusters ranked by score were selected from
each method for evaluation of the biosignature. The
union metabolites from the 4 methods was used, as each
feature selection method resulted in similar classification
accuracy and was, therefore, hypothesized to contribute
biological information of interest. This yielded 76
metabolites, 48 of which were selected by at least 3 of
the 4 methods. Stability Selection exhibited the least
overlap with other methods, identifying 19 unique
metabolites.

Fifty-six of the 76 metabolites were mapped to KEGG
identifiers and analyzed. Table 3 lists the unique metabo-
lites with their ontology class and the cluster ranking by
each feature selection method. Top ranked features se-
lected by other combinations of the ensemble framework
parameters are included in Additional file 1: Tables S3-S7.



Table 2 Comparison of the classification performance obtained by Random Forest. For three clustering strategies, we compare 4 different imputation methods: halfMin, kNN3,
EM, and SVD. And four feature selection methods: Fisher, Gini, T-test and Stability. These are described in the Methods. The method used for subsequent pathway analysis is in

bold
Imputation halfMin kNN3 EM SVD
FS method Fisher Gini T-test Stability  Fisher Gini T-test Stability Fisher Gini T-test Stability  Fisher Gini T-test Stability
Raw Features
Accuracy  8042% 8036% 8042% 8034% 7868%  8043%  7784%  8384%  7784% 7687% 7784% 7874% 7784% 7611% 7784% 81.18%
Sensitivity 7333 % 7667 %  7333% 7667 % 7333 % 76.67 % 7333 % 76.67 % 7333% 7167 % 7333% 6833% 7333% 6667 % 7333% 7667 %
Specificity  8222% 8122% 8222% 81.11% 8022%  8133%  7911%  8544%  7911% 7800% 7911% 81.11% 7911% 7811% 7911% 8211 %
Cluster-Representatives (K-means)
Accuracy 7792% 8050% 7792% 7951 % 7869 % 7974% 7869% 7952% /707% 7716% 7534% 7415% 7874% 7874% 8048 %  79.73 %
Sensitivity 8333 % 8833% 8333% 8667% 7667 % 81.67% 8167% 81.67% 7833% 7833% 7833% 7500% 7833% 7833% 7333% 7833 %
Specificity  77.22%  7922%  7722% 7811% 7933% 7944% 7822% 7922% 7711% 7722% 75011 % 7433% 7911% 7911% 8233% 8033 %
Cluster-Representatives (Hierarchical Clustering)
Accuracy 7806 %  7548% 7806 % 7701 % 7959 % 7966 % 80.50 % 7724%  7379% 7379% 7373% 6962% 7547 % 7464 % 7638 % 7038 %
Sensitivity  7333%  7833%  7333% 8333% 7833%  8333% 7833 % 7833%  7333% 8000% 7333% 7000% 7000%  7000% 7000 %  70.00 %
Specificity 7933 %  7522% 7933% 7600%  80.11 % 79.22 % 81.22 % 77.33 % 7400% 7289 % 7400% 6989% 7711 % 76101 % 7822% 7089 %
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Table 3 Comparison of the classification performance obtained by Support Vector Machines. For three clustering strategies, we compare 4 different imputation methods:

halfMin, kNN3, EM, and SVD. And four feature selection methods: Fisher, Gini, T-test and Stability. These are described in the Methods

Imputation halfMin kNN3 EM SVD
FS method Fisher Gini T-test Stability  Fisher Gini T-test Stability  Fisher Gini T-test Stability  Fisher Gini T-test Stability
Raw Features
Accuracy 7213%  7952% 7213% 7464% 71.08% 7777%  7274%  7568% < 7122%  7868%  7456%  7373% 7199% 7/874% 7185% 7554 %
Sensitivity  6500% 7167 %  6500%  7000%  6500% 7167 % 6500%  7000%  60.00% 7333% 6000% 6500% 6500% 7333% 6833% 7500 %
Specificity  7411%  8133% 7411%  7611%  7278%  7900%  7478%  7722% 7400%  8011% 7811 % 7600% 7389% 8011% 7278% 7611 %
Cluster-Representatives (K-means)
Accuracy 7783 % 8020% 7868 %  7973%  7806% 8057 % 7966% 7646% 7296 % 7114%  7379%  7400%  7965% 7943 %  7965% 7267 %
Sensitivity  7833% 8667 %  8167% 7833% 8000% 8333% 8333% 7500% 6500%  7000%  7000%  7000% 7833% 7667 % 7833% 7167 %
Specificity  7800%  7900%  7811% 8033% 7822% 8044% 7922% 7733% 7500% 71.78%  7500% 7511 % 8011% 8000% 80.11% 7278 %
Cluster-Representatives (Hierarchical Clustering)
Accuracy 7615%  7928%  7623%  7701% 7792% 8064% 7792% 7470% 7268 %  7455% 7268% 7123% 7596% 7860%  7679%  70.10 %
Sensitivity  8500%  8333% 8500% 7833% 7833% 7500% 7833% 7500% 8000% 8000% 8000% 7500% 6333% 7000% 7333% 6833 %
Specificity 7478 %  7878%  7489% 7711 % 7811 % 8233% 7811% 7/5011% 7167% 7378% 7167% 71.00% 7900% 8100% 7789% 7078 %
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A high degree of robustness among the top features is
observed.

Many of the clusters were comprised of metabolites
falling within the same ontology class (Table 4), suggest-
ing that expression of classes of metabolites often co-
vary with each other. As expected, performing classifica-
tion with cluster representatives retained metabolites
which could be biologically relevant, but which would
have been excluded as redundant information using
other classification methods.

Overall, the majority of the selected metabolites were
increased in melancholic depressed vs. healthy control
subjects (48 of 56 metabolites). Some metabolite classes
contribute greatly to the classification of melancholic de-
pressed subjects from healthy controls (Fig. 4). Eleven of
the 56 metabolites analyzed were amino acids (turquoise
outlined metabolites), and several others (pseudouridine,
phosphotyrosine, urea, fumaric acid, and succinic acid)
are products of amino acid degradation or related. Four-
teen of the metabolites are related to lipids (grey
outlined metabolites) and most are increased in melan-
cholic depressed subjects. While these changes suggest
differences related to overall metabolism, there was no
obvious mechanism revealed by canonical pathway ana-
lysis for these classes of metabolites.

Some of the metabolites suggested functional pathways
of interest. Several are involved in catecholamine synthe-
sis and degradation (outlined in blue), which have been
studied for the treatment of depression. Three metabo-
lites related to stress hormone signaling (outlined in red)
were also identified as increased in melancholic depres-
sion vs. healthy controls. There are also 2 immune-
related molecules (outlined in purple) that are decreased
in melancholic depressed subjects.

Discussion

Several studies have sought to understand symptomatic
differences between MDD subtypes with inconsistent
conclusions. A recent NESDA study [23] identified 3
main symptomatic groups which seemed to approximate
melancholic, atypical, and undifferentiated/mixed sub-
types. Another meta-analysis concluded that there is too
much heterogeneity in studies and not enough detailed
symptomatic information available to classify subtypes of
MDD [43]. A third group found that response to antide-
pressants could not be predicted based on depression
subtypes [5]. The variability of these studies suggests
that symptomatic classification of MDD may not always
reflect a shared etiology in depression subtypes. Several
studies, however, point to factors such as severity of
MDD, heritability, chronicity, and traumatic childhood
events as being characteristic and predictive of melan-
cholic depression [21, 23]. The fact that melancholia has
a strong heritable component suggests that there is an
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underlying biological dysfunction which could be repre-
sented by molecular features and which could also be
used to classify melancholic depressed subjects from
other MDD subtypes or healthy controls. In our study,
we have identified blood metabolite markers which are
able to distinguish melancholic subjects from healthy
controls with 80 % accuracy.

In our empirical study, the ensemble feature selection
framework has shown great effectiveness in both feature
selection and classification on imbalanced metabolite
data. We thus expect it to be a promising framework
capable of achieving robust classification results for the
analysis of other biomedical data where the sample dis-
tribution is severely imbalanced. Based on the EFSF
framework, we identified discriminative metabolite fea-
tures related to melancholic depression, which are bio-
logically relevant to the disease state.

We found that different methods of data imputation
and feature selection had only minor effects on the ac-
curacy of classification, suggesting that there are robust
metabolite changes that can classify Melancholic
Depressed subjects from Healthy Controls. Interestingly,
although the overall accuracy of classification was simi-
lar, Stability feature selection identified several different
metabolites than other methods. Different from other
feature selection methods, stability selection identifies
features which are stable under data perturbation (via
subsampling/bootstrapping). Because all of the methods
resulted in similar accuracy, we hypothesized that all of
the metabolites were important contributors to melan-
cholia and applied pathway analysis to understand bio-
logical functions that can contribute to the disease.

Despite characteristics of slowed motor movement,
melancholic depression is described as a physiological
state of hyperarousal, which includes a chronic activa-
tion of the hypothalamic—pituitary—adrenal axis. This
stress pathway has been studied extensively in melan-
cholia and in animal models of chronic stress (reviewed
in [21, 44]). Elevated levels of the glucocorticoid, cortisol
(also called hydrocortisone), is an important signaling
molecule in this pathway and is increased in numerous
studies of melancholia. Although cortisol changes are
present in multiple subtypes of MDD, a recent meta-
analysis of 354 studies found that the effect size for cor-
tisol was larger when restricted to just melancholic de-
pressed subjects [45]. Consistent with other studies, we
identified an increase in cortisol in melancholia vs
healthy controls. However, because we took a metabolo-
mic approach, we also identified increases in other
metabolites in the hormone biosynthesis pathway
(androstenedione and corticosterone). Together these
data might suggest a dysregulation promoting steroido-
genesis in the upstream pathway. Glucocorticoids are
also important anti-inflammatory molecules. There is
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Table 4 Unique metabolites included in pathway analysis. Metabolites from the kNN3 imputed, K-means clustering, were analyzed
using IPA. Standardized KEGG nomenclature is included together with metabolite class and ranking of cluster representatives in the
four feature selection methods. Metabolites were selected for pathway analysis if they were members of a cluster that was among
the top 15 cluster-centroids selected by GINI, Stability, Fisher, or T-Test. Of 76 selected metabolites, 48 were selected by 3 of the 4
methods. 19 of the remainder were selected only by Stability

Metabolite Name KEGG Metabolite class Cluster rank
Gini  Stability Fisher T-test

Triacylgyceride hydroperoxide (C18:1,18:2,C18:2-O0H)
(additional: Triacylgyceride hydroperoxide C16:0,C18:1,C20:4-O0H,

Triacylgyceride hydroperoxide (C18:1,C18:1,C18:3-O0H) - Lipid Hydroperoxides 1 1 6 2
Triacylgyceride hydroperoxide (C16:0,C18:1,C18:2-O0H) - Lipid Hydroperoxides 1 1 6 2
Cysteine C00097  Amino acids 2 2 1 1
Cystine C00491  Amino acids 2 2 1 1
Pseudouridine C02067  Nucleobases (and related) 2 2 1 1
Unknown(28100470) - Unknown lipid 3 22 8 12
Conjugated linoleic acid (C18:trans[10]cis[12]2: - Fatty acids 3 22 8 12
Heptadecanoic acid (C17:0) - Fatty acids 3 22 8 12
Phenylalanine C00079  Amino acids 4 19 2 3
Lysine C00047  Amino acids 4 19 2 3
Methionine C00073  Amino acids 4 19 2 3
Tyrosine C00082  Amino acids 4 19 2 3
Alanine C00041  Amino acids 4 19 2 3
Histamine C00388  Catecholamines and other monoamines 5 12 12 9
Serotonine C00780  Catecholamines and other monoamines 5 12 12 9
Fumarate C00122  Energy metabolism and related 6 4 3 4
Normetanephrine C05589  Catecholamines and other monoamines 6 4 3 4
Sphingomyelin (dI8:/C16:0) C00550  Sphingolipids 7 17 16 22
Unknown(58100162) Unknown polar 7 17 16 22
DAG C18:1, C18:2) [seel] Glycerides (Mono-, Di-, Triglycerides) 8 63 5 6
TAG (containing C16:1/C181 or C16:0/C18:2; C00042  Glycerides (Mono-, Di-, Triglycerides) 8 63 5 6
TAG (C55H10006) (e.g. C16:0,C18:1,C18:2) C00042  Glycerides (Mono-, Di-, Triglycerides) 8 63 5 6
TAG (C55H9606) or (C50H10006) (e.g. C16:0,L18:2,C18:3 C00042  Glycerides (Mono-, Di-, Triglycerides) 8 63 5 6
or C16:0,C16:0,C18:2

TAG (containing C18:1/C18:2) C00042  Glycerides (Mono-, Di-, Triglycerides) 8 63 5 6
TAG (C55H9806) (e.g. C16:0,L18:2,C18:2) C00042  Glycerides (Mono-, Di-, Triglycerides) 8 63 5 6
Unknown(28100099) - Unknown lipid 9 11 4 14
Urea C00086  Amino acids derivates 9 1 4 14
Unknown(68100044) - Unknown lipid 10 61 10 10
TAG (containing C18:2/C18:3) C00042  Glycerides (Mono-, Di-, Triglycerides) 10 61 10 10
Unknown(68100059) - Unknown lipid 10 61 10 10
TAG (C55H10006) (e.g. C16:0,C18:1,C18:2) 1 C00042  Glycerides (Mono-, Di-, Triglycerides) 10 61 10 10
Linoleic acid (C18:cis[9,12]2 C01595  Fatty acids 10 61 10 10
TAG (containing C18:2,C18:2] C00042  Glycerides (Mono-, Di-, Triglycerides) 10 61 10 10
Ceramide (dI8://C24:0) C00195  Sphingolipids 1 83 9 7
Palmitic acid (C16:0) C00249  Fatty acids 11 83 9 7
Oleic add (Cl8:cis[9] 1) C00712  Fatty acids 11 83 9 7
Stearic acid (C18:0) C01530  Fatty acids 1 83 9 7
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Table 4 Unique metabolites included in pathway analysis. Metabolites from the kNN3 imputed, K-means clustering, were analyzed
using IPA. Standardized KEGG nomenclature is included together with metabolite class and ranking of cluster representatives in the
four feature selection methods. Metabolites were selected for pathway analysis if they were members of a cluster that was among
the top 15 cluster-centroids selected by GINI, Stability, Fisher, or T-Test. Of 76 selected metabolites, 48 were selected by 3 of the 4
methods. 19 of the remainder were selected only by Stability (Continued)

Glycerol, lipid fraction C00116  Cholesterol and fatty alcohols 11 83 9 7

Ceramide (dI8:/C24:0) C00195  Sphingolipids 11 83 9 7

Eicosenoic acid (C20:cislI]l) C16526  Fatty acids 11 83 9 7

Dodecanol C02277  Cholesterol and fatty alcohols 11 83 9 7

Metanephrfne C05588  Catecholamines and other monoamines 12 7 11 8

Ribonic acid C01685  Carbohydrates and related 13 45 17 18
myo-Inositol C00137  Carbohydrates and related 13 45 17 18
Unknown(68100045) Unknown lipid 14 57 13 13
Unknown(58100165) Unknown polar 14 57 13 13
Phosphatidylcholine (C16:0/C18:2) C00157  Phospholipids 14 57 13 13
Leucine C00123  Amino acids 15 50 7 5

Valine C00183  Amino acids 15 50 7 5

Isoleucine C00407  Amino acids 15 50 7 5

TAGH#1 C00042  Glycerides (Mono-, Di-, Triglycerides) 16 89 15 15
TAG (containing C16:0/C16:1 or C14:0/C18! C00042  Glycerides (Mono-, Di-, Triglycerides) 16 89 15 15
Palmitoleic acid C08362  Fatty acids 16 89 15 15
Myristic acid (C14:0) C06424  Fatty acids 16 89 15 15
Pentadecanol Cholesterol and fatty alcohols 16 89 15 15
Indole-3-propionic acic Amino acids derivates 17 13 22 16
Arginine C00062  Amino acids 17 13 22 16
Elaidic acid C01712  Fatty acids 18 10 14 11
Ratio Glu_versus_GIn - - 18 10 14 11
O-Phospho-L-tyrosine C06501  Amino acids derivates 19 9 34 26
Unknown(58100024) - Unknown polar 19 9 34 26
Unknown(38100389) - Unknown polar 20 6 19 19
Unknown(38100468) - Unknown polar 20 6 19 19
Dopamine C03758  Catecholamines and other monoamines 20 6 19 19
Unknown(68100052) - Unknown lipid 32 8 33 30
Arachidonic acid (C20:cis-[5,8,11,1414) C00219  Fatty acids 32 8 33 30
Phosphatidylcholine #8 C00157  Phospholipids 32 8 33 30
Cholic acid C00695  Miscellaneous 44 5 25 17
Indole-3-acetic acid C00954  Amino acids derivates 44 5 25 17
Cortisol CO0735 Hormones and related 65 3 40 28
Corticosterone C02140  Hormones and related 65 3 40 28
Androstendion C00280  Hormones and related 65 3 40 28
Threonic acid C01620  Vitamins, cofactors and related 74 15 57 58
Glyceric acid C00258  Miscellaneous 74 15 57 58
Unknown(68100002) - Unknown lipid 76 14 42 35
Lysophosphatidylcholine (16:0) C04230  Phospholipids 76 14 42 35
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Fig. 4 Network analysis of metabolites. IPA network analysis was used to view connections between selected metabolites. Several classes and
biological functions were observed and are highlighted in the diagram. Red-filled metabolites are increased comparing melancholic depressed
subjects to healthy controls, while green-filled metabolites are decreased. Higher intensity color indicated larger changes. Increases range from

1.94 to 1.07 fold change, while decreases range from -1.71 to -1.02
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renewed interest in the involvement of inflammation in
the development of MDD, and it has been hypothesized
that there is immune repression in melancholia medi-
ated by chronic cortisol levels and activated inflamma-
tion in atypical depression [21, 46]. Our results are
consistent with immune repression, evidenced by lower
levels of histamine and arachidonic acid in melancholic
depressed compared to healthy control subjects.

We also saw increases in catecholamine pathways,
which are inherently linked to glucocorticoids through a
complex feedback system. Lamers et al. (reviewed in
[21]) have postulated that melancholic depression is a
state of chronic stress, which activates corticotropin

releasing hormone (CRH), cortisol, and norepinephrine
(NE) pathways in the absence of inhibitory feedback.
Several metabolites in this pathway were removed from
our dataset due to instability over long storage times, in-
cluding NE itself. However, NE’s precursor, dopamine,
and metabolites of NE (L-metanephrine and L-
normetanephrine) were increased in melancholic de-
pressed subjects, which could suggest that NE may also
be elevated. Another member of the catecholamine
pathway is serotonin, which is decreased in our dataset.
An important class of antidepressants, selective sero-
tonin reuptake inhibitors (SSRI), is aimed at increasing
extracellular levels of serotonin to treat depression. A
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decrease in plasma serotonin, as seen in these melan-
cholic subjects, would be hypothesized to contribute to
a depressive state.

Heart disease and type II diabetes (T2DM) have been
cited as comorbidities of depression, which increases the
mortality rate in depressed subjects independent of sui-
cide. One shared mechanism for heart disease and
T2DM is dyslipidemia characterized by increased triglyc-
erides and fatty acids. Metabolic factors have been hy-
pothesized to be associated with atypical depression,
because of an increase in appetite and body mass index
(BMI) [23]. The POWER study [4], however, found sig-
nificant increases in triglycerides, ACTH, and leptin in a
melancholic, but not atypical depression, cohort. Con-
versely, at least one study found no differences in triglyc-
erides between melancholic and healthy subjects [46].
We found that both triglycerides and fatty acids were in-
creased in melancholic depressed subjects compared to
healthy controls, even though there was no difference in
BMI between the groups (data not shown). Clusters con-
taining triglycerides were consistently ranked highly by 3
of the 4 feature selection methods, indicating that they
were important in classification of melancholia. Al-
though not measured in this study, inflammatory factors
such as cytokines may also play a role in development of
insulin resistance in these subjects.

Two modified triglycerides (triglyerceride hydroperox-
ides) are particularly interesting as they were highly
ranked in each of the feature selection methods. There is
little literature about lipid hydroperoxides, although a
recent study correlated an increase in lipid hydroperox-
ides and an inflammatory marker, c-reactive protein
(CRP), in depressed smokers [47]. Lipid hydroperoxides
are hypothesized to occur physiologically in plasma
under conditions of oxidative stress and may also play a
role in the development of heart disease [48]. In the
NESDA dataset, the melancholic group contained a sta-
tistically significant increase in smokers over other types
of depression [23]. We were unable to explore this cor-
relation as our study did not record smoking status.

Amino acids are another class of metabolites that is
consistently increased in this study of melancholic de-
pression. While a mechanism for elevated amino acids
cannot be determined from this dataset, there is evi-
dence that this class of metabolites can differentiate
MDD from healthy subjects. Branched chain amino
acids were decreased following treatment with the
selective serotonin reuptake inhibitor antidepressant
sertraline [49]. Another recent study concludes that a
combination of tryptophan, cysteine, and glutamine are
capable of differentiating MDD from controls, although
their results, unlike ours, identify a decrease in these
plasma amino acids [50]. The inconsistency in direction-
ality of amino acid changes potentially arises from the
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difference in study populations, where Xu et al. [50] ex-
amined MDD, and our results are determined from the
melancholic subtype, which comprises only ~20 % of
MDD patients in our study.

Conclusions

This paper explores the metabolic biomarkers for melan-
cholic depression, a major subtype of MDD. A compre-
hensive multivariate study on the identification of
metabolic biomarkers that are strongly related to melan-
cholic depression is of great importance and necessity
for understanding the illness and the development of
pharmaceuticals and therapies. To address the problems
of confounding effects, incomplete data, feature correl-
ation, and imbalanced sample distributions, we explored
different data correction, imputation, and feature group-
ing methods with an ensemble feature selection frame-
work for identifying biomarkers and building prediction
model. Our extensive experiments on the metabolite
data show that strong signals exist in metabolite data
that can differentiate melancholic depressive patients
from healthy controls. Our pathway analysis on differen-
tiating metabolites elucidates underlying molecular
mechanisms that could contribute to melancholic de-
pression. We expect that the proposed computational
system can be adapted to analyze other biomedical data
with similar characteristics, which are common in many
biomedical applications.
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